Постгеморрагическая анемия: тактика ведения пациента в хирургическом стационаре

Б.А.Филимонов, РМАПО, Москва

немия, наравне с болью и лихорадкой – наиболее часто встречающийся синдром в общей хирургической практике. По заключению экспертов Всемирной организации здравоохранения анемию следует диагностировать при концентрации гемоглобина менее $120 \, \Gamma/\pi \, y$ женщин и менее $130 \, \Gamma/\pi - y$ мужчин.

Хирургов и травматологов прежде всего интересуют анемии, связанные с потерей крови. Посттеморрагические анемии (ПГА) могут быть острыми и хроническими. Острые ПГА развиваются в результате быстрой потери значительного количества крови (травма, большие операции, массивное желудочно-кишечное и легочное кровотечение и т.д.).

Причиной хронической ПГА являются кровотечения, особенно длительные, постоянные, чаще незначительные. Фактически хроническая ПГА - частный случай железодефицитной анемии (ЖДА).

В развитии ЖДА значительное место занимают кровопотери из желудочно-кишечного тракта, которые могут быть следствием язвы желудка или двенадцатиперстной кишки, опухолей желудка или кишечника, дивертикулов различной локализации, глистных инвазий, эрозий слизистой оболочки желудка и др. К дефициту железа может привести постоянная гематурия и/или гемоглобинурия. Значительно реже встречаются ЖДА, обусловленные кровотечением в замкнутые полости с последующим нарушением реутилизации железа в связи с отсутствием в этих полостях макрофагов (изолированный легочный сидероз, эндометриоз и др.).

В практике хирурга также встречаются ситуации острой кровопотери у больных исходной ЖДА (экстренные и плановые операции у пациентов с эрозивно-язвенными поражениями желудочно-кишечного тракта, варикозным расширением вен пищевода, геморроем и т.д.).

Кроме случаев кровопотери, хирурги сталкиваются с пациентами, у которых дефицит железа связан либо с повышенными потребностями организма в нем (тяжелые оперативные вмешательства, травма, ожоги и др.), либо с нарушением кишечного всасывания железа (резекция желудка и тонкой кишки), либо в связи с недостаточным поступлением в организм железа с пищей (онкологические заболевания, нарушение уровня сознания и т.д.).

Механизм развития железодефицитного состояния заключается в том, что организм теряет больше железа, чем получает его из пищи. Обычно железа получают с пищей: мужчины – 18 мг в сутки (из них всасывается 1-1.5 мг), женщины -12-15 мг в сутки, из них всасывается 1–1,3 мг. При повышенных потребностях организма в железе из пищи может всосаться максимум 2-2,5 мг. Следовательно, дефицит железа появляется, если потеря его организмом составляет более 2 мг в сутки. В результате этого нарушается образование гемоглобина, а в дальнейшем и эритроцитов. До развития анемии у больных наблюдаются признаки тканевого дефицита железа.

Разумеется, нельзя забывать о том, что в хирургическое отделение попадают пациенты с хронической почечной недостаточностью, онкологическими и онкогематологическими заболеваниями, различными иммунодефицитными состояниями (ВИЧ, иммуносупрессивная терапия и т.д.). В этих случаях генез анемии сложный, наряду с дефицитом железа имеют место ослабле-

ние продукции эритропоэтина при хронических заболеваниях почек, снижение числа эритроидных клетокпредшественниц в костном мозге в результате опухолевого процесса, интеркуррентные инфекции, аутоммунный гемолиз. В основе анемии, индуцированной цитостатиками и другими лекарственными препаратамииммуносупрессорами, лежит их непосредственное воздействие на костный мозг и нарушение функции почек.

Клиническая картина и диагностика

Основным звеном патогенеза острой ПГА является уменьшение объема циркулирующей крови (ОЦК). Острую кровопотерю считают массивной, если в течение 1-2 ч ориентировочно оцененная потеря крови составила не менее 30% ОЦК [1]. Клиническая картина острой ПГА не всегда соответствует количеству потерянной крови. В классическом варианте для значительной кровопотери характерны бледная, влажная, с сероватым оттенком кожа, бледные слизистые оболочки, спавшиеся периферические вены, осунувшееся лицо, запавшие глаза, частый слабый пульс, сниженное артериальное и венозное давление, учащенное дыхание, уменьшение диуреза, угнетение сознания. Пациенты жалуются на головокружение, слабость, потемнение в глазах, сухость во рту, сильную жажду, тошноту.

