Скрытые (добавленные) сахара и явные риски для сердечно-сосудистой системы: обзор литературы
Скрытые (добавленные) сахара и явные риски для сердечно-сосудистой системы: обзор литературы
Сергеева В.А. Скрытые (добавленные) сахара и явные риски для сердечно-сосудистой системы: обзор литературы // CardioСоматика. 2023. Т. 14, № 2. С. 105–114. DOI: https://doi.org/10.17816/CS399808
________________________________________________
Sergeeva VA. Hidden (added) sugar and clear cardiovascular risk: literature review. Cardiosomatics. 2023;14(2):105–114. DOI: https://doi.org/10.17816/CS399808
Скрытые (добавленные) сахара и явные риски для сердечно-сосудистой системы: обзор литературы
Сергеева В.А. Скрытые (добавленные) сахара и явные риски для сердечно-сосудистой системы: обзор литературы // CardioСоматика. 2023. Т. 14, № 2. С. 105–114. DOI: https://doi.org/10.17816/CS399808
________________________________________________
Sergeeva VA. Hidden (added) sugar and clear cardiovascular risk: literature review. Cardiosomatics. 2023;14(2):105–114. DOI: https://doi.org/10.17816/CS399808
Проблема избыточного потребления сахара уже давно вызывает интерес исследователей, и на то существует множество причин. В первую очередь, это захватившая весь мир «эпидемия» неинфекционных социально значимых заболеваний — ожирения и сахарного диабета, последствия которых колоссальны для систем здравоохранения. С другой стороны, это пандемия COVID-19, которая оказалась не только наиболее смертоносной для лиц с избытком массы тела, сахарным диабетом и сердечно-сосудистыми заболеваниями, но и повлекла за собой последствия в виде постковидного синдрома, который сам по себе может рассматриваться в качестве манифеста для развития новых заболеваний. Далеко не каждый современный человек, даже если он следит за своим питанием, всегда учитывает добавленные или скрытые сахара, содержащиеся в привычных продуктах на его столе. При этом информированность об этой проблеме остаётся на низком уровне не только со стороны пациентов, но и врачей. В связи с этим был проведён обзор и анализ актуальных данных международной и отечественной научной периодики о воздействии избыточного потребления сахаров на сердечно-сосудистую систему. Представлен краткий экскурс в историю вопроса и освещено его современное состояние. Аккумулированы последние данные по метаанализам, обзорам литературы, наблюдательным исследованиям относительно изменений в организме человека и животных, происходящих на фоне потребления избыточного количества сахаров. Подробно изложены основные патогенетические механизмы воздействия на организм чрезмерного потребления моно- и дисахаридов, среди которых ведущее значение отводится системному воспалению, эндотелиальной дисфункции, прогрессированию атеросклероза, а также конкретным сердечно-сосудистым заболеваниям как возможному результату этих влияний.
Excessive sugar consumption has long been of interest to researchers, and this has various causes, First, the "epidemic" of noninfectious socially significant diseases globally, i.e., obesity and diabetes mellitus, has huge effects on the healthcare systems. Second, the COVID-19 pandemic turned out to be not only the most deadly for people with an overweight status, diabetes mellitus, and cardiovascular diseases but also entailed consequences in the form of post-COVID syndrome, which can be considered a manifesto of new diseases. Not every modern person, even if he/she watches his/her diet, always takes into account the added or hidden sugars contained in usual products on the table. Moreover, awareness of this problem remains at a low level not only among patients but also doctors. A review and analysis of current data from international scientific journals on the effect of excessive sugar consumption on the cardiovascular system was conducted. A brief excursion into the history of the issue and its current state was given. The review also presents data from recent meta-analyses, narrative reviews, and observational studies on the changes in humans and animals that occur against the background of excessive consumption of sugars. The main pathogenic mechanisms of the effect of excessive consumption of mono- and disaccharides on the body are described in detail, which mainly included systemic inflammation, endothelial dysfunction, progression of atherosclerosis, and cardiovascular diseases, as a possible result of these influences.
