Салусин-α и -β в качестве новых биологических маркёров при сердечно-сосудистых заболеваниях: обзор литературы
Салусин-α и -β в качестве новых биологических маркёров при сердечно-сосудистых заболеваниях: обзор литературы
Алиева А.М., Резник Е.В., Теплова Н.В., Гызыева М.Х., Рахаев А.М., Котикова И.А., Никитин И.Г. Салусин-α и -β в качестве новых биологических маркёров при сердечно-сосудистых заболеваниях: обзор литературы // CardioСоматика. 2023. Т 14, № 4. С. 257–268. DOI: https://doi.org/10.17816/CS568593
________________________________________________
Alieva AM, Reznik EV, Teplova NV, Gyzieva MKh, Rakhaev AM, Kotikova IA, Nikitin IG. Salusin-α and salusin-β as new biological markers in cardiovascular diseases: literature review. Cardiosomatics. 2023;14(4):257–268.
DOI: https://doi.org/10.17816/CS568593
Салусин-α и -β в качестве новых биологических маркёров при сердечно-сосудистых заболеваниях: обзор литературы
Алиева А.М., Резник Е.В., Теплова Н.В., Гызыева М.Х., Рахаев А.М., Котикова И.А., Никитин И.Г. Салусин-α и -β в качестве новых биологических маркёров при сердечно-сосудистых заболеваниях: обзор литературы // CardioСоматика. 2023. Т 14, № 4. С. 257–268. DOI: https://doi.org/10.17816/CS568593
________________________________________________
Alieva AM, Reznik EV, Teplova NV, Gyzieva MKh, Rakhaev AM, Kotikova IA, Nikitin IG. Salusin-α and salusin-β as new biological markers in cardiovascular diseases: literature review. Cardiosomatics. 2023;14(4):257–268.
DOI: https://doi.org/10.17816/CS568593
Несмотря на значительные достижения медицины, сердечно-сосудистые заболевания продолжают оставаться ведущей причиной смертности во всём мире. Важной задачей кардиологии являются поиск и изучение новых сердечно-сосудистых биологических маркёров. В последние годы интерес учёных привлекают салусины. Салусины являются эндогенными биологически активными пептидами, которые впервые были идентифицированы в 2003 году. Проведённые к настоящему времени исследования продемонстрировали, что салусин-α и -β играют важную роль в ремоделировании сосудов, при воспалении, артериальной гипертензии и атеросклеротических процессах. Салусин-α проявляет антиатерогенное действие, тогда как салусин-β играет проатерогенную роль. Несмотря на разнообразные биологические, физиологические и патофизиологические аспекты салуcинов, точный механизм их сердечно-сосудистых эффектов до конца не известен. Необходимы дальнейшие глубинные исследования роли салусинов при сердечно-сосудистых заболеваниях. Регуляция концентрации и экспрессии салусина-α и -β, возможно, окажется многообещающей стратегией для лечения больных кардиологического профиля.
Despite significant advances in medicine, cardiovascular disease continues to be the leading cause of death worldwide. An important task in cardiology is the search and study of new cardiovascular biological markers. In recent years, salusins have attracted the interest of scientists. Salusins are endogenous biologically active peptides, which were first identified in 2003. Thus far, studies have demonstrated that salusin-α and salusin-β play important roles in vascular remodeling, inflammation, hypertension, and atherosclerotic processes. Salusin-α exhibits an antiatherogenic effect, whereas salusin-β plays a proatherogenic role. Despite the diverse biological, physiological, and pathophysiological aspects of salusins, the exact mechanism of their cardiovascular effects is not fully known. Further in-depth studies of the role of salusins in cardiovascular diseases are required. The regulation of the concentration and expression of salusin-α and salusin-β may prove to be a promising strategy for the treatment of patients with cardiac diseases.
1. Здравоохранение в России. 2019: Стат. сб. Москва: Росстат, 2019.
2. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 году: Государственный доклад. Москва: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2020.
3. Алиева А.М. Натрийуретические пептиды: использование в современной кардиологии // Атмосфера. Новости кардиологии. 2017. № 1. С. 26–31.
4. Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759.
doi: 10.26442/20751753.2021.10.201113
5. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209
6. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность // Терапия. 2022. № 1. С. 60–70.
doi: 10.18565/therapy.2022.1.60-70
7. Shichiri M., Ishimaru S., Ota T., et al. Salusins: Newly identified bioactive peptides with hemodynamic and mitogenic activities // Nat Med. 2003. Vol. 9, N 9. P. 1166–1172.
doi: 10.1038/nm913
8. Janecka A., Stefanowicz J. Use of salusin β for predicting atherosclerosis and components of the metabolic syndrome // Adv Clin Exp Med. 2023. doi: 10.17219/acem/166535. Epub ahead of print.
9. Chen M.X., Deng B.Y., Liu S.T., et al. Salusins: advance in cardiovascular disease research // J Pharm Pharmacol. 2023. Vol. 75, N 3. P. 363–369. doi: 10.1093/jpp/rgac087
10. Sato K., Watanabe R., Itoh F., et al. Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases // Int J Hypertens. 2013. N 2013. P. 965140.
doi: 10.1155/2013/965140
11. Watanabe T., Sato K., Itoh F., et al. The roles of salusins in atherosclerosis and related cardiovascular diseases // J Am Soc Hypertens. 2011. Vol. 5, N 5. P. 359–365.
doi: 10.1016/j.jash.2011.06.003
12. Koya T., Miyazaki T., Watanabe T., et al. Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF‑κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro // Am J Physiol Heart Circ Physiol. 2012. Vol. 303, N 1. P. H96–H105. doi: 10.1152/ajpheart.00009.2012
13. Esfahani M., Saidijam M., Goodarzi M.T., et al. Salusin-α Attenuates Inflammatory Responses in Vascular Endothelial Cells // Biochemistry (Mosc). 2017. Vol. 82, N 11.
P. 1314–1323. doi: 10.1134/S0006297917110098
14. Zhou C.H., Liu L., Liu L., et al. Salusin-β not salusin-α promotes vascular inflammation in ApoE-deficient mice via the I-κBα/NF-κB pathway // PLoS One. 2014. Vol. 9. N 3.
P. e91468. doi: 10.1371/journal.pone.0091468
15. Chen H., Jin G. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p // Bioengineered. 2021. Vol. 12, N 1. P. 6155–6165. doi: 10.1080/21655979.2021.1972900
16. Wang H., Zhang M., Zhou H., et al. Salusin-β Mediates High Glucose-Induced Inflammation and Apoptosis in Retinal Capillary Endothelial Cells via a ROS-Dependent Pathway in Diabetic Retinopathy // Diabetes Metab Syndr Obes. 2021. N 14. P. 2291–2308. doi: 10.2147/DMSO.S301157
17. Xu T., Zhang Z., Liu T., et al. Salusin-β contributes to vascular inflammation associated with pulmonary arterial hypertension in rats // J Thorac Cardiovasc Surg. 2016. Vol. 152, N 4.
P. 1177–1187. doi: 10.1016/j.jtcvs.2016.05.056
18. Zhou C.H., Pan J., Huang H., et al. Salusin-β, but not salusin-α, promotes human umbilical vein endothelial cell inflammation via the p38 MAPK/JNK-NF-κB pathway // PLoS One. 2014. Vol. 9, N 9. P. e107555. doi: 10.1371/journal.pone.0107555
19. Li H.B., Yu X.J., Bai J., et al. Silencing salusin β ameliorates heart failure in aged spontaneously hypertensive rats by ROS-relative MAPK/NF-κB pathways in the paraventricular nucleus // Int J Cardiol. 2019. N 280. P. 142–151. doi: 10.1016/j.ijcard.2018.12.020
20. Qian K., Feng L., Sun Y., et al. Overexpression of Salusin-α Inhibits Vascular Intimal Hyperplasia in an Atherosclerotic Rabbit Model // Biomed Res Int. 2018. N 2018. P. 8973986.