Симптомы острой ПГА обусловлены развитием гипоксии в органах и тканях и определяются степенью анемии, скоростью ее развития, сохранностью компенсаторных механизмов, основным заболеванием и сопутствующей патологией, функцией сердечно-сосудистой и дыхательной систем, а также физическим статусом пациента [2].

Клиническая картина хронической ПГА характеризуется симптомами, связанными с недостаточным обеспечением тканей кислородом: утомляемость (слабость), головокружение, сердцебиение, одышка, обмороки, головная боль, сонливость. К указанным симптомам в разной комбинации присоединяются симптомы дефицита железа (сидеропения): дисфагия, ангулярный стоматит, сухость и трещины кожи, выпадение волос, ломкость ногтей, извращение вкуса, пристрастие к необычным запахам, резкая мышечная слабость, недержание мочи при смехе и кашле, а также ночное недер-

Значение умеренной ЖДА в хирургической клинике часто недооценивают. Однако дефицит железа часто становится причиной неудовлетворительных результатов оперативного лечения. Следствием длительно существующей умеренной ЖДА, особенно у пожилых пациентов, может быть дистрофия миокарда, которая вносит свой вклад в развитие сердечной недостаточности, что в свою очередь выливается в неспособность пациента перенести операцию или инфекционное осложнение. Не следует забывать, что ЖДА – это синдром, который лишь позволяет заподозрить заболевания, лежащие в ее основе. Для проведения дифференциального диагноза проводят лабораторные и инструментальные методы исследования (эндоскопические, рентгенологические, ультразвуковые, компьютерную томографию и т.д.). При подозрении на скрытое желудочно-кишечное кровотечение необходимо исследование кала на скрытую кровь.

Таблица 1. Наиболее частые причинами развития ЖДА у пациентов хирургического профиля

- 1. Хронические кровопотери:
- желудочно-кишечные (гастроэзофагальная рефлюксная болезнь, эрозивно-язвенные поражения желудка и двенадцатиперстной кишки, болезнь Крона. неспецифический язвенный колит, дивертикулит, кровоточащий геморрой и др.)
- маточные (меноррагии различной этиологии, миома, эндометриоз)
- носовые (наследственная геморрагическая телеангиэктазия и другие геморрагические диатезы)
- почечные (иммуноглобулин А-нефропатия, геморрагический нефрит, опухоли почек, перманентный внутрисосудистый гемолиз)
- легочные (идиопатический легочный гемосидероз);
- ятрогенные и искусственные кровопотери (частые заборы крови для исследований, лечение гемодиализом, донорство и др.)
- 2. Нарушение всасывания железа:
- энтериты различного генеза
- синдром недостаточности всасывания
- резекции тонкой кишки
- резекция желудка с выключением двенадцатиперстной кишки
- 3. Повышенная потребность в железе:
- послеоперационный период, ожоги, тяжелая травма и т.д.
- 4. Нарушение транспорта железа (гипопротеинемии различного генеза)
- 5. Алиментарная недостаточность (алкоголизм, анорексия и др.)

Таблица 2. Общий анализ крови				
Показатели	Традиционные единицы	Коэффициент пересчета	Значения в системе СИ	
Эритроциты:				
мужчины	4,15–4,9 10 ⁶ /мкл	106	4,15-4,9 10 ¹² /л	
женщины	3-5 10 ⁶ /мкл	106	3,9-5 1012/л	
Гемоглобин:				
мужчины	13,2–16,4 г%	10	132–164 г/л	
женщины	11,5–14,5 г%	10	115–145 г/л	
Гематокрит:				
мужчины	41–50%	0,01	0,41-0,50	
женщины	36-44%	0,01	0,36-0,44	
CO9:				
мужчины	0-10 мм/ч		0-10 мм/ч	
женщины	2-15 мм/ч		2-15 мм/ч	
Тромбоциты	180-405 10 ³ /мкл	106	180-405 10 ⁹ /л	
Ретикулоциты	0,5-1,5%			
Лейкоциты	3,8-9,8 10 ³ /мкл	106	3,8-9,8 109/л	
Нейтрофилы:				
палочкоядерные	1–6%			
сегментоядерные	47–72%			
Лимфоциты	18–37%			
Моноциты	3–11%			
Базофилы	0-1%			
Эозинофилы	0,5–5%			
Среднее содержание гемоглобина в одном эритроците	27–33 пг	1	27–33 пг	
Средний эритроцитарный объем	80-94 фл	1	80-94 фл	

Для более эффективной нозологической диагностики врач должен быть осведомлен об основных заболеваниях и патологических процессах, которые могут стать причиной ЖДА (табл. 1).

