Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы
Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы
Алиева А.М., Хаджиева Н.Х., Байкова И.Е., Рахаев А.М., Котикова И.А., Никитин И.Г. Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы // CardioСоматика. 2024. Т. 15, № 3. С. 221–230. DOI: https://doi.org/10.17816/CS632226
________________________________________________
Alieva AM, Khadzhieva NKh, Baykova IE, Rakhaev AM, Kotikova IA, Nikitin IG. Prospects of using miRNA-378 as a biomarker for cardiovascular diseases: A literature review. CardioSomatics. 2024;15(3):221–230.
DOI: https://doi.org/10.17816/CS632226
Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы
Алиева А.М., Хаджиева Н.Х., Байкова И.Е., Рахаев А.М., Котикова И.А., Никитин И.Г. Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы // CardioСоматика. 2024. Т. 15, № 3. С. 221–230. DOI: https://doi.org/10.17816/CS632226
________________________________________________
Alieva AM, Khadzhieva NKh, Baykova IE, Rakhaev AM, Kotikova IA, Nikitin IG. Prospects of using miRNA-378 as a biomarker for cardiovascular diseases: A literature review. CardioSomatics. 2024;15(3):221–230.
DOI: https://doi.org/10.17816/CS632226
В настоящее время ведётся активный поиск новых биологических маркеров и терапевтических мишеней с целью разработки эффективных подходов к стратификации риска и вторичной профилактике сердечно-сосудистых заболеваний (ССЗ). Особый интерес исследователей привлекают микрорибонуклеиновые кислоты (miRNAs). MiRNAs относятся к классу эндогенных малых некодирующих RNA. MiRNAs регулируют транскрипцию важных участников процессов пролиферации, дифференцировки, клеточного роста и тканевого ремоделирования при ССЗ. В настоящее время miRNA-378 анализируется в роли биологического маркера ССЗ. В представленной статье описана регуляторная роль miRNA-378 и приведены весомые доказательства целесообразности использования её в качестве биомаркера. Требуются дальнейшие доклинические и клинические исследования для выявления потенциальных преимуществ использования miRNA-378 в качестве биологического маркера при ССЗ.
Currently, there is an active search for new biomarkers and therapeutic targets to develop effective approaches to risk stratification and secondary prevention of cardiovascular diseases (CVD). Microribonucleic acids (miRNAs) are of particular interest to investigators. MiRNAs are endogenous small noncoding RNAs that regulate the transcription of factors that play a role in the proliferation, differentiation, cell growth, and tissue remodeling processes in CVD. MiRNA-378 is currently being analyzed as a biomarker for CVD. Thus, in this review, we aimed to describe the regulatory role of miRNA-378 and provide strong evidence for its feasibility as a biomarker. Further preclinical and clinical studies are required to identify the potential benefits of miRNA-378 as a biomarker in CVD.
1. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность // Терапия. 2022. № 1. С. 60–70.
doi: 10.18565/therapy.2022.1.60-70
2. Li X., Han Y., Meng Y., et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases // RNA Biol. 2024. Vol. 1, N. 1. P. 1–20.
doi: 10.1080/15476286.2023.2293343
3. Searles C.D. MicroRNAs and Cardiovascular Disease Risk // Curr Cardiol Rep. 2024. Vol. 26, № 2. P. 51–60. doi: 10.1007/s11886-023-02014-1
4. Yan J., Zhong X., Zhao Y., et al. Role and mechanism of miRNA in cardiac microvascular endothelial cells in cardiovascular diseases // Front Cardiovasc Med. 2024. Vol. 11.
P. 1356152. doi: 10.3389/fcvm.2024.1356152
5. Cao Y., Zheng M., Sewani M.A., et al. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res // Birth Defects Res. 2024. Vol. 116, N. 1. P. e2273. doi: 10.1002/bdr2.2273
6. Алиева А.М., Резник Е.В., Теплова Н.В., и др. МикроРНК‑34а при сердечно-сосудистых заболеваниях: взгляд в будущее // Кардиологический вестник. 2023. Т. 18, № 1.
С. 14–22. doi: 10.17116/Cardiobulletin20231801114
7. Wang H., Shi J., Wang J., et al. MicroRNA‑378: An important player in cardiovascular diseases (Review) // Mol Med Rep. 2023. Vol. 28, N. 3. P. 172. doi: 10.3892/mmr.2023.13059
8. Алиева А.М., Теплова Н.В., Резник Е.В., и др. МикроРНК-122 как новый игрок при сердечно-сосудистых заболеваниях // Российский медицинский журнал. 2022. Т. 28, № 6. С. 451–463. doi: 10.17816/medjrf111180
9. Krist B., Florczyk U., Pietraszek-Gremplewicz K., et al. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology // Int J Endocrinol. 2015. Vol. 2015. P. 281756.
doi: 10.1155/2015/281756
10. Kuang Z., Wu J., Tan Y., et al. MicroRNA in the diagnosis and treatment of doxorubicin-induced cardiotoxicity // Biomolecules. 2023. Vol. 13, N. 3. P. 568. doi: 10.3390/biom13030568
11. Li Y., Jiang J., Liu W., et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle // Proc Natl Acad Sci U S A. 2018. Vol. 115, N. 46. P. E10849–E10858.
doi: 10.1073/pnas.1803377115
12. Camps C., Saini H.K., Mole D.R., et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia // Mol Cancer. 2014. Vol. 13. P. 28. doi: 10.1186/1476-4598-13-28
13. Zhang J., Ma J., Long K., et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis // Int J Mol Sci. 2017. Vol. 18, N. 4. P. 711.
doi: 10.3390/ijms18040711
14. Xing Y., Hou J., Guo T., et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro // Stem Cell Res Ther. 2014.
Vol. 5, N. 6. P. 130. doi: 10.1186/scrt520
15. Zhang H., Hao J., Sun X., et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease // Interact Cardiovasc Thorac Surg. 2018. Vol. 27, N. 3.
