Эффективные системы поддержки принятия решений в клинической практике и профилактике: обзор литературы
Эффективные системы поддержки принятия решений в клинической практике и профилактике: обзор литературы
Комков А.А., Рязанова С.В., Мазаев В.П. Эффективные системы поддержки принятия решений в клинической практике и профилактике: обзор литературы // CardioСоматика. 2023. Т. 14, № 3. С. 177–185. DOI: https://doi.org/10.17816/CS569263
________________________________________________
Komkov AA, Ryazanova SV, Mazaev VP. Effective decision support systems in clinical practice and prevention: literature review. Cardiosomatics. 2023;14(3):177–185. DOI: https://doi.org/10.17816/CS569263
Эффективные системы поддержки принятия решений в клинической практике и профилактике: обзор литературы
Комков А.А., Рязанова С.В., Мазаев В.П. Эффективные системы поддержки принятия решений в клинической практике и профилактике: обзор литературы // CardioСоматика. 2023. Т. 14, № 3. С. 177–185. DOI: https://doi.org/10.17816/CS569263
________________________________________________
Komkov AA, Ryazanova SV, Mazaev VP. Effective decision support systems in clinical practice and prevention: literature review. Cardiosomatics. 2023;14(3):177–185. DOI: https://doi.org/10.17816/CS569263
Системы принятий клинических решений (СПКР) способны в значительной степени упростить работу специалистов и помочь избежать врачебных ошибок, часто значимо превосходя человеческие возможности в обработке большого количества информации. Внедрение подобных систем представляет собой сложную задачу и нуждается в высокотехнологичных разработках. Годовой прирост создания таких систем представляет собой геометрическую прогрессию, однако вопрос внедрения большинства из них в реальную клиническую практику и клинические рекомендации остается открытым. СПКР демонстрируют разнообразие их использования для решения разных вопросов диагностики, лечения и профилактики заболеваний, а также рассматривают связь между научными клиническими наблюдениями. В настоящее время технологические возможности создания СПКР используют многие системы накопления и обработки данных с применением алгоритмов машинного обучения и свёрточных нейронных сетей, что приводит к получению данных, опережающих способности человеческого мышления принять логику рекомендуемых решений. В работе представлены наиболее изученные современные СПКР, возможности их применения и проблемы внедрения.
Ключевые слова: системы поддержки принятия врачебных решений; системы принятия клинических решений; машинное обучение
________________________________________________
Clinical decision support systems (CDSS) often outperform human capabilities for processing a large amount of information, dramatically simplifying the work of specialists and avoiding medical errors. The implementation of such systems is a complex task that requires high-tech developments. The annual increase in the development of such systems has a geometric progression. However, it is unclear if most of them will be integrated into clinical practice and recommendations. The use of CDSS to address various disease diagnosis, treatment, and prevention issues is demonstrated, and possible linkages between scientific clinical observations and CDSS are examined. Currently, many data gathering and processing systems use machine learning algorithms and convolutional technologies to create CDSS, resulting in data that exceeds the ability of human thinking to determine the logic of recommended decisions. This study presents the most studied modern CDSS, the possibilities of their application, and the implementation issues.
Keywords: clinical decision support system; machine learning
1. Sutton R.T., Pincock D., Baumgart D.C., et al. An overview of clinical decision support systems: benefits, risks, and strategies for success // NPJ Digit Med. 2020. N 3. P. 17.
doi: 10.1038/s41746-020-0221-y
2. What are the advantages of electronic health records? [интернет]. HealthIT.gov [дата обращения: 26.09.2023]. Доступ по ссылке: https://www.healthit.gov/faq/what-are-advantages-electronic-health-records
3. Куликова М.С., Калинина А.М., Еганян Р.А., и др. Использование инструментов мобильного здравоохранения в контроле избыточной массы тела и привычек питания: результаты российского многоцентрового рандомизированного исследования // Профилактическая медицина. 2022. Т. 25, № 12. С. 46–54.