В рекомендациях Американской ассоциации гематологов/Американской ассоциации клинических онкологов [3] опубликован алгоритм первичного поиска причины анемии, включающий полноценный сбор анамнеза, осмотр больного, клинический и биохимический анализы крови. При сборе анамнеза необходимо уточнить особенности питания (малобелковая диета, вегетарианство), профессиональные вредности, наличие сопутствующих заболеваний, сопровождающихся ане-

мией, эпизоды кровотечений и желтухи, исключить прием препаратов, способных вызвать развитие анемии; у женщин требуется выяснить гинекологический анамнез. При осмотре пациента врач должен оценить его физическое состояние, тщательно осмотреть кожу, ногти и слизистые оболочки (желтушность склер, сухость кожных покровов, ломкость ногтей и волос, глоссит и др.). Клинический анализ крови (табл. 2) включает определение содержания гемоглобина, эритроцитов, гематокрита, лейкоцитов, уровня цветового показателя, скорости оседания эритроцитов, подсчет лейкоцитарной формулы с описанием качественных особенностей клеток крови. Предлагается тщательное изучение

мазков крови (в некоторых случаях костного мозга). Для подсчета и анализа клеток крови можно использовать ручные микроскопические методы и гематологические счетчики. Автоматические методы позволяют значительно точнее оценить концентрацию клеток. Несмотря на это, ни один гематологический анализатор не может полностью заменить визуальный анализ мазка крови, который остается «золотым стандартом» в гематологии [4].

Лабораторная диагностика

Следует помнить, что при острой ПГА в первые часы после массивной кровопотери уровень гемоглобина (Нb) не отражает достоверно степень тяжести последней. Это связано с уменьшением внутрисосудистого объема, гемодилюцией и интенсивной трансфузионно-инфузионной терапией. В связи с этим необходимо регулярное повторное определение концентрации Hb [5].

Анемия при острой кровопотере носит нормохромный и нормоцитарный характер. Однако в течение 2–4 сут в результате усиления эритропоэза в периферической крови наблюдается ретикулоцитоз, который может сопровождаться незначительным лейкоцитозом и тромбоцитозом. Поскольку ретикулоциты имеют больший объем, чем эритроциты, острая ПГА может принять макроцитарный характер.

Основные критерии ЖДА (хронической ПГА) следующие: низкий цветовой показатель, гипохромия эритроцитов, микроцитоз, снижение уровня сывороточного железа, повышение общей железосвязывающей способности сыворотки, снижение содержания ферритина в сыворотке (табл. 3).

Наличие гипохромного характера анемии заставляет в первую очередь подозревать у больного ЖДА (все ЖДА являются гипохромными!). Наряду с определением содержания железа в сыворотке крови важным лабораторным показателем ЖДА является общая железосвязывающая способность сыворотки и насыщения белка трансферрина железом. Общая железосвязывающая способность сыворотки при ЖДА всегда повышена, в отличие от других гипохромных анемий, связанных не с дефицитом железа (например, при активных воспалительных процессах). Снижение уровня железосодержащего белка ферритина является существенным диагностическим критерием ЖДА с высокой специфичностью [6].

Принципы коррекции анемического синдрома в хирургической клинике

Лечение острой ПГА включает, прежде всего, остановку кровотечения и адекватную трансфузионную терапию. Для восстановления нормоволемии и органного кровотока, восполнения минимально достаточного количества циркулирующих эритроцитов, поддержания уровня гемостаза на приемлемом уровне внутривенно вводят клеточные компоненты крови, свежезамороженную плазму, коллоидные и солевые растворы (обсуждение алгоритма действий при острой массивной кровопотере не входит в задачи данной статьи).

При выявлении причины развития хронической ПГА основное лечение должно быть направлено на ее устранение.

Пациенты с хронической ПГА чаще всего не нуждаются в интенсивной трансфузионной терапии. При выборе показаний к переливанию эритроцитов у них следует учитывать показатели гемоглобина и гематокрита. Понятия «оптимальный уровень» Нь при хронической ПГА (так же, как и при острой кровопотере) не существует [7]. Важна индивидуальная оценка клинических и лабораторных данных и их динамика. У молодых людей при отсутствии жалоб, характерных для гипоксии и ишемии (слабость, одышка, головокружение, тахикардия, боли в области сердца) и при уровне гемоглобина

		_	
Таблина З	Herntonkie	Ричимимеские	показатели крови

Показатель	Значения в традиционных единицах	Коэффициент пересчета	Значения в системе СИ
Железо общее (кровь)	78–156 мкг%	0,179	14,3–28 мкмоль/л
Ферритин (кровь):			
мужчины	15–400 нг/мл	1	15-400 мкг/л
женщины	10-200 нг/мл	1	10-200 мкг/л
Трансферрин в сыворотке крови:			
мужчины			2,3-4 г/л
женщины			3-3, 8 г/л
Трансферрин, насыщение (кровь)	>15%	0,01	>0,15

