Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели
Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели
Маев И.В., Андреев Д.Н., Ракитина Д.В. и др. Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели. Consilium Medicum. 2015; 17 (12): 40–43. DOI:10.26442/2075-1753_2015.12.40-43
________________________________________________
Maev I.V., Andreev D.N., Rakitina D.V. et al. Crohn's disease and the adhesive-invasive Escherichia coli: pathogenetic parallels. Consilium Medicum. 2015; 17 (12): 40–43. DOI:10.26442/2075-1753_2015.12.40-43
Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели
Маев И.В., Андреев Д.Н., Ракитина Д.В. и др. Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели. Consilium Medicum. 2015; 17 (12): 40–43. DOI:10.26442/2075-1753_2015.12.40-43
________________________________________________
Maev I.V., Andreev D.N., Rakitina D.V. et al. Crohn's disease and the adhesive-invasive Escherichia coli: pathogenetic parallels. Consilium Medicum. 2015; 17 (12): 40–43. DOI:10.26442/2075-1753_2015.12.40-43
Болезнь Крона (БК) – мультисистемное заболевание, характеризующееся гранулематозным трансмуральным воспалением с сегментарным поражением любого отдела желудочно-кишечного тракта. Этиология БК носит комплексный характер. В ее основе лежит иррациональный агрессивный иммунный ответ на компоненты кишечной микробиоты у генетически предрасположенных лиц. В обзорной статье приведены данные о дисбиотических изменениях кишечника, ассоциированных с БК. Обсуждается роль адгезивно-инвазивных Escherichia coli как потенциального фактора, участвующего в процессах развития БК.
Crohn's disease (CD) is a multisystem disease characterized by transmural granulomatous inflammation with segmental lesion of any part of the gastrointestinal tract. Its etiology is complex and based on an irrational aggressive immune response to the components of the gut microbiota in genetically predisposed individuals. In this review the article presents data on changes in bowel dysbiotic associated with CD. The role of the adhesive and invasive Escherichia coli as a potential factor involved in the development of CD.
1. Маев И.В., Андреев Д.Н. Новые подходы к диагностике и лечению болезни Крона. Терапевт. архив. 2014; 8: 4–12. / Maev I.V., Andreev D.N. Novye podkhody k diagnostike i lecheniiu bolezni Krona. Terapevt. arkhiv. 2014; 8: 4–12. [in Russian]
2. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Гастродуоденальная форма болезни Крона. РЖГГК. 2015; 5: 5–9. / Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Gastroduodenal'naia forma bolezni Krona. RZhGGK. 2015; 5: 5–9. [in Russian]
3. Sands BE, Siegel CA. Crohn's disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. Philadelphia, Pa: Saunders Elsevier, 2015: chap 115.
4. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29 (4): 357–62.
5. Molodecky NA, Soon IS, Rabi DM et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142 (1): 46–54.
6. Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn's disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci 2013; 58 (2): 519–25.
7. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126: 1504–17.
8. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology 2008; 135 (5): 1442–7.
9. Bai A, Peng Z. Biological therapies of inflammatory bowel disease. Immunotherapy 2010; 2 (5): 727–42.
10. Carrière J, Darfeuille-Michaud A, Nguyen HT. Infectious etiopathogenesis of Crohn's disease. World J Gastroenterol 2014; 20 (34): 12102–17.
11. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427–34.
12. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest 2007; 117 (3): 514–21.
13. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.
14. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998; 43: 71–8.
15. Rutgeerts P, Goboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 771–4.
16. D’Haens GR, Geboes K, Peeters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114: 262–7.
17. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148: 589–94.
18. Hold GL, Smith M, Grange C et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014; 20 (5): 1192–210.
19. Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn's disease. Comp Immunol Microbiol Infect Dis 2015; 43: 36–49.
20. Mondot S, Kang S, Furet JP et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 2011; 17: 185–92.
21. Baumgart M, Dogan B, Rishniw M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007; 1: 403–18.
22. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 2007; 56: 669–75.