doi: 10.17116/profmed20222512146
4. Горбань В.И., Бахтин М.Ю., Щеголев А.В., Лобанова Ю.В. Система поддержки принятия врачебных решений при сепсисе как важная часть медико-экономической составляющей стационара // Альманах клинической медицины. 2019. Т. 47, № 3. С. 204–211. doi: 10.18786/2072-0505-2019-47-010
5. Лосик Д.В., Козлова С.Н., Кривошеев Ю.С., и др. Результаты ретроспективного анализа выбора терапии при помощи сервиса поддержки принятия врачебных решений у пациентов с артериальной гипертензией и фибрилляцией предсердий (ИНТЕЛЛЕКТ) // Российский кардиологический журнал. 2021. Т. 26, № 4. С. 4406.
doi: 10.15829/1560-4071-2021-4406
6. Петряйкин А.В., Скрипникова И.А. Количественная компьютерная томография, современные данные. Обзор // Медицинская визуализация. 2021. Т. 25, № 4.
С. 134–146. doi: 10.24835/1607-0763-1049
7. Chen T., Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016
Aug 13–17. P. 785–794. doi: 10.1145/2939672.2939785
8. Kursa M.B., Rudnicki W.R. Feature Selection with the Boruta Package // Journal of Statistical Software. 2010. Vol. 36, N 11. P. 1–13. doi: 10.18637/JSS.V036.I11
9. Overmars L.M., Van Es B., Groepenhoff F., et al. Preventing unnecessary imaging in patients suspect of coronary artery disease through machine learning of electronic health records // Eur Heart J Digit Health. 2021. Vol. 3, N 1. P. 11–19. doi: 10.1093/ehjdh/ztab103
10. El-Ganainy N.O., Balasingham I., Halvorsen P.S., Rosseland L.A. A new real time clinical decision support system using machine learning for critical care units // IEEE Access. 2020.
N 8. P. 185676–185687. doi: 10.1109/ACCESS.2020
11. Laing S., Mercer J. Improved preventive care clinical decision-making efficiency: leveraging a point-of-care clinical decision support system // BMC Med Inform Decis Mak. 2021.
Vol. 21, N 1. P. 315. doi: 10.1186/s12911-021-01675-8
12. Jing X., Himawan L., Law T. Availability and usage of clinical decision support systems (CDSSs) in office-based primary care settings in the USA // BMJ Health Care Inform. 2019.
Vol. 26, N 1. P. e100015. doi: 10.1136/bmjhci-2019-100015
13. Chan C.T., Vo M., Carlson J., et al. Pediatric Provider Utilization of a Clinical Decision Support Alert and Association with HIV Pre-exposure Prophylaxis Prescription Rates // Appl Clin Inform. 2021. Vol. 13, N 1. P. 30–36. doi: 10.1055/s-0041-1740484
14. Karajizadeh M., Zand F., Sharian R., et al. Effect of Web-based Clinical Decision Support Systems on Adherence to Venous Thromboembolism Prophylaxis guideline among ICU Nonsurgical Patients: A Prospective Before and After Study // Research Square. Preprint (Version 1). 2021. doi: 10.21203/rs.3.rs-842416/v1
15. Alasiri S.F., Douiri A., Altukistani S., et al. The Role of Clinical Decision Support Systems in Preventing Stroke in Primary Care: A Systematic Review // Perspect Health Inf Manag. 2023. Vol. 20, N 2. P. 1d.
16. Реброва О.Ю. Жизненный цикл систем поддержки принятия врачебных решений как медицинских технологий // Врач и информационные технологии. 2020. № 1
С. 27–37. doi: 10.37690/1811-0193-2020-1-27-37
17. Awaysheh A., Wilcke J., Elvinger F., et al. Review of Medical Decision Support and Machine-Learning Methods // Vet Pathol. 2019. Vol. 56, N 4. P. 512–525.
doi: 10.1177/0300985819829524
18. Sharma D., Jain S. Evaluation of Stemming and Stop Word Techniques on Text Classification Problem // International Journal of Scientific Research in Computer Science and Engineering. 2015. Vol. 3, N 2. P. 1–4.