Таблица 4. ПЖ для приема внутрь

Препарат	Состав Железа сульфат + D, L-серин	
Актиферрин		
Актиферрин Композитум	Железа сульфат + D, L-серин + фолиевая кислота	
Гино-тардиферон	Железа сульфат + фолиевая кислота	
Сорбифер дурулес	Железа сульфат + аскорбиновая кислота	
Тардиферон	Железа сульфат	
Ферлатум	Железа протеин сукцинилат	
Ферлатум Фол	Железа протеин сукцинилат + кальция фолината пентагидрат	
Ферро-Фольгамма	Железа сульфат + цианокобаламин (витамин B_{12}) + фолиевая кислота (витамин Bc)	
Ферретаб Комп	Железа фумарат + фолиевая кислота	
Ферроградумет	Железа сульфат	

Таблица 5. ПЖ для парентерального введения

Препарат	Состав	Путь введения
Феррум лек	Железа (III) гидроксидполиизомальтозат	Внутримышечно
Эктофер	Сорбитовый цитратный комплекс	Внутримышечно
Феррлецит	Натрийжелезоглюконатный комплекс	Внутривенно
Венофер	Железа (III) гидроксидсахарозный комплекс	Внутривенно
КосмоФер	Комплекс железа (III) – гидроксид декстрана	Внутривенно
Ликферр100	Железо (III) – гидроксидсахарозный комплекс	Внутривенно

выше 70 г/л показаний для гемотрансфузии в настоящее

В течение длительного времени в хирургической клинике для коррекции анемического синдрома применяли заместительные гемотрансфузии, что было сопряжено с развитием посттрансфузионных реакций и осложнений, вероятность которых увеличивается параллельно с увеличением количества трансфузий. Кроме того, существует опасность инфицирования вирусами гепатита В и С, ВИЧ, цитомегаловирусом, HTLV-1 и риск развития гемосидероза паренхиматозных органов [8].

В лечении хронической ПГА основное значение приобретает патогенетическая терапия железосодержащими лекарственными препаратами. В клинической практике лекарственные препараты железа (ПЖ) применяют внугрь или парентерально. Путь введения препарата у больных ЖДА определяется конкретной клинической ситуацией.

ПЖ для приема внутрь

Эти препараты (табл. 4) различаются количеством содержащихся солей железа (II), наличием дополнительных компонентов (аскорбиновая и янтарная кислоты, витамины, фруктоза и др.), лекарственными формами (таблетки, драже, сиропы, растворы), переносимостью, стоимостью.

При выборе лекарственного ПЖ следует ориентироваться на содержание в нем не только общего количества железа, но главным образом на количество железа (II), которое всасывается только в кишечнике. Входящие в состав многих лекарственных форм ПЖ аскорбиновая кислота, цистеин, фруктоза усиливают всасывание железа. Для лучшей переносимости ПЖ следует принимать во время еды. В то же время железо лучше всасывается при приеме лекарственных препаратов перед едой. В случаях назначения ПЖ в достаточной дозе на 7-10-й день от начала лечения наблюдается повышение количества ретикулоцитов. Нормализация уровня гемоглобина при адекватной терапии отмечается в большинстве случаев через 2-3 нед от начала лечения. Среди побочных проявлений на фоне применения ПЖ внутрь наиболее часто возникают тошнота, анорексия, металлический вкус во рту, запоры, реже – поносы.

ПЖ для парентерального введения

Лечение пероральными ПЖ проводится длительно, причем существенный прирост Нь, в отличие от улучшения самочувствия, будет нескорым, через несколько недель, что не устраивает врача-хирурга. Поэтому более адекватным для хирургической клиники следует признать парентеральный способ введения ПЖ (табл. 5).

Показания для применения парентеральных ПЖ в хирургической клинике:

- 1. Необходимость скорейшего насыщения организма железом, например, у больных ЖДА, которым предстоят оперативные вмешательства.
- 2. Нарушение всасывания при патологии кишечника (энтериты, синдром недостаточности всасывания, резекция тонкого кишечника, резекция желудка по Бильрот II с выключением двенадцатиперстной кишки).
- 3. Обострение язвенной болезни желудка или двенадцатиперстной кишки.
 - 4. Непереносимость ПЖ для приема внутрь.

В отличие от ПЖ для приема внутрь в инъекционных препаратах железо всегда находится в трехвалентной форме.