doi: 10.1155/2018/8973986
21. Sun H.J., Zhao M.X., Liu T.Y., et al. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway // Sci Rep. 2016. N 6. P. 23596. doi: 10.1038/srep23596
22. Sun H.J., Liu T.Y., Zhang F., et al. Salusin-β contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis // Biochim Biophys Acta. 2015. Vol. 1852, N 9. P. 1709–1718. doi: 10.1016/j.bbadis.2015.05.008
23. Wang X., Chen A., Hu R., et al. Salusin-β, a TOR2A gene product, promotes proliferation, migration, fibrosis, and calcification of smooth muscle cells and accelerates the imbalance of vasomotor function and vascular remodeling in monocrotaline-induced pulmonary hypertensive rats // Front Pharmacol. 2022. N 13. P. 928834. doi: 10.3389/fphar.2022.928834
24. Gao S., Xu L., Zhang Y., et al. Salusin-α Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling // Cell Physiol Biochem. 2018. Vol. 50, N 5.
P. 1740–1753. doi: 10.1159/000494792
25. Pan Y., Sun S., Wang X., et al. Improvement of Vascular Function by Knockdown of Salusin-β in Hypertensive Rats via Nitric Oxide and Reactive Oxygen Species Signaling Pathway // Front Physiol. 2021. N 12. P. 622954. doi: 10.3389/fphys.2021.622954
26. Li H.B., Qin D.N., Cheng K., et al. Central blockade of salusin β attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats // Sci Rep. 2015. N 5.
P. 11162. doi: 10.1038/srep11162
27. Sun S., Zhang F., Pan Y., et al. A TOR2A Gene Product: Salusin-β Contributes to Attenuated Vasodilatation of Spontaneously Hypertensive Rats // Cardiovasc Drugs Ther. 2021.
Vol. 35, N 1. P. 125–139. doi: 10.1007/s10557-020-06983-1
28. Ren X.S., Ling L., Zhou B., et al. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats // Sci Rep. 2017. N 7. P. 43259.
doi: 10.1038/srep43259
29. Xu X.L., Zeng Y., Zhao C., et al. Salusin-β induces smooth muscle cell proliferation by regulating cyclins D1 and E expression through MAPKs signaling pathways // J Cardiovasc Pharmacol. 2015. Vol. 65, N 4. P. 377–385. doi: 10.1097/FJC.0000000000000209
30. Pan Y., Chen A., Wang X., et al. Saluisn-β contributes to endothelial dysfunction in monocrotaline-induced pulmonary arterial hypertensive rats // Biomed Pharmacother. 2022. N 155. P. 113748. doi: 10.1016/j.biopha.2022.113748
31. Xu Y., Fei X., Fu H., et al. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation // Acta Physiol (Oxf). 2023. Vol. 238, N 4. P. e13987. doi: 10.1111/apha.13987
32. Huang X., Wang Y., Ren K. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension // Pharmazie. 2015. Vol. 70, N 8. P. 543–548.
33. Xu Y., Pan Y., Wang X., et al. Knockdown of Salusin-β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats // Oxid Med Cell Longev. 2021.
N 2021. P. 8896226. doi: 10.1155/2021/8896226
34. Zhou C.-H., Liu L.-L., Wu Y.-Q., et al. Enhanced expression of salusin-β contributes to progression of atherosclerosis in LDL receptor deficient mice // Can J Physiol Pharmacol. 2012. Vol. 90, N 4. P. 463–471. doi: 10.1139/y2012-022
35. Nagashima M., Watanabe T., Shiraishi Y., et al. Chronic infusion of salusin-α and -β exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice // Atherosclerosis. 2010. Vol. 212, N 1. P. 70–77. doi: 10.1016/j.atherosclerosis.2010.04.027
36. Sun H., Zhang F., Xu Y., et al. Salusin-β Promotes Vascular Calcification via Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation // Antioxid Redox Signal. 2019. Vol. 31, N 18. P. 1352–1370. doi: 10.1089/ars.2019.7723
37. Zhang H., Yang C., Wang S., et al. Overexpression of salusin-α upregulates AdipoR2 and activates the PPARα/ApoA5/SREBP-1c pathway to inhibit lipid synthesis in HepG2 cells // Int J Mol Med. 2023. Vol. 51, N 5. P. 41. doi: 10.3892/ijmm.2023.5244
38. Zhao M.X., Zhou B., Ling L., et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy // Cell Death Dis. 2017. Vol. 8, N 3. P. e2690.