1. Baltic M.Z., Boskovic M. When man met meat: Meat in human nutrition from ancient times till today // Proc Food Sci. 2015. N. 5. P. 6–9. doi: 10.1016/j.profoo.2015.09.002
2. Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity // Physiol Rev. 2010. Vol. 90, N 1. P. 23–46. doi: 10.1152/physrev.00019.2009
3. Rivard C., Thomas J., Lanaspa M.A., et al. Sack and sugar, and the aetiology of gout in England between 1650 and 1900 // Rheumatology (Oxford). 2013. Vol. 52, N 3. P. 421–426.
doi: 10.1093/rheumatology/kes297
4. Carbone S., Billingsley H.E., Lavie C.J. The Effects of Dietary Sugars on Cardiovascular Disease and Cardiovascular Disease-Related Mortality: Finding the Sweet Spot // Mayo Clin Proc. 2019. Vol. 94, N 12. P. 2375–2377. doi: 10.1016/j.mayocp.2019.10.017
5. Elmore B.J. Citizen Coke: The Making of Coca-Cola Capitalism. New York: W.W. Norton & Company, 2015.
6. Yang Q., Zhang Z., Gregg E.W., et al. Added sugar intake and cardiovascular diseases mortality among US adults // JAMA Intern Med. 2014. Vol. 174, N 4. P. 516–524.
doi: 10.1001/jamainternmed.2013.13563
7. Yudkin J. Sugar and ischaemic heart disease // Practitioner. 1967. Vol. 198, N 187. P. 680–683.
8. Faruque S., Tong J., Lacmanovic V., et al. The Dose Makes the Poison: Sugar and Obesity in the United States — a Review // Pol J Food Nutr Sci. 2019. Vol. 69, N 3. P. 219–233.
doi: 10.31883/pjfns/110735
9. Johnson R.K., Appel L.J., Brands M., et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association // Circulation. 2009. Vol. 120, N 11. P. 1011–1020. doi: 10.1161/CIRCULATIONAHA.109.192627
10. Росстат изучил рацион россиян [интернет]. Федеральная служба государственной статистики [дата обращения: 22.06.2023]. Доступ по ссылке: http://rosstat.gov.ru/folder/313/document/70761
11. Malik V.S., Popkin B.M., Bray G.A., et al. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk // Circulation. 2010. Vol. 121, N 11. P. 1356–1364. doi: 10.1161/CIRCULATIONAHA
12. Prasad K., Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease // Int J Angiol. 2014. Vol. 23, N 4. P. 217–226. doi: 10.1055/s-0034-1387169
13. Basu S., Yoffe P., Hills N., Lustig R.H. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data // PLoS One. 2013. Vol. 8, N 2. e57873. doi: 10.1371/journal.pone.0057873
14. Goran M.I., Ulijaszek S.J., Ventura E.E. High fructose corn syrup and diabetes prevalence: a global perspective // Glob Public Health. 2013. Vol. 8, N 1. P. 55–64.
doi: 10.1080/17441692.2012.736257
15. DiNicolantonio J.J., O’Keefe J.H., Lucan S.C. Added fructose: A principal driver of type 2 diabetes mellitus and its consequences // Mayo Clin Proc. 2015. Vol. 90, N 3. P. 372–381. doi: 10.1016/j.mayocp.2014.12.019
16. Stanhope K.L., Schwarz J.M., Keim N.L., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans // J Clin Invest. 2009. Vol. 119, N 5. P. 1322–1334. doi: 10.1172/JCI37385
17. Bray G.A., Popkin B.M. Calorie-sweetened beverages and fructose: What have we learned 10 years later // Pediatr Obes. 2013. Vol. 8, N 4. P. 242–248.
doi: 10.1111/j.2047-6310.2013.00171.x
18. Qi Q., Chu A.Y., Kang J.H., et al. Sugar-sweetened beverages and genetic risk of obesity // N Engl J Med. 2012. Vol. 367, N 15. P. 1387–1396. doi: 10.1056/NEJMoa1203039
19. Davis J.N., Lê K.A., Walker R.W., et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption // Am J Clin Nutr. 2010. Vol. 92, N 6. P. 1522–1527. doi: 10.3945/ajcn.2010.30185
20. Choi J.W., Ford E.S., Gao X., Choi H.K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey // Arthritis Rheum. 2008. Vol. 59, N 1. P. 109–116. doi: 10.1002/art.23245
21. Malik V.S., Hu F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases // Nat Rev Endocrinol. 2022. Vol. 18, N 4. P. 205–218.