19. Lewis G., Sharp D., Bartholomew J., Pelosi A.J. Computerized assessment of common mental disorders in primary care: effect on clinical outcome // Fam Pract. 1996. Vol. 13, N 2.
P. 120–126. doi: 10.1093/fampra/13.2.120
20. Wellwood J., Johannessen S., Spiegelhalter D.J. How does computer-aided diagnosis improve the management of acute abdominal pain? // Ann R Coll Surg Engl. 1992. N 74.
P. 40–46.
21. Cannon D.S., Allen S.N. A comparison of the effects of computer and manual reminders on compliance with a mental health clinical practice guideline // J Am Med Inform Assoc. 2000. Vol. 7, N 2. P. 196–203. doi: 10.1136/JAMIA.2000.0070196
22. Selker H.P., Beshansky J.R., Griffith J.L., et al. Use of the acute cardiac ischemia time-insensitive predictive instrument (ACI-TIPI) to assist with triage of patients with chest pain or other symptoms suggestive of acute cardiac ischemia. A multicenter, controlled clinical trial // Ann Intern Med. 1998. Vol. 129, N 11. P. 845–855.
doi: 10.7326/0003-4819-129-11_part_1-199812010-00002
23. Schriger D.L., Gibbons P.S., Langone C.A., et al. Enabling the diagnosis of occult psychiatric illness in the emergency department: A randomized, controlled trial of the computerized, self-administered PRIME-MD diagnostic system // Ann Emerg Med. 2001. Vol. 37, N 2. P. 132–140. doi: 10.1067/mem.2001.112255
24. Pozen M.W., D’Agostino R.B., Selker H.P., et al. A Predictive Instrument to Improve Coronary-Care-Unit Admission Practices in Acute Ischemic Heart Disease // N Engl J Med. 2010. Vol. 310, N 20. P. 1273–1278. doi: 10.1056/NEJM198405173102001
25. Gijsberts C.M., Den Ruijter H.M., De Kleijn D.P.V., et al. Hematological Parameters Improve Prediction of Mortality and Secondary Adverse Events in Coronary Angiography Patients: A Longitudinal Cohort Study // Medicine (Baltimore). 2015. Vol. 94, N 45. P. e1992. doi: 10.1097/MD.0000000000001992
26. Kofink D., Muller S.A., Patel R.S., et al. Routinely measured hematological parameters and prediction of recurrent vascular events in patients with clinically manifest vascular disease // PLoS One. 2018. Vol. 13, N 9. P. e0202682. doi: 10.1371/journal.pone.0202682
27. Gijsberts C.M., Ellenbroek G.H.J.M., Ten Berg M.J., et al. Routinely analyzed leukocyte characteristics improve prediction of mortality after coronary angiography // Eur J Prev Cardiol. 2016. Vol. 23, N 11. P. 1211–1220. doi: 10.1177/2047487315621832
28. den Harder A.M., de Jong P.A., de Groot M.C.H., et al. Commonly available hematological biomarkers are associated with the extent of coronary calcifications // Atherosclerosis. 2018. N 275. P. 166–173. doi: 10.1016/j.atherosclerosis.2018.06.017
29. Мазаев В.П., Комков А.А., Рязанова С.В., и др. Выявление скрытой фибрилляции предсердий, сниженной фракции выброса левого желудочка и нарушения обмена калия на традиционной электрокардиограмме с применением глубокой сверточной нейронной сети как элемента искусственного интеллекта // Современные проблемы науки и образования. 2020. № 6. doi: 10.17513/spno.30478