doi: 10.1038/cddis.2017.106
39. Esfahani M., Saidijam M., Najafi R., et al. The effect of salusin-β on expression of pro- and anti-inflammatory cytokines in human umbilical vein endothelial cells (HUVECs) // ARYA Atheroscler. 2018. Vol. 14, N 1. P. 1–10. doi: 10.22122/arya.v14i1.1602
40. Watanabe T., Suguro T., Sato K., et al. Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients // Hypertens Res. 2008. Vol. 31, N 3. P. 463–468. doi: 10.1291/hypres.31.463
41. Wang Y., Wang S., Zhang J., et al. Salusin-β is superior to salusin-α as a marker for evaluating coronary atherosclerosis // J Int Med Res. 2020. Vol. 48, N 2. P. 300060520903868.
doi: 10.1177/0300060520903868
42. Argun D., Argun F., Borku Uysal B. Evaluation of salusin-α and salusin-β levels in patients with type 2 diabetes mellitus and determination of the impact of severity of hyperglycemia on salusin levels // Ir J Med Sci. 2021. Vol. 190, N 4. P. 1403–1411. doi: 10.1007/s11845-021-02674-4
43. Yilmaz E., Kurt D., Aydin E., et al. A New Marker for Determining Cardiovascular Risk: Salusin Alpha // Cureus. 2022. Vol. 14, N 10. P. e30340. doi: 10.7759/cureus.30340
44. Liu J., Ren Y.G., Zhang L.H., et al. Serum salusin-β levels are associated with the presence and severity of coronary artery disease // J Investig Med. 2015. Vol. 63, N 4. P. 632–635. doi: 10.1097/JIM.0000000000000184
45. Arkan A., Atukeren P., Ikitimur B., et al. The importance of circulating levels of salusin-α, salusin-β, and heregulin-β1 in atherosclerotic coronary arterial disease // Clin Biochem. 2021. N 87. P. 19–25. doi: 10.1016/j.clinbiochem.2020.10.003
46. Yildirim A., Kucukosmanoglu M. Relationship between Serum Salusin Beta Levels and Coronary Artery Ectasia // Acta Cardiol Sin. 2021. Vol. 37, N 2. P. 130–137.
doi: 10.6515/ACS.202103_37(2).20200910A
47. Akyüz A., Aydin F., Alpsoy S., et al. Relationship of serum salusin beta levels with coronary slow flow // Anatol J Cardiol. 2019. Vol. 22, N 4. P. 177–184.
doi: 10.14744/AnatolJCardiol.2019.43247
48. Alpsoy S., Dogan B., Ozkaramanli Gur D., et al. Assessment of salusin alpha and salusin beta levels in patients with newly diagnosed dipper and non-dipper hypertension // Clin Exp Hypertens. 2021. Vol. 43, N 1. P. 42–48. doi: 10.1080/10641963.2020.1797086
49. Fujie S., Hasegawa N., Sanada K., et al. Increased serum salusin-α by aerobic exercise training correlates with improvements in arterial stiffness in middle-aged and older adults // Aging (Albany NY). 2020. Vol. 12, N 2. P. 1201–1212. doi: 10.18632/aging.102678
50. Zhang W., Zhang J., Jin F., Zhou H. Efficacy of felodipine and enalapril in the treatment of essential hypertension with coronary artery disease and the effect on levels of Salusin-β, Apelin, and PON1 gene expression in patients // Cell Mol Biol (Noisy-le-grand). 2022. Vol. 67, N 6. P. 174–180. doi: 10.14715/cmb/2021.67.6.24
51. Genç Elden S., Yılmaz M.S., Altındiş M., et al. The role of serum salusin alpha and beta levels and atherosclerotic risk factors in idiopathic sudden hearing loss pathogenesis // Eur Arch Otorhinolaryngol. 2022. Vol. 279, N 3. P. 1311–1316. doi: 10.1007/s00405-021-06804-7
52. Yassien M., Fawzy O., Mahmoud E., Khidr E.G. Serum salusin-β in relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus // Diabetes Metab Syndr. 2020. Vol. 14, N 6. P. 2057–2062. doi: 10.1016/j.dsx.2020.10.025
53. Nazari M., Minasian V., Hovsepian S. Effects of Two Types of Moderate- and High-Intensity Interval Training on Serum Salusin-α and Salusin-β Levels and Lipid Profile in Women with Overweight/Obesity // Diabetes Metab Syndr Obes. 2020. N 13. P. 1385–1390. doi: 10.2147/DMSO.S248476