doi: 10.1038/s41574-021-00627-6
22. Tran L.T., Yuen V.G., McNeill J.H. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension // Mol Cell Biochem. 2009. Vol. 332, N 1–2. P. 145–159. doi: 10.1007/s11010-009-0184-4
23. Dhar I., Dhar A., Wu L., Desai K.M. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats // PLoS One. 2013. Vol. 8, N 9. e74212. doi: 10.1371/journal.pone.0074212
24. Liu Q., Ayoub-Charette S., Khan T.A., et al. Important Food Sources of Fructose-Containing Sugars and Incident Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies // J Am Heart Assoc. 2019. Vol. 8, N 24. e010977. doi: 10.1161/JAHA.118.010977
25. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism // Diabetes. 2005. Vol. 54, N 6. P. 1615–1625. doi: 10.2337/diabetes.54.6.1615
26. Nguyen S., Choi H.K., Lustig R.H., Hsu C.Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents // J Pediatr. 2009. Vol. 154, N 6. P. 807–813.
doi: 10.1016/j.jpeds.2009.01.015
27. Aeberli I., Gerber P.A., Hochuli M., et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial // Am J Clin Nutr. 2011. Vol. 94, N 2. P. 479–485. doi: 10.3945/ajcn.111.013540
28. Qi X., Chiavaroli L., Lee D., et al. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials // Nutrients. 2022. Vol. 14, N 19. P. 3986. doi: 10.3390/nu14193986
29. Sørensen L.B., Raben A., Stender S., Astrup A. Effect of sucrose on inflammatory markers in overweight humans // Am J Clin Nutr. 2005. Vol. 82, N 2. P. 421–427.
doi: 10.1093/ajcn.82.2.421
30. Valencia A.P., Nagaraj N., Osman D.H., et al. Are fat and sugar just as detrimental in old age? // Geroscience. 2021. Vol. 43, N 4. P. 1615–1625. doi: 10.1007/s11357-021-00390-6
31. Zhou X., Zhang X., Niu D., et al. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice // Sci Rep. 2023. Vol. 13, N 1. P. 6701.
doi: 10.1038/s41598-023-33806-8
32. Sen T., Cawthon C.R., Ihde B.T., et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity // Physiol Behav. 2017. N 173. P. 305–317.
doi: 10.1016/j.physbeh.2017.02.027
33. Jensen T., Abdelmalek M.F., Sullivan S., et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease // J Hepatol. 2018. Vol. 68, N 5. P. 1063–1075.
doi: 10.1016/j.jhep.2018.01.019
34. Локтионова И.Л., Покровский М.В., Рагулина В.А., и др. Состояние функции сосудистого эндотелия при инфекционной патологии различной этиологии // Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2012. Т. 123, № 4–1. C. 20–31.
35. Daiber A., Steven S., Weber A., et al. Targeting vascular (endothelial) dysfunction // Br J Pharmacol. 2017. Vol. 174, N 12. P. 1591–1619. doi: 10.1111/bph.13517
36. Poznyak A.V., Bharadwaj D., Prasad G., et al. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD // Int J Mol Sci. 2021. Vol. 22, N 13. P. 6702.