________________________________________________
1. Sutton RT, Pincock D, Baumgart DC, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17.
doi: 10.1038/s41746-020-0221-y
2. What are the advantages of electronic health records? [Internet]. HealthIT.gov [cited 2023 Sep 26]. Available from: https://www.healthit.gov/faq/what-are-advantages-electronic-health-records
3. Kulikova MS, Kalinina AM, Eganyan RA, et al. Use of mobile health tools in controlling overweight and eating habits: results of a Russian multicenter randomized trial. Profilakticheskaya Meditsina. 2022;25(12):46–54. (In Russ). doi: 10.17116/profmed20222512146
4. Gorban VI, Bakhtin MY, Shchegolev AV, Lobanova YV. The clinical decision support system for sepsis as an important part of the medical and economic component of a hospital. Almanac of Clinical Medicine. 2019;47(3):204–211. (In Russ). doi: 10.18786/2072-0505-2019-47-010
5. Losik DV, Kozlova SN, Krivosheev YuS, et al. Retrospective analysis of clinical decision support system use in patients with hypertension and atrial fibrillation (INTELLECT). Russian Journal of Cardiology. 2021;26(4):4406. (In Russ). doi: 10.15829/1560-4071-2021-4406
6. Petraikin AV, Skripnikova IA. Quantitative Computed Tomography, modern data. Review. Medical Visualization. 2021;25(4):134–146. (In Russ). doi: 10.24835/1607-0763-1049
7. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016
Aug 13–17. P. 785–794. doi: 10.1145/2939672.2939785
8. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. Journal of Statistical Software. 2010;36(11):1–13. doi: 10.18637/JSS.V036.I11
9. Overmars LM, Van Es B, Groepenhoff F, et al. Preventing unnecessary imaging in patients suspect of coronary artery disease through machine learning of electronic health records. Eur Heart J Digit Health. 2021;3(1):11–19. doi: 10.1093/ehjdh/ztab103
10. El-Ganainy NO, Balasingham I, Halvorsen PS, Rosseland LA. A new real time clinical decision support system using machine learning for critical care units. IEEE Access. 2020;8:185676–185687. doi: 10.1109/ACCESS.2020.3030031
11. Laing S, Mercer J. Improved preventive care clinical decision-making efficiency: leveraging a point-of-care clinical decision support system. BMC Med Inform Decis Mak. 2021;21(1):315. doi: 10.1186/s12911-021-01675-8
12. Jing X, Himawan L, Law T. Availability and usage of clinical decision support systems (CDSSs) in office-based primary care settings in the USA. BMJ Health Care Inform. 2019;26(1):e100015. doi: 10.1136/bmjhci-2019-100015
13. Chan CT, Vo M, Carlson J, et al. Pediatric Provider Utilization of a Clinical Decision Support Alert and Association with HIV Pre-exposure Prophylaxis Prescription Rates. Appl Clin Inform. 2021;13(1):30–36. doi: 10.1055/s-0041-1740484
14. Karajizadeh M, Zand F, Sharian R, et al. Effect of Web-based Clinical Decision Support Systems on Adherence to Venous Thromboembolism Prophylaxis guideline among ICU Nonsurgical Patients: A Prospective Before and After Study. Research Square. Preprint (Version 1). 2021. doi: 10.21203/rs.3.rs-842416/v1
15. Alasiri SF, Douiri A, Altukistani S, et al. The Role of Clinical Decision Support Systems in Preventing Stroke in Primary Care: A Systematic Review. Perspect Health Inf Manag. 2023;20(2):1d.
16. Rebrova OYu. Life cycle of decision support systems as medical technologies. Medical doctor and IT. 2020;1:27–37. (In Russ). doi: 10.37690/1811-0193-2020-1-27-37
17. Awaysheh A, Wilcke J, Elvinger F, et al. Review of Medical Decision Support and Machine-Learning Methods. Vet Pathol. 2019;56(4):512–525. doi: 10.1177/0300985819829524
18. Sharma D, Jain S. Evaluation of Stemming and Stop Word Techniques on Text Classification Problem. International Journal of Scientific Research in Computer Science and Engineering. 2015;3(2):1–4.