54. Sipahi S., Genc A.B., Acikgoz S.B., et al. Relationship of salusin-alpha and salusin-beta levels with atherosclerosis in patients undergoing haemodialysis // Singapore Med J. 2019. Vol. 60, N 4. P. 210–215. doi: 10.11622/smedj.2018123
55. Močnik M., Marčun Varda N. Current Knowledge of Selected Cardiovascular Biomarkers in Pediatrics: Kidney Injury Molecule-1, Salusin-α and -β, Uromodulin, and Adropin // Children (Basel). 2022. Vol. 9, N 1. P. 102. doi: 10.3390/children9010102
56. Kolakowska U., Kuroczycka-Saniutycz E., Wasilewska A., Olański W. Is the serum level of salusin-β associated with hypertension and atherosclerosis in the pediatric population? // Pediatr Nephrol. 2015. Vol. 30, N 3. P. 523–531. doi: 10.1007/s00467-014-2960-y
57. Kolakowska U., Kuroczycka-Saniutycz E., Olanski W., Wasilewska A. Correlation of salusin beta with hs-CRP and ADMA in hypertensive children and adolescents // Curr Pharm Des. 2018. Vol. 24, N 30. P. 3551–3557. doi: 10.2174/1381612824666180607124531
58. Dervişoğlu P., Elmas B., Kösecik M., et al. Salusin-α levels are negatively correlated with diastolic blood pressure in children with obesity // Cardiol Young. 2019. Vol. 29, N 10.
P. 1225–1229. doi: 10.1017/S1047951119001173
59. Paahoo A., Tadibi V., Behpoor N. Effectiveness of continuous aerobic versus high-intensity interval training on atherosclerotic and inflammatory markers in boys with overweight/obesity // Pediatr Exerc Sci. 2021. Vol. 33, N 3. P. 132–138. doi: 10.1123/pes.2020-0138
________________________________________________
1. Healthcare in Russia. 2019: Statistical book. Moscow: Rosstat; 2019. (In Russ).
2. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow: Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebitelei i blagopoluchiya cheloveka; 2020. (In Russ).
3. Alieva AM. Natriuretic peptides: use in modern cardiology. Atmosfera. Novosti kardiologii. 2017;(1):26–31. (In Russ).
4. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ).
doi: 10.26442/20751753.2021.10.201113
5. Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
6. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;(1):60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70
7. Shichiri M, Ishimaru S, Ota T, et al. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med. 2003;9(9):1166–1172. doi: 10.1038/nm913
8. Janecka A, Stefanowicz J. Use of salusin β for predicting atherosclerosis and components of the metabolic syndrome. Adv Clin Exp Med. 2023. doi: 10.17219/acem/166535. Epub ahead of print.
9. Chen MX, Deng BY, Liu ST, et al. Salusins: advance in cardiovascular disease research. J Pharm Pharmacol. 2023;75(3):363–369. doi: 10.1093/jpp/rgac087
10. Sato K, Watanabe R, Itoh F, et al. Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. Int J Hypertens. 2013;(2013):965140. doi: 10.1155/2013/965140
11. Watanabe T, Sato K, Itoh F, et al. The roles of salusins in atherosclerosis and related cardiovascular diseases. J Am Soc Hypertens. 2011;5(5):359–365.
doi: 10.1016/j.jash.2011.06.003
12. Koya T, Miyazaki T, Watanabe T, et al. Salusin-β accelerates inflammatory responses in vascular endothelial cells via NF-κB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. Am J Physiol Heart Circ Physiol. 2012;303(1):H96–H105. doi: 10.1152/ajpheart.00009.2012
13. Esfahani M, Saidijam M, Goodarzi MT, et al. Salusin-α Attenuates Inflammatory Responses in Vascular Endothelial Cells. Biochemistry (Mosc). 2017;82(11):1314–1323.