doi: 10.3390/ijms22136702
37. Badimon L., Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture // J Intern Med. 2014. Vol. 276, N 6. P. 618–632. doi: 10.1111/joim.12296
38. Loader J., Meziat C., Watts R., et al. Effects of Sugar-Sweetened Beverage Consumption on Microvascular and Macrovascular Function in a Healthy Population // Arterioscler Thromb Vasc Biol. 2017. Vol. 37, N 6. P. 1250–1260. doi: 10.1161/ATVBAHA.116.308010
39. Vasanji Z., Cantor E.J., Juric D., et al. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance // Am J Physiol Cell Physiol. 2006. Vol. 291, N 4. P. C772–C780. doi: 10.1152/ajpcell.00086.2005
40. Chang K.C., Liang J.T., Tseng C.D., et al. Aminoguanidine prevents fructose-induced deterioration in left ventricular-arterial coupling in Wistar rats // Br J Pharmacol. 2007. Vol. 151, N 3. P. 341–346. doi: 10.1038/sj.bjp.0707223
41. Davidoff A.J., Mason M.M., Davidson M.B., et al. Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments // Am J Physiol Endocrinol Metab. 2004. Vol. 286, N 5. P. E718–E724. doi: 10.1152/ajpendo.00358.2003
42. Dutta K., Podolin D.A., Davidson M.B., Davidoff A.J. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance // Diabetes. 2001. Vol. 50, N 5. P. 1186–1192. doi: 10.2337/diabetes.50.5.1186
43. Prasad K., Kalra J., Bharadwaj L. Cardiac depressant effects of oxygen free radicals // Angiology. 1993. Vol. 44, N 4. P. 257–270. doi: 10.1177/000331979304400401
44. Gowen B.H., Reyes M.V., Joseph L.C., Morrow J.P. Mechanisms of Chronic Metabolic Stress in Arrhythmias // Antioxidants (Basel). 2020. Vol. 9, N 10. P. 1012.
doi: 10.3390/antiox9101012
45. Cheng W.L., Li S.J., Lee T.I., et al. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis // Biomedicines. 2021. Vol. 9, N 7. P. 728.
doi: 10.3390/biomedicines9070728
46. Ji Y., Yin Y., Sun L., Zhang W. The Molecular and Mechanistic Insights Based on Gut-Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement // Int J Mol Sci. 2020. Vol. 21, N 9. P. 3066. doi: 10.3390/ijms21093066
47. Wang Y., Qi W., Song G., et al. High-Fructose Diet Increases Inflammatory Cytokines and Alters Gut Microbiota Composition in Rats // Mediators Inflamm. 2020. N 2020. P. 6672636. doi: 10.1155/2020/6672636
48. Mantovani A. Nonalcoholic Fatty Liver Disease (NAFLD) and Risk of Cardiac Arrhythmias: A New Aspect of the Liver-heart Axis // J Clin Transl Hepatol. 2017. Vol. 5, N 2. P. 134–141. doi: 10.14218/JCTH.2017.00005
49. Mantovani A., Dauriz M., Sandri D., et al. Association between non-alcoholic fatty liver disease and risk of atrial fibrillation in adult individuals: An updated meta-analysis // Liver Int. 2019. Vol. 39, N 4. P. 758–769. doi: 10.1111/liv.14044
50. Chan Y.H., Chang G.J., Lai Y.J., et al. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance // Cardiovasc Diabetol. 2019. Vol. 18, N 1. P. 125.
doi: 10.1186/s12933-019-0928-8
51. Сергеева В.А., Липатова Т.Е. Изменение образа жизни студентов-медиков в период пандемии COVID-19 // Качественная клиническая практика. 2022. № 1. С. 64–71.
doi: 10.37489/2588-0519-2022-1-64-71
52. Сергеева В.А., Липатова Т.Е. Саркопения, ассоциированная с COVID-19 // Профилактическая медицина. 2022. Т. 25, № 11. С. 105–112.
doi: 10.17116/profmed202225111105
________________________________________________
1. Baltic MZ, Boskovic M. When man met meat: Meat in human nutrition from ancient times till today. Proc Food Sci. 2015;5:6–9. doi: 10.1016/j.profoo.2015.09.002
2. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. doi: 10.1152/physrev.00019.2009
3. Rivard C, Thomas J, Lanaspa MA, et al. Sack and sugar, and the aetiology of gout in England between 1650 and 1900. Rheumatology (Oxford). 2013;52(3):421–426.
doi: 10.1093/rheumatology/kes297
4. Carbone S, Billingsley HE, Lavie CJ. The Effects of Dietary Sugars on Cardiovascular Disease and Cardiovascular Disease-Related Mortality: Finding the Sweet Spot. Mayo Clin Proc. 2019;94(12):2375–2377. doi: 10.1016/j.mayocp.2019.10.017
5. Elmore BJ. Citizen Coke: The Making of Coca-Cola Capitalism. New York: W.W. Norton & Company; 2015.
6. Yang Q, Zhang Z, Gregg EW, et al. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174(4):516–524.
doi: 10.1001/jamainternmed.2013.13563
7. Yudkin J. Sugar and ischaemic heart disease. Practitioner. 1967;198(187):680–683.
8. Faruque S, Tong J, Lacmanovic V, et al. The Dose Makes the Poison: Sugar and Obesity in the United States — a Review. Pol J Food Nutr Sci. 2019;69(3):219–233.