19. Lewis G, Sharp D, Bartholomew J, Pelosi AJ. Computerized assessment of common mental disorders in primary care: effect on clinical outcome. Fam Pract. 1996;13(2):120–126. doi: 10.1093/fampra/13.2.120
20. Wellwood J, Johannessen S, Spiegelhalter DJ. How does computer-aided diagnosis improve the management of acute abdominal pain? Ann R Coll Surg Engl. 1992;74:40–46.
21. Cannon DS, Allen SN. A comparison of the effects of computer and manual reminders on compliance with a mental health clinical practice guideline. J Am Med Inform Assoc. 2000;7(2):196–203. doi: 10.1136/JAMIA.2000.0070196
22. Selker HP, Beshansky JR, Griffith JL, et al. Use of the acute cardiac ischemia time-insensitive predictive instrument (ACI-TIPI) to assist with triage of patients with chest pain or other symptoms suggestive of acute cardiac ischemia. A multicenter, controlled clinical trial. Ann Intern Med. 1998;129(11):845–855.
doi: 10.7326/0003-4819-129-11_part_1-199812010-00002
23. Schriger DL, Gibbons PS, Langone CA, et al. Enabling the diagnosis of occult psychiatric illness in the emergency department: A randomized, controlled trial of the computerized, self-administered PRIME-MD diagnostic system. Ann Emerg Med. 2001;37(2):132–140. doi: 10.1067/mem.2001.112255
24. Pozen MW, D’Agostino RB, Selker HP, et al. A Predictive Instrument to Improve Coronary-Care-Unit Admission Practices in Acute Ischemic Heart Disease. N Engl J Med. 2010;310(20):1273–1278. doi: 10.1056/NEJM198405173102001
25. Gijsberts CM, Den Ruijter HM, De Kleijn DPV, et al. Hematological Parameters Improve Prediction of Mortality and Secondary Adverse Events in Coronary Angiography Patients: A Longitudinal Cohort Study. Medicine (Baltimore). 2015;94(45):e1992. doi: 10.1097/MD.0000000000001992
26. Kofink D, Muller SA, Patel RS, et al. Routinely measured hematological parameters and prediction of recurrent vascular events in patients with clinically manifest vascular disease. PLoS One. 2018;13(9):e0202682. doi: 10.1371/journal.pone.0202682
27. Gijsberts CM, Ellenbroek GHJM, Ten Berg MJ, et al. Routinely analyzed leukocyte characteristics improve prediction of mortality after coronary angiography. Eur J Prev Cardiol. 2016;23(11):1211–1220. doi: 10.1177/2047487315621832
28. den Harder AM, de Jong PA, de Groot MCH, et al. Commonly available hematological biomarkers are associated with the extent of coronary calcifications. Atherosclerosis. 2018;275:166–173. doi: 10.1016/j.atherosclerosis.2018.06.017
29. Mazaev VP, Komkov AA, Ryazanova SV, et al. The identification of latent atrial fibrillation, decreased ejection fraction of the left ventricle and potassium metabolism disorders on the conventional electrocardiogram using deep convolutional neural network as an element of artificial intelligence. Modern problems of science and education. (In Russ). 2020;6.
doi: 10.17513/spno.30478
Авторы
А.А. Комков*1,2, С.В. Рязанова1, В.П. Мазаев1
1НМИЦ терапии и профилактической медицины, Москва, Российская Федерация; 2Городская клиническая больница № 67 им. Л.А. Ворохобова, Москва, Российская Федерация
*artemkomkov@gmail.com
________________________________________________
Artem A. Komkov*1,2, Svetlana V. Ryazanova1, Vladimir P. Mazaev1
1National Medical Research Center of Therapy and Preventive Medicine, Moscow, Russian Federation; 2Vorokhobov City Clinical Hospital N 67, Moscow, Russian Federation
*artemkomkov@gmail.com