23. Gevers D, Kugathasan S, Denson LA et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 (3): 382–92.
24. Frolkis A, Dieleman LA, Barkema HW et al. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27: e18–e24.
25. Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: Impact on disease course and insights into the aetiology of its effect. J Crohns Colitis 2014; 8: 717–25.
26. Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16: 137–51.
27. Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol 2014; 28 (3): 373–86.
28. Маев И.В., Андреев Д.Н. Молекулярно-генетические механизмы развития болезни Крона. Молекулярная медицина. 2014; 3: 21–7. / Maev I.V., Andreev D.N. Molekuliarno-geneticheskie mekhanizmy razvitiia bolezni Krona. Molekuliarnaia meditsina. 2014; 3: 21–7. [in Russian]
29. Maev IV, Andreev DN. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn’s disease. Int J Biomedicine 2014; 4 (1): 7–10.
30. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6.
31. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278 (11): 8869–72.
32. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 2012; 134 (33): 13535–7.
33. Zhou Z, Lin XY, Akolkar PN et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn's disease in the Ashkenazi Jewish population. Am J Gastroenterol 2002; 97:3095–101.
34. Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39 (2): 207–11.
35. Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.
36. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn's disease. J Innate Immun 2013; 5 (5): 434–43.
37. Smith EJ, Thompson AP, O'Driscoll A, Clarke DJ. Pathogenesis of adherent-invasive Escherichia coli. Future Microbiol 2013; 8 (10): 1289–300.
38. Маев И.В., Андреев Д.Н., Ракитина Д.В., Байкова Ю.П. Роль дефектов аутофагии и значение адгезивно-инвазивных Escherichia coli в генезе болезни Крона. РЖГГК. 2015; 3: 61–9. / Maev I.V., Andreev D.N., Rakitina D.V., Baikova Iu.P. Rol' defektov autofagii i znachenie adgezivno-invazivnykh Escherichia coli v geneze bolezni Krona. RZhGGK. 2015; 3: 61–9. [in Russian]
39. Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127: 412–21.
40. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidenced by Crohn‘s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123 (3): 689–99.
41. Mei L, Targan SR, Landers CJ et al. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn‘s disease. Gastroenterology 2006; 130 (4): 1078–85.
42. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5 (3): 213–27.
43. Darfeuille-Michaud A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 2002; 292: 185–93.
44. Martinez-Medina M, Aldeguer X, Lopez-Siles M et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 2009; 15 (6): 872–82.
45. Vejborg RM, Hancock V, Petersen AM et al. Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genomics 2011; 12: 316.
46. Sobieszczańska BA, Duda-Madej AB, Turniak MB et al. Invasive properties, adhesion patterns and phylogroup profiles among Escherichia coli strains isolated from children with inflammatory bowel disease. Adv Clin Exp Med 2012; 21 (5): 591–9.
47. Conte MP, Longhi C, Marazzato M et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Res Notes 2014; 7: 748.
48. Carvalho FA, Barnich N, Sivignon A et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 2009; 206 (10): 2179–89.
49. Small CL, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 2013; 4: 1957.
50. Barnich N, Carvalho FA, Glasser AL et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007; 117: 1566–74.
51. Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 2007; 13 (42): 5571–6.
52. Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent–invasive E. coli. Virulence 2010; 1 (4): 281–2.
53. Chassaing B, Rolhion N, de Vallée A et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 2011; 121: 966–75.
54. Rolhion N, Barnich N, Bringer MA et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 2010; 59: 1355–62.
55. Subramanian S, Rhodes JM, Hart CA et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008; 14: 162–75.
56. Eaves-Pyles T, Allen CA, Taormina J et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008; 298: 397–409.
57. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2014; 20 (27): 8751–63.
58. Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69: 5529–37.
59. Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12: 99–113.
60. Sadaghian Sadabad M, Regeling A, de Goffau MC et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 2014. pii: gutjnl-2014-307289. doi
61. Nguyen HT, Dalmasso G, Müller S et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146 (2): 508–19.
62. Dunne KA, Allam A, McIntosh A et al. Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells. PLoS One 2013; 8: e68386.