При парентеральном введении ПЖ возможно развитие флебитов, инфильгратов, потемнение кожи в местах инъекций, аллергических реакций, в том числе тяжелых (анафилактический шок).

На сегодняшний день внутривенными формами ПЖ, официально разрешенными к применению в Российской Федерации, являются Ликферр100® [железо (III) – гидроксидсахарозный комплекс], Венофер® [железо (III) – гидроксидсахарозный комплекс и КосмоФер® (стабильный комплекс железа (III) – гидроксид декстрана].

Препарат Ликферр100® появился на фармацевтическом рынке недавно. Это единственный российский препарат железа III для внутривенного введения [9].

Препараты эритропоэтина в хирургической практике

Эритропоэтин — физиологический стимулятор эритропоэза. Он активирует созревание эритроцитов из клетокпредшественников эритроцитарного ряда. Секреция эритропоэтина почками усиливается при кровопотере, различных анемических состояниях (железо- и $\rm B_{12}$ -дефицитных анемиях, анемиях, связанных с поражениями костного мозга и др.), при ишемии почек (в частности, при гиповолемическом шоке), гипоксических состояниях.

Уровень Нb и количество эритроцитов в крови повышаются уже через несколько часов после введения экзогенного эритропоэтина [10].

Рекомбинантный эпоэтин α (Эральфон, Эпокрин) синтезируется в клетках млекопитающих, в которые встроен ген, кодирующий человеческий эритропоэтин. По своему составу, биологическим и иммунологическим свойствам эпоэтин α идентичен природному эритропоэтину человека. Введение эпоэтина α приводит к повышению уровней гемоглобина и гематокрита. Наиболее выраженный эффект от применения эпоэтина α наблюдается при анемиях, обусловленных хронической почечной недостаточностью.

В хирургической практике рекомбинантный эпоэтин α (Эральфон, Эпокрин) используются в рамках предепозитной программы перед обширным хирургическим вмешательством у больных с уровнем гематокрита 33–39%, для облегчения сбора аутологичной крови и уменьшения риска, если ожидаемая потребность в переливаемой крови превышает количество, которое можно получить методом аутологичного сбора без применения эпоэтина α.

Показания для применения рекомбинантного эпоэтина α (Эральфон, Эпокрин):

- 1. Перед проведением обширной операции с ожидаемой кровопотерей 900–1800 мл у взрослых пациентов, не имеющих анемии или с легкой и средней степенью анемии (уровень гемоглобина 100–130 г/л) для уменьшения потребности в аллогенных гемотрансфузиях и облегчения восстановления эритропоэза.
- 2. Анемия у больных хронической почечной недостаточностью.
- 3. Профилактика и лечение анемии у больных с солидными опухолями, анемия у которых стала следствием проведения противоопухолевой терапии.
- 4. Профилактика и лечение анемии у больных, инфицированных вирусом иммунодефицита человека, вызванной применением зидовудина.

Таким образом, в настоящее время у хирурга есть все возможности для быстрой коррекции ЖДА, вызванной кровопотерей и другими причинами, а также для подготовки пациентов с анемией к обширной операции.

Литература

- * -

- 1. Воробьев А.И. Руководство по гематологии. М.: Медицина, 1985.
- 2. Гусева СА., Гончаров Я.П. Анемии. Киев: Логос, 2004. 3. American Society of Hematology/American Society of Clinical Oncology – ASH/ASCO, 2007.
- 4. Бессмельцев С.С. Современные подходы к лечению анемии у больных со злокачественными новообразованиями. Онкология. 2008; 10 (2): 275–83.
- 6.Дворецкий Л.Й. Железодефицитные анемии. М.: Ньюдиамед, 1998.
- 5. Perkins Sherrie L. Normal blood and bone marrow values in bumans. In Wintrobe's Clinical Hematology. Ed. Lee GR, Foerster J, Lukens J et al. 10th ed. 1998; 2: 2738–41.
- 7. Городецкий ВМ., Галстян ГМ, Шулутко ЕМ. Анемический синдром. Под ред. Б.Р.Гельфанда и А.И.Салтанова. Интенсивная терапия. Национальное руководство. В 2 т. Т. ІІ. С. 27–36. 8. Румянцев АГ., Аграненко ВА. Клиническая трансфузиология. М., 1997.
- 9.Цветкова ОА.Ликферр [железо (III) гидроксидсахарозный комплекс] новый отечественный препарат железа для парентерального введения.Рус.мед. журн. 2011; 2 (15): 90–3. 10. Бакшеев В.И., Коломоец Н.М. Эритропоэтин в клинической практике. Клин.мед. 2007; 9 (85): 30–7.