doi: 10.31883/pjfns/110735
9. Johnson RK, Appel LJ, Brands M, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009;120(11):1011–1020. doi: 10.1161/CIRCULATIONAHA.109.192627
10. Rosstat izuchil ratsion rossiyan [Internet]. Federal'naya sluzhba gosudarstvennoi statistiki [cited 22 June 2023]. Available from: http:// rosstat.gov.ru/folder/313/document/70761
11. Malik VS, Popkin BM, Bray GA, et al. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121(11):1356–1364.
doi: 10.1161/CIRCULATIONAHA
12. Prasad K, Dhar I. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease. Int J Angiol. 2014;23(4):217–226. doi: 10.1055/s-0034-1387169
13. Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLoS One. 2013;8(2):e57873. doi: 10.1371/journal.pone.0057873
14. Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public Health. 2013;8(1):55–64.
doi: 10.1080/17441692.2012.736257
15. DiNicolantonio JJ, O’Keefe JH, Lucan SC. Added fructose: A principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc. 2015;90(3):372–381.
doi: 10.1016/j.mayocp.2014.12.019
16. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322–1334. doi: 10.1172/JCI37385
17. Bray GA, Popkin BM. Calorie-sweetened beverages and fructose: What have we learned 10 years later. Pediatr Obes. 2013;8(4):242–248. doi: 10.1111/j.2047-6310.2013.00171.x
18. Qi Q, Chu AY, Kang JH, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367(15):1387–1396. doi: 10.1056/NEJMoa1203039
19. Davis JN, Lê KA, Walker RW, et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am J Clin Nutr. 2010;92(6):1522–1527. doi: 10.3945/ajcn.2010.30185
20. Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59(1):109–116. doi: 10.1002/art.23245
21. Malik VS, Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol. 2022;18(4):205–218.
doi: 10.1038/s41574-021-00627-6
22. Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem. 2009;332(1–2):145–159. doi: 10.1007/s11010-009-0184-4
23. Dhar I, Dhar A, Wu L, Desai KM. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats. PLoS One. 2013;8(9):e74212. doi: 10.1371/journal.pone.0074212
24. Liu Q, Ayoub-Charette S, Khan TA, et al. Important Food Sources of Fructose-Containing Sugars and Incident Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J Am Heart Assoc. 2019;8(24):e010977. doi: 10.1161/JAHA.118.010977
25. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625. doi: 10.2337/diabetes.54.6.1615
26. Nguyen S, Choi HK, Lustig RH, Hsu CY. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J Pediatr. 2009;154(6):807–813.
doi: 10.1016/j.jpeds.2009.01.015
27. Aeberli I, Gerber PA, Hochuli M, et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr. 2011;94(2):479–485. doi: 10.3945/ajcn.111.013540
28. Qi X, Chiavaroli L, Lee D, et al. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients. 2022;14(19):3986. doi: 10.3390/nu14193986
29. Sørensen LB, Raben A, Stender S, Astrup A. Effect of sucrose on inflammatory markers in overweight humans. Am J Clin Nutr. 2005;82(2):421–427. doi: 10.1093/ajcn.82.2.421
30. Valencia AP, Nagaraj N, Osman DH, et al. Are fat and sugar just as detrimental in old age? Geroscience. 2021;43(4):1615–1625. doi: 10.1007/s11357-021-00390-6
31. Zhou X, Zhang X, Niu D, et al. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice. Sci Rep. 2023;13(1):6701.
doi: 10.1038/s41598-023-33806-8
32. Sen T, Cawthon CR, Ihde BT, et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–317.
doi: 10.1016/j.physbeh.2017.02.027
33. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–1075.
doi: 10.1016/j.jhep.2018.01.019
34. Loktionova IL, Pokrovskiy MV, Ragulina VA. The status of vascular endothelium function in infectious diseases of various etiologies. Nauchnye vedomosti Belgorodskogo госуdarstvennogo universiteta. Seriya: Meditsina. Farmatsiya. 2012;123(4–1):20–31. (In Russ).
35. Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–1619. doi: 10.1111/bph.13517
36. Poznyak AV, Bharadwaj D, Prasad G, et al. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int J Mol Sci. 2021;22(13):6702.
doi: 10.3390/ijms22136702
37. Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276(6):618–632. doi: 10.1111/joim.12296
38. Loader J, Meziat C, Watts R, et al. Effects of Sugar-Sweetened Beverage Consumption on Microvascular and Macrovascular Function in a Healthy Population. Arterioscler Thromb Vasc Biol. 2017;37(6):1250–1260. doi: 10.1161/ATVBAHA.116.308010
39. Vasanji Z, Cantor EJ, Juric D, et al. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. Am J Physiol Cell Physiol. 2006;291(4):C772–C780. doi: 10.1152/ajpcell.00086.2005
40. Chang KC, Liang JT, Tseng CD, et al. Aminoguanidine prevents fructose-induced deterioration in left ventricular-arterial coupling in Wistar rats. Br J Pharmacol. 2007;151(3):341–346. doi: 10.1038/sj.bjp.0707223
41. Davidoff AJ, Mason MM, Davidson MB, et al. Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab. 2004;286(5):E718–E724. doi: 10.1152/ajpendo.00358.2003
42. Dutta K, Podolin DA, Davidson MB, Davidoff AJ. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes. 2001;50(5):1186–1192.
doi: 10.2337/diabetes.50.5.1186
43. Prasad K, Kalra J, Bharadwaj L. Cardiac depressant effects of oxygen free radicals. Angiology. 1993;44(4):257–270. doi: 10.1177/000331979304400401
44. Gowen BH, Reyes MV, Joseph LC, Morrow JP. Mechanisms of Chronic Metabolic Stress in Arrhythmias. Antioxidants (Basel). 2020;9(10):1012. doi: 10.3390/antiox9101012
45. Cheng WL, Li SJ, Lee TI, et al. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis. Biomedicines. 2021;9(7):728.
doi: 10.3390/biomedicines9070728
46. Ji Y, Yin Y, Sun L, Zhang W. The Molecular and Mechanistic Insights Based on Gut-Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. Int J Mol Sci. 2020;21(9):3066. doi: 10.3390/ijms21093066
47. Wang Y, Qi W, Song G, et al. High-Fructose Diet Increases Inflammatory Cytokines and Alters Gut Microbiota Composition in Rats. Mediators Inflamm. 2020;2020:6672636.
doi: 10.1155/2020/6672636
48. Mantovani A. Nonalcoholic Fatty Liver Disease (NAFLD) and Risk of Cardiac Arrhythmias: A New Aspect of the Liver-heart Axis. J Clin Transl Hepatol. 2017;5(2):134–141.
doi: 10.14218/JCTH.2017.00005
49. Mantovani A, Dauriz M, Sandri D, et al. Association between non-alcoholic fatty liver disease and risk of atrial fibrillation in adult individuals: An updated meta-analysis. Liver Int. 2019;39(4):758–769. doi: 10.1111/liv.14044
50. Chan YH, Chang GJ, Lai YJ, et al. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc Diabetol. 2019;18(1):125. doi: 10.1186/s12933-019-0928-8
51. Sergeeva VA, Lipatova TE. Lifestyle Changes in Medical Students during the COVID-19 Pandemic. Kachestvennaya Klinicheskaya Praktika = Good Clinical Practice. 2022;1:64–71. (In Russ). doi: 10.37489/2588-0519-2022-1-64-71
52. Sergeeva VA, Lipatova TE. Sarcopenia associated with COVID-19. Profilakticheskaya Meditsina. 2022;25(11):105–112. (In Russ). doi: 10.17116/profmed202225111105
Авторы
В.А. Сергеева
Саратовский государственный медицинский университет им. В.И. Разумовского, Саратов, Российская Федерация
________________________________________________
Victoria A. Sergeeva
Razumovsky Saratov State Medical University, Saratov, Russian Federation