63. Meconi S, Vercellone A, Levillain F et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 2007; 9: 1252–61.
64. Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One 2012; 7: e52132.
65. Costanzo M, Cesi V, Prete E et al. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2015. pii: S1590-8658(15)00625-8.
66. Subramanian S, Roberts CL, Hart CA et al. Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob Agents Chemother 2008; 52 (2): 427–34.
67. Dogan B, Scherl E, Bosworth B et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm Bowel Dis 2013; 19: 141–50.
68. Martinez-Medina M, Naves P, Blanco J et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol 2009; 9: 202.
69. Bertuccini L, Costanzo M, Iosi F et al. Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn's disease. Dig Liver Dis 2014; 46 (6): 496–504.
70. Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol. 2015;8:285-91
71. Colman RJ, Rubin DT. FMT as therapy for inflammatory bowel disease: a systemic review and meta-analysis. J Crohns Colitis 2014; 8 (12): 1569–81.
________________________________________________
1. Maev I.V., Andreev D.N. Novye podkhody k diagnostike i lecheniiu bolezni Krona. Terapevt. arkhiv. 2014; 8: 4–12. [in Russian]
2. Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Gastroduodenal'naia forma bolezni Krona. RZhGGK. 2015; 5: 5–9. [in Russian]
3. Sands BE, Siegel CA. Crohn's disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. Philadelphia, Pa: Saunders Elsevier, 2015: chap 115.
4. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29 (4): 357–62.
5. Molodecky NA, Soon IS, Rabi DM et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142 (1): 46–54.
6. Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn's disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci 2013; 58 (2): 519–25.
7. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126: 1504–17.
8. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology 2008; 135 (5): 1442–7.
9. Bai A, Peng Z. Biological therapies of inflammatory bowel disease. Immunotherapy 2010; 2 (5): 727–42.
10. Carrière J, Darfeuille-Michaud A, Nguyen HT. Infectious etiopathogenesis of Crohn's disease. World J Gastroenterol 2014; 20 (34): 12102–17.
11. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427–34.
12. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest 2007; 117 (3): 514–21.
13. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.
14. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998; 43: 71–8.
15. Rutgeerts P, Goboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 771–4.
16. D’Haens GR, Geboes K, Peeters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114: 262–7.
17. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148: 589–94.
18. Hold GL, Smith M, Grange C et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014; 20 (5): 1192–210.
19. Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn's disease. Comp Immunol Microbiol Infect Dis 2015; 43: 36–49.
20. Mondot S, Kang S, Furet JP et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 2011; 17: 185–92.
21. Baumgart M, Dogan B, Rishniw M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007; 1: 403–18.
22. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 2007; 56: 669–75.
23. Gevers D, Kugathasan S, Denson LA et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 (3): 382–92.
24. Frolkis A, Dieleman LA, Barkema HW et al. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27: e18–e24.
25. Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: Impact on disease course and insights into the aetiology of its effect. J Crohns Colitis 2014; 8: 717–25.
26. Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16: 137–51.
27. Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol 2014; 28 (3): 373–86.
28. Maev I.V., Andreev D.N. Molekuliarno-geneticheskie mekhanizmy razvitiia bolezni Krona. Molekuliarnaia meditsina. 2014; 3: 21–7. [in Russian]
29. Maev IV, Andreev DN. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn’s disease. Int J Biomedicine 2014; 4 (1): 7–10.
30. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6.
31. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278 (11): 8869–72.
32. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 2012; 134 (33): 13535–7.
33. Zhou Z, Lin XY, Akolkar PN et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn's disease in the Ashkenazi Jewish population. Am J Gastroenterol 2002; 97:3095–101.
34. Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39 (2): 207–11.
35. Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.
36. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn's disease. J Innate Immun 2013; 5 (5): 434–43.
37. Smith EJ, Thompson AP, O'Driscoll A, Clarke DJ. Pathogenesis of adherent-invasive Escherichia coli. Future Microbiol 2013; 8 (10): 1289–300.