doi: 10.1134/S0006297917110098
14. Zhou CH, Liu L, Liu L, et al. Salusin-β not salusin-α promotes vascular inflammation in ApoE-deficient mice via the I-κBα/NF-κB pathway. PLoS One. 2014;9(3):e91468.
doi: 10.1371/journal.pone.0091468
15. Chen H, Jin G. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p. Bioengineered. 2021;12(1):6155–6165. doi: 10.1080/21655979.2021
16. Wang H, Zhang M, Zhou H, et al. Salusin-β Mediates High Glucose-Induced Inflammation and Apoptosis in Retinal Capillary Endothelial Cells via a ROS-Dependent Pathway in Diabetic Retinopathy. Diabetes Metab Syndr Obes. 2021;(14):2291–2308. doi: 10.2147/DMSO.S301157
17. Xu T, Zhang Z, Liu T, et al. Salusin-β contributes to vascular inflammation associated with pulmonary arterial hypertension in rats. J Thorac Cardiovasc Surg. 2016;152(4):1177–1187. doi: 10.1016/j.jtcvs.2016.05.056
18. Zhou CH, Pan J, Huang H, et al. Salusin-β, but not salusin-α, promotes human umbilical vein endothelial cell inflammation via the p38 MAPK/JNK-NF-κB pathway. PLoS One. 2014;9(9):e107555. doi: 10.1371/journal.pone.0107555
19. Li HB, Yu XJ, Bai J, et al. Silencing salusin β ameliorates heart failure in aged spontaneously hypertensive rats by ROS-relative MAPK/NF-κB pathways in the paraventricular nucleus. Int J Cardiol. 2019;(280):142–151. doi: 10.1016/j.ijcard.2018
20. Qian K, Feng L, Sun Y, et al. Overexpression of Salusin-α Inhibits Vascular Intimal Hyperplasia in an Atherosclerotic Rabbit Model. Biomed Res Int. 2018;(2018):8973986.
doi: 10.1155/2018/8973986
21. Sun HJ, Zhao MX, Liu TY, et al. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep. 2016;(6):23596. doi: 10.1038/srep23596
22. Sun HJ, Liu TY, Zhang F, et al. Salusin-β contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochim Biophys Acta. 2015;1852(9):1709–1718. doi: 10.1016/j.bbadis.2015.05.008
23. Wang X, Chen A, Hu R, et al. Salusin-β, a TOR2A gene product, promotes proliferation, migration, fibrosis, and calcification of smooth muscle cells and accelerates the imbalance of vasomotor function and vascular remodeling in monocrotaline-induced pulmonary hypertensive rats. Front Pharmacol. 2022;(13):928834. doi: 10.3389/fphar.2022.928834
24. Gao S, Xu L, Zhang Y, et al. Salusin-α Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling. Cell Physiol Biochem. 2018;50(5):1740–1753.
doi: 10.1159/000494792
25. Pan Y, Sun S, Wang X, et al. Improvement of Vascular Function by Knockdown of Salusin-β in Hypertensive Rats via Nitric Oxide and Reactive Oxygen Species Signaling Pathway. Front Physiol. 2021;(12):622954. doi: 10.3389/fphys.2021.622954
26. Li HB, Qin DN, Cheng K, et al. Central blockade of salusin β attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep. 2015;(5):11162.
doi: 10.1038/srep11162
27. Sun S, Zhang F, Pan Y, et al. A TOR2A Gene Product: Salusin-β Contributes to Attenuated Vasodilatation of Spontaneously Hypertensive Rats. Cardiovasc Drugs Ther. 2021;35(1):125–139. doi: 10.1007/s10557-020-06983-1
28. Ren XS, Ling L, Zhou B, et al. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Sci Rep. 2017;(7):43259.
doi: 10.1038/srep43259
29. Xu XL, Zeng Y, Zhao C, et al. Salusin-β induces smooth muscle cell proliferation by regulating cyclins D1 and E expression through MAPKs signaling pathways. J Cardiovasc Pharmacol. 2015;65(4):377–385. doi: 10.1097/FJC.0000000000000209
30. Pan Y, Chen A, Wang X, et al. Saluisn-β contributes to endothelial dysfunction in monocrotaline-induced pulmonary arterial hypertensive rats. Biomed Pharmacother.
