Роль полиморфизма rs3025058 в развитии ишемического инсульта у пациентов с сердечно-сосудистыми заболеваниями (обзор)
Роль полиморфизма rs3025058 в развитии ишемического инсульта у пациентов с сердечно-сосудистыми заболеваниями (обзор)
Никулин Д.А., Чернова А.А., Никулина С.Ю., Максимов В.Н. Роль полиморфизма rs3025058 в развитии ишемического инсульта у пациентов с сердечно-сосудистыми заболеваниями (обзор). CardioСоматика. 2022;13(2):124–127. DOI: https://doi.org/10.17816/CS110915
________________________________________________
Nikulin DA, Chernova AA, Nikulina SJ, Maksimov VN. The role of rs3025058 polymorphism in the development of ischemic stroke in patients with cardiovascular diseases (review). Сardiosomatics. 2022;13(2):124–127. DOI: https://doi.org/10.17816/CS110915
Роль полиморфизма rs3025058 в развитии ишемического инсульта у пациентов с сердечно-сосудистыми заболеваниями (обзор)
Никулин Д.А., Чернова А.А., Никулина С.Ю., Максимов В.Н. Роль полиморфизма rs3025058 в развитии ишемического инсульта у пациентов с сердечно-сосудистыми заболеваниями (обзор). CardioСоматика. 2022;13(2):124–127. DOI: https://doi.org/10.17816/CS110915
________________________________________________
Nikulin DA, Chernova AA, Nikulina SJ, Maksimov VN. The role of rs3025058 polymorphism in the development of ischemic stroke in patients with cardiovascular diseases (review). Сardiosomatics. 2022;13(2):124–127. DOI: https://doi.org/10.17816/CS110915
Острое нарушение мозгового кровообращения (ОНМК) – грозное осложнение целого ряда сердечно-сосудистых заболеваний, в значительном проценте случаев приводящее к инвалидизации и смерти. В доступной литературе представлены сведения о роли полиморфизма гена матриксной металлопротеиназы 3-го типа (MMP-3) в развитии ОНМК. Считают, что MMP-3 играет большую роль в естественных процессах ремоделирования тканей и в патологических процессах. В основе механизма регуляции тканевого ремоделирования ММР-3 лежит активация проколлагеназы-1.
Рассмотрены ассоциации однонуклеотидного варианта rs3025058 (5А/6А) с развитием ОНМК у пациентов с сердечно-сосудистой патологией и факторы риска его развития для осуществления мер первичной профилактики данного заболевания. Обсуждаются вопросы, касающиеся роли и выявления ассоциаций однонуклеотидного варианта rs3025058 (5А/6А) с развитием ОНМК у пациентов с сердечно-сосудистой патологией.
Поиск и анализ публикаций за последние 15 лет проводили в базах данных MEDLINE/PubMed, Scopus, Cochrane Library, PEDro, eLIBRARY и Google Scholar. Представленные данные свидетельствуют о необходимости дальнейшего изучения и эффективного использования результатов исследования полиморфизма rs3025058 гена MMP-3 для осуществления мер первичной профилактики в развитии ОНМК, особенно в семьях таких больных.
Acute cerebrovascular accident (ACC) is a formidable complication of a number of cardiovascular diseases, in a significant percentage of cases leading to disability and mortality. The literature available to us provides information on the role of type 3 matrix metalloproteinase gene (MMP-3) polymorphism in the development of stroke. It is believed that MMP-3 plays an important role in the natural processes of tissue remodeling and pathological processes. The mechanism of regulation of tissue remodeling MMP-3 is based on the activation of procollagenase-1. The associations of the single-nucleotide variant rs3025058 (5A/6A) with the development of ONMK in patients with cardiovascular pathology and risk factors of its development for the implementation of measures of primary prevention of this disease are considered. The article discusses issues related to the role and identification of associations of the single nucleotide variant rs3025058 (5А/6А) with the development of stroke in patients with cardiovascular pathology. When preparing the review, publications were searched in the MEDLINE/PubMed, Scopus, Cochrane Library, PEDro, eLIBRARY databases and Google Scholar. In preparing the literature review, the analysis of publications for the last 15 years is carried out. Represented evidence suggests the need for further study and effective use of the results of the study of the rs3025058 MMP-3 polymorphism for the implementation of primary prevention measures in the development of acute cerebrovascular accident, especially in the families of these patients.
1. Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006;43(12):897–901. DOI:10.1136/jmg.2006.040808
2. Koch W, de Waha A, Hoppmann P, et al. Haplotypes and 5A/6A polymorphism of the matrix metalloproteinase-3 gene in coronary disease: case-control study and a meta-analysis. Atherosclerosis. 2010;208(1):171–176. DOI:10.1016/j.atherosclerosis.2009.08.021
3. Sakowicz A, Fendler W, Lelonek M, et al. Genetic polymorphisms and the risk of myocardial infarction in patients under 45 years of age. Biochem Genet. 2013;51(3-4):230–242. DOI:10.1007/s10528-012-9558-5
4. Taizhanova D, Kalimbetova A, Akilzhanova A. Matrix metalloproteinases genes polymorphism in the development of new cardiovascular events. J Clin Med Kaz. 2020;4(58):19–22. DOI:10.23950/1812-2892-JCMK-00778
5. Zee RY, Bubes V, Shrivastava S, et al. Genetic risk factors in recurrent venous thromboembolism: a multilocus, population-based, prospective approach. Clin Chim Acta. 2009;402(1-2):189–192. DOI:10.1016/j.cca.2009.01.011
6. Morris DR, Biros E, Cronin O, et al. The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart. 2014;100(4):295–302. DOI:10.1136/heartjnl-2013-304129
7. Skorvanova M, Matakova T, Skerenova M, et al. Methylation of MMP2, TIMP2, MMP9 and TIMP1 in abdominal aortic aneurysm. Bratisl Lek Listy. 2020;121(10):717–721. DOI:10.4149/BLL_2020_117
8. de Haan HG, van Hylckama Vlieg A, Germain M, et al. Genome-wide association study identifies a novel genetic risk factor for recurrent venous thrombosis. Circulation: Genomic and Precision Medicine. 2018;11:e001827. DOI:10.1161/CIRCGEN.117.001827
9. Liu H. Response to letter to the editor: Paraoxonase genes and the susceptibility to ischemic stroke. Int J Stroke. 2014;9(3):E7. DOI:10.1111/ijs.12198
10. Wang X, Cheng S, Brophy VH, et al. A meta-analysis of candidate gene polymorphisms and ischemic stroke in 6 study populations: association of lymphotoxin-alpha in nonhypertensive patients. Stroke. 2009;40(3):683–695. DOI:10.1161/STROKEAHA.108.524587
11. Ma AJ, Fan LY, Li WJ, et al. Association of matrix metalloproteinase-3 gene polymorphisms with subtypes of ischemic stroke. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013;30(4):461–466 (in Chinese). DOI:10.3760/cma.j.issn.1003-9406.2013.04.018
12. Никулина С.Ю., Шульман В.А., Чернова А.А., и др. Ассоциация полиморфизма гена матричной протеиназы rs3025058 с развитием острого нарушения мозгового кровообращения у пациентов с сердечно-сосудистой патологией. Терапевтический архив. 2020;92(12):25–30 [Nikulina SYu, Shulman VA, Chernova AA, et al. Association of rs3025058 polymorphism with the development of stroke in patients with cardiovascular pathology. Terapevticheskii arkhiv. 2020;92(12):25–30 (in Russian)]. DOI:10.26442/10.26442/00403660.2020.12.200437
13. Zhang QW. Association of the matrix metalloproteinase-3 polymorphisms rs679620 and rs3025058 with ischemic stroke risk: a meta-analysis. Neuropsychiatr Dis Treat. 2018;14:419–427. DOI:10.2147/NDT.S152256
14. Ghaffarzadeh A, Bagheri M, Khadem-Vatani K, Abdi RI. Association of MMP‑1 (rs1799750)-1607 2G/2G and MMP-3 (rs3025058)-1612 6A/6A Genotypes with coronary artery disease risk among Iranian Turks. J Cardiovasc Pharmacol. 2019;74(5):420–425. DOI:10.1097/FJC.0000000000000727
15. Pawlik A, Plucinska M, Kopec M, et al. MMP1 and MMP3 gene polymorphisms in patients with acute coronary syndromes. IUBMB Life. 2017;69(11):850–855. DOI:10.1002/iub.1684
16. Pleskovič A, Letonja MŠ, Vujkovac AC, et al. Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. Vasa. 2017;46(5):363–369. DOI:10.1024/0301-1526/a000637
17. Polonikov A, Rymarova L, Klyosova E, et al. Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease. J Cell Biochem. 2019;120(10):16467–16482. DOI:10.1002/jcb.28815
________________________________________________
1. Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006;43(12):897–901. DOI:10.1136/jmg.2006.040808