38. Maev I.V., Andreev D.N., Rakitina D.V., Baikova Iu.P. Rol' defektov autofagii i znachenie adgezivno-invazivnykh Escherichia coli v geneze bolezni Krona. RZhGGK. 2015; 3: 61–9. [in Russian]
39. Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127: 412–21.
40. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidenced by Crohn‘s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123 (3): 689–99.
41. Mei L, Targan SR, Landers CJ et al. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn‘s disease. Gastroenterology 2006; 130 (4): 1078–85.
42. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5 (3): 213–27.
43. Darfeuille-Michaud A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 2002; 292: 185–93.
44. Martinez-Medina M, Aldeguer X, Lopez-Siles M et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 2009; 15 (6): 872–82.
45. Vejborg RM, Hancock V, Petersen AM et al. Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genomics 2011; 12: 316.
46. Sobieszczańska BA, Duda-Madej AB, Turniak MB et al. Invasive properties, adhesion patterns and phylogroup profiles among Escherichia coli strains isolated from children with inflammatory bowel disease. Adv Clin Exp Med 2012; 21 (5): 591–9.
47. Conte MP, Longhi C, Marazzato M et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Res Notes 2014; 7: 748.
48. Carvalho FA, Barnich N, Sivignon A et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 2009; 206 (10): 2179–89.
49. Small CL, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 2013; 4: 1957.
50. Barnich N, Carvalho FA, Glasser AL et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007; 117: 1566–74.
51. Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 2007; 13 (42): 5571–6.
52. Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent–invasive E. coli. Virulence 2010; 1 (4): 281–2.
53. Chassaing B, Rolhion N, de Vallée A et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 2011; 121: 966–75.
54. Rolhion N, Barnich N, Bringer MA et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 2010; 59: 1355–62.
55. Subramanian S, Rhodes JM, Hart CA et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008; 14: 162–75.
56. Eaves-Pyles T, Allen CA, Taormina J et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008; 298: 397–409.
57. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2014; 20 (27): 8751–63.
58. Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69: 5529–37.
59. Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12: 99–113.
60. Sadaghian Sadabad M, Regeling A, de Goffau MC et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 2014. pii: gutjnl-2014-307289. doi
61. Nguyen HT, Dalmasso G, Müller S et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146 (2): 508–19.
62. Dunne KA, Allam A, McIntosh A et al. Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells. PLoS One 2013; 8: e68386.
63. Meconi S, Vercellone A, Levillain F et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 2007; 9: 1252–61.
64. Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One 2012; 7: e52132.
65. Costanzo M, Cesi V, Prete E et al. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2015. pii: S1590-8658(15)00625-8.
66. Subramanian S, Roberts CL, Hart CA et al. Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob Agents Chemother 2008; 52 (2): 427–34.
67. Dogan B, Scherl E, Bosworth B et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm Bowel Dis 2013; 19: 141–50.
68. Martinez-Medina M, Naves P, Blanco J et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol 2009; 9: 202.
69. Bertuccini L, Costanzo M, Iosi F et al. Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn's disease. Dig Liver Dis 2014; 46 (6): 496–504.
70. Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol. 2015;8:285-91
71. Colman RJ, Rubin DT. FMT as therapy for inflammatory bowel disease: a systemic review and meta-analysis. J Crohns Colitis 2014; 8 (12): 1569–81.
1 ГБОУ ВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова Минздрава России. 127473, Россия, Москва, ул. Делегатская, д. 20, стр. 1;
2 ФГБУН НИИ физико-химической медицины ФМБА России. 119435, Россия, Москва, ул. Малая Пироговская, д. 1а
*dna-mit8@mail.ru
1 Moscow State Medical Stomatological University named by A.I.Evdokimova of the Ministry of Health of the Russian Federation. 127473, Russian Federation, Moscow, ul. Delegatskaia, d. 20, str. 1;
2 Institute of Physico-Chemical Medicine of Russia. 119435, Russian Federation, Moscow, ul. Malaya Pirogovskaya, d. 1a
*dna-mit8@mail.ru