2022;(155):113748. doi: 10.1016/j.biopha.2022.113748
31. Xu Y, Fei X, Fu H, et al. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf). 2023;238(4):e13987. doi: 10.1111/apha.13987
32. Huang X, Wang Y, Ren K. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension. Pharmazie. 2015;70(8):543–548.
33. Xu Y, Pan Y, Wang X, et al. Knockdown of Salusin-β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats. Oxid Med Cell Longev.
2021;(2021):8896226. doi: 10.1155/2021/8896226
34. Zhou CH, Liu LL, Wu YQ, et al. Enhanced expression of salusin-β contributes to progression of atherosclerosis in LDL receptor deficient mice. Can J Physiol Pharmacol. 2012;90(4):463–471. doi: 10.1139/y2012-022
35. Nagashima M, Watanabe T, Shiraishi Y, et al. Chronic infusion of salusin-alpha and -beta exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 2010;212(1):70–77. doi: 10.1016/j.atherosclerosis.2010.04.027
36. Sun H, Zhang F, Xu Y, et al. Salusin-β Promotes Vascular Calcification via Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation. Antioxid Redox Signal. 2019;31(18):1352–1370. doi: 10.1089/ars.2019.7723
37. Zhang H, Yang C, Wang S, et al. Overexpression of salusin α upregulates AdipoR2 and activates the PPARα/ApoA5/SREBP 1c pathway to inhibit lipid synthesis in HepG2 cells. Int J Mol Med. 2023;51(5):41. doi: 10.3892/ijmm.2023.5244
38. Zhao MX, Zhou B, Ling L, et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death Dis. 2017;8(3):e2690. doi: 10.1038/cddis.2017.106
39. Esfahani M, Saidijam M, Najafi R, et al. The effect of salusin-β on expression of pro- and anti-inflammatory cytokines in human umbilical vein endothelial cells (HUVECs). ARYA Atheroscler. 2018;14(1):1–10. doi: 10.22122/arya.v14i1.1602
40. Watanabe T, Suguro T, Sato K, et al. Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertens Res. 2008;31(3):463–468. doi: 10.1291/hypres.31.463
41. Wang Y, Wang S, Zhang J, et al. Salusin-β is superior to salusin-α as a marker for evaluating coronary atherosclerosis. J Int Med Res. 2020;48(2):300060520903868.
doi: 10.1177/0300060520903868
42. Argun D, Argun F, Borku Uysal B. Evaluation of salusin-α and salusin-β levels in patients with type 2 diabetes mellitus and determination of the impact of severity of hyperglycemia on salusin levels. Ir J Med Sci. 2021;190(4):1403–1411. doi: 10.1007/s11845-021-02674-4
43. Yılmaz E, Kurt D, Aydın E, et al. A New Marker for Determining Cardiovascular Risk: Salusin Alpha. Cureus. 2022;14(10):e30340. doi: 10.7759/cureus.30340
44. Liu J, Ren YG, Zhang LH, et al. Serum salusin-β levels are associated with the presence and severity of coronary artery disease. J Investig Med. 2015;63(4):632–635.
doi: 10.1097/JIM.0000000000000184
45. Arkan A, Atukeren P, Ikitimur B, et al. The importance of circulating levels of salusin-α, salusin-β, and heregulin-β1 in atherosclerotic coronary arterial disease. Clin Biochem.
2021;(87):19–25. doi: 10.1016/j.clinbiochem.2020.10.003
46. Yildirim A, Kucukosmanoglu M. Relationship between Serum Salusin Beta Levels and Coronary Artery Ectasia. Acta Cardiol Sin. 2021;37(2):130–137.