2. Koch W, de Waha A, Hoppmann P, et al. Haplotypes and 5A/6A polymorphism of the matrix metalloproteinase-3 gene in coronary disease: case-control study and a meta-analysis. Atherosclerosis. 2010;208(1):171–176. DOI:10.1016/j.atherosclerosis.2009.08.021
3. Sakowicz A, Fendler W, Lelonek M, et al. Genetic polymorphisms and the risk of myocardial infarction in patients under 45 years of age. Biochem Genet. 2013;51(3-4):230–242. DOI:10.1007/s10528-012-9558-5
4. Taizhanova D, Kalimbetova A, Akilzhanova A. Matrix metalloproteinases genes polymorphism in the development of new cardiovascular events. J Clin Med Kaz. 2020;4(58):19–22. DOI:10.23950/1812-2892-JCMK-00778
5. Zee RY, Bubes V, Shrivastava S, et al. Genetic risk factors in recurrent venous thromboembolism: a multilocus, population-based, prospective approach. Clin Chim Acta. 2009;402(1-2):189–192. DOI:10.1016/j.cca.2009.01.011
6. Morris DR, Biros E, Cronin O, et al. The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart. 2014;100(4):295–302. DOI:10.1136/heartjnl-2013-304129
7. Skorvanova M, Matakova T, Skerenova M, et al. Methylation of MMP2, TIMP2, MMP9 and TIMP1 in abdominal aortic aneurysm. Bratisl Lek Listy. 2020;121(10):717–721. DOI:10.4149/BLL_2020_117
8. de Haan HG, van Hylckama Vlieg A, Germain M, et al. Genome-wide association study identifies a novel genetic risk factor for recurrent venous thrombosis. Circulation: Genomic and Precision Medicine. 2018;11:e001827. DOI:10.1161/CIRCGEN.117.001827
9. Liu H. Response to letter to the editor: Paraoxonase genes and the susceptibility to ischemic stroke. Int J Stroke. 2014;9(3):E7. DOI:10.1111/ijs.12198
10. Wang X, Cheng S, Brophy VH, et al. A meta-analysis of candidate gene polymorphisms and ischemic stroke in 6 study populations: association of lymphotoxin-alpha in nonhypertensive patients. Stroke. 2009;40(3):683–695. DOI:10.1161/STROKEAHA.108.524587
11. Ma AJ, Fan LY, Li WJ, et al. Association of matrix metalloproteinase-3 gene polymorphisms with subtypes of ischemic stroke. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013;30(4):461–466 (in Chinese). DOI:10.3760/cma.j.issn.1003-9406.2013.04.018
12. Nikulina SYu, Shulman VA, Chernova AA, et al. Association of rs3025058 polymorphism with the development of stroke in patients with cardiovascular pathology. Terapevticheskii arkhiv. 2020;92(12):25–30 (in Russian). DOI:10.26442/10.26442/00403660.2020.12.200437
13. Zhang QW. Association of the matrix metalloproteinase-3 polymorphisms rs679620 and rs3025058 with ischemic stroke risk: a meta-analysis. Neuropsychiatr Dis Treat. 2018;14:419–427. DOI:10.2147/NDT.S152256
14. Ghaffarzadeh A, Bagheri M, Khadem-Vatani K, Abdi RI. Association of MMP‑1 (rs1799750)-1607 2G/2G and MMP-3 (rs3025058)-1612 6A/6A Genotypes with coronary artery disease risk among Iranian Turks. J Cardiovasc Pharmacol. 2019;74(5):420–425. DOI:10.1097/FJC.0000000000000727
15. Pawlik A, Plucinska M, Kopec M, et al. MMP1 and MMP3 gene polymorphisms in patients with acute coronary syndromes. IUBMB Life. 2017;69(11):850–855. DOI:10.1002/iub.1684
16. Pleskovič A, Letonja MŠ, Vujkovac AC, et al. Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. Vasa. 2017;46(5):363–369. DOI:10.1024/0301-1526/a000637
17. Polonikov A, Rymarova L, Klyosova E, et al. Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease. J Cell Biochem. 2019;120(10):16467–16482. DOI:10.1002/jcb.28815
1 ФГБОУ ВО Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Минздрава России, Красноярск, Россия;
2 ФГБУ Федеральный Сибирский научно-клинический центр ФМБА России, Красноярск, Россия;
3 Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
*nevrokgma@mail.ru
________________________________________________
Dmitrij A. Nikulin*1,2, Anna A. Chernova1,2, Svetlana J. Nikulina1, Vladimir N. Maksimov3
1 Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia;
2 Federal Siberian Research Clinical Center under FMBA of Russia, Krasnoyarsk, Russia;
3 Institution of Internal and Preventive Medicine, Novosibirsk, Russia
*nevrokgma@mail.ru