doi: 10.6515/ACS.202103_37(2).20200910A
47. Akyüz A, Aydın F, Alpsoy Ş, et al. Relationship of serum salusin beta levels with coronary slow flow. Anatol J Cardiol. 2019;22(4):177–184. doi: 10.14744/AnatolJCardiol.2019.43247
48. Alpsoy S, Dogan B, Ozkaramanli Gur D, et al. Assessment of salusin alpha and salusin beta levels in patients with newly diagnosed dipper and non-dipper hypertension. Clin Exp Hypertens. 2021;43(1):42–48. doi: 10.1080/10641963.2020.1797086
49. Fujie S, Hasegawa N, Sanada K, et al. Increased serum salusin-α by aerobic exercise training correlates with improvements in arterial stiffness in middle-aged and older adults. Aging (Albany NY). 2020;12(2):1201–1212. doi: 10.18632/aging.102678
50. Zhang W, Zhang J, Jin F, Zhou H. Efficacy of felodipine and enalapril in the treatment of essential hypertension with coronary artery disease and the effect on levels of Salusin-β, Apelin, and PON1 gene expression in patients. Cell Mol Biol (Noisy-le-grand). 2022;67(6):174–180. doi: 10.14715/cmb/2021.67.6.24
51. Genç Elden S, Yılmaz MS, Altındiş M, et al. The role of serum salusin alpha and beta levels and atherosclerotic risk factors in idiopathic sudden hearing loss pathogenesis. Eur Arch Otorhinolaryngol. 2022;279(3):1311–1316. doi: 10.1007/s00405-021-06804-7
52. Yassien M, Fawzy O, Mahmoud E, Khidr EG. Serum salusin-β in relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus. Diabetes Metab Syndr.
2020;14(6):2057–2062. doi: 10.1016/j.dsx.2020.10.025
53. Nazari M, Minasian V, Hovsepian S. Effects of Two Types of Moderate- and High-Intensity Interval Training on Serum Salusin-α and Salusin-β Levels and Lipid Profile in Women with Overweight/Obesity. Diabetes Metab Syndr Obes. 2020;(13):1385–1390. doi: 10.2147/DMSO.S248476
54. Sipahi S, Genc AB, Acikgoz SB, et al. Relationship of salusin-alpha and salusin-beta levels with atherosclerosis in patients undergoing haemodialysis. Singapore Med J. 2019;60(4):210–215. doi: 10.11622/smedj.2018123
55. Močnik M, Marčun Varda N. Current Knowledge of Selected Cardiovascular Biomarkers in Pediatrics: Kidney Injury Molecule-1, Salusin-α and -β, Uromodulin, and Adropin. Children (Basel). 2022;9(1):102. doi: 10.3390/children9010102
56. Kolakowska U, Kuroczycka-Saniutycz E, Wasilewska A, Olański W. Is the serum level of salusin-β associated with hypertension and atherosclerosis in the pediatric population? Pediatr Nephrol. 2015;30(3):523–531. doi: 10.1007/s00467-014-2960-y
57. Kolakowska U, Kuroczycka-Saniutycz E, Olanski W, Wasilewska A. Correlation of Salusin Beta with hs-CRP and ADMA in Hypertensive Children and Adolescents. Curr Pharm Des. 2018;24(30):3551–3557. doi: 10.2174/1381612824666180607124531
58. Dervişoğlu P, Elmas B, Kösecik M, et al. Salusin-α levels are negatively correlated with diastolic blood pressure in children with obesity. Cardiol Young. 2019;29(10):1225–1229.
doi: 10.1017/S1047951119001173
59. Paahoo A, Tadibi V, Behpoor N. Effectiveness of Continuous Aerobic Versus High-Intensity Interval Training on Atherosclerotic and Inflammatory Markers in Boys With Overweight/Obesity. Pediatr Exerc Sci. 2021;33(3):132–138. doi: 10.1123/pes.2020-0138
Авторы
А.М. Алиева*1, Е.В. Резник1, Н.В. Теплова1, М.Х. Гызыева2, А.М. Рахаев3, И.А. Котикова1, И.Г. Никитин1 1Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия; 2Пятигорский медико-фармацевтический институт, Пятигорск, Россия; 3Главное бюро медико-социальной экспертизы, Нальчик, Россия
*amisha_alieva@mail.ru
________________________________________________
Amina M. Alieva*1, Elena V. Reznik1, Natalia V. Teplova1, Malika Kh. Gyzieva2, Alik M. Rakhaev3, Irina A. Kotikova1, Igor G. Nikitin1
1Pirogov Russian National Research Medical University, Moscow, Russia; 2Pyatigorsk Medical and Pharmaceutical Institute, Pyatigorsk, Russia; 3Main Bureau of Medical and Social Expertise, Nalchik, Russia
*amisha_alieva@mail.ru