P. 336–342. doi: 10.1093/icvts/ivy058
16. Templin C., Volkmann J., Emmert M.Y., et al. Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression // Arterioscler Thromb Vasc Biol. 2017. Vol. 37, N. 2. P. 341–349. doi: 10.1161/ATVBAHA.116.308695
17. Chong H., Wei Z., Na M., et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis // Atherosclerosis. 2020. Vol. 297. P. 136–145. doi: 10.1016/j.atherosclerosis.2020.02.001
18. Chen W., Li X., Wang J., et al. miR-378a modulates macrophage phagocytosis and differentiation through targeting CD47-SIRPα axis in atherosclerosis // Scand J Immunol. 2019.
Vol. 90, N. 1. P. e12766. doi: 10.1111/sji.12766
19. Yuan W., Liang X., Liu Y., et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI // Hypertens Res. 2022. Vol. 45, N. 4. P. 650–664. doi: 10.1038/s41440-022-00851-1
20. Zhou R., Jia Y., Wang Y., et al. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1 // Am J Transl Res. 2021. Vol. 13, N. 4. P. 2350–2364.
21. Yan T., Li X., Nian T., et al. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting mir-378a-3p via the IGF1R/PI3K/AKT signaling pathway // Transplant Proc. 2022. Vol. 54, N. 7. P. 1970–1983. doi: 10.1016/j.transproceed.2022.05.017
22. Ganesan J., Ramanujam D., Sassi Y., et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors // Circulation. 2013. Vol. 127, N. 21. P. 2097–2106. doi: 10.1161/CIRCULATIONAHA.112.000882
23. Chen Y.H., Zhong L.F., Hong X., et al. Integrated analysis of circRNA-miRNA-mRNA ceRNA network in cardiac hypertrophy // Front Genet. 2022. Vol. 13. P. 781676.
doi: 10.3389/fgene.2022.781676
24. Sun F., Zhuang Y., Zhu H., et al. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction // J Mol Cell Cardiol. 2019. Vol. 133. P. 188–198. doi: 10.1016/j.yjmcc.2019.06.011
25. Wu L., Gao B., Shen M., et al. lncRNA LENGA sponges miR-378 to promote myocardial fibrosis in atrial fibrillation // Open Med (Wars). 2023. Vol. 18, N. 1. P. 20230831.
doi: 10.1515/med-2023-0831
26. Florczyk-Soluch U., Polak K., Sabo R., et al. Compromised diabetic heart function is not affected by miR-378a upregulation upon hyperglycemia // Pharmacol Rep. 2023. Vol. 75, N. 6. P. 1556–1570. doi: 10.1007/s43440-023-00535-8
27. Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p // Arch Physiol Biochem. 2021. Vol. 21. P. 1–9. doi: 10.1080/13813455.2021.1985144
28. Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences // Pharmaceuticals (Basel). 2024. Vol. 17, N. 4.
P. 478. doi: 10.3390/ph17040478
29. Khokhar M., Roy D., Bajpai N.K., et al. Metformin mediates MicroRNA-21 regulated circulating matrix metalloproteinase-9 in diabetic nephropathy: an in-silico and clinical study // Arch Physiol Biochem. 2023. Vol. 129, N. 6. P. 1200–1210. doi: 10.1080/13813455.2021.1922457
30. Machado I.F., Teodoro J.S., Castela A.C., et al. miR-378a-3p participates in metformin's mechanism of action on C2C12 cells under hyperglycemia // Int J Mol Sci. 2021. Vol. 22, N. 2. P. 541. doi: 10.3390/ijms22020541
31. Chaulin A.M. The essential strategies to mitigate cardiotoxicity caused by doxorubicin // Life (Basel). 2023. Vol. 13, N. 11. P. 2148. doi: 10.3390/life13112148
32. Mattioli R., Ilari A., Colotti B., et al. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming // Mol Aspects Med. 2023. Vol. 93. P. 101205.
doi: 10.1016/j.mam.2023.101205
33. Wang Y., Zhang Q., Wei C., et al. MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin // Am J Transl Res. 2018. Vol. 10, N. 11. P. 3600–3609.
34. Wang Y., Cui X., Wang Y., et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin // J Cell Physiol. 2018. Vol. 233, N. 10. P. 6344–6351.
doi: 10.1002/jcp.26615
35. Zhang H., Hao J., Sun X., et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease // Interact Cardiovasc Thorac Surg. 2018. Vol. 27, N. 3.
P. 336–342. doi: 10.1093/icvts/ivy058
36. Li H., Gao F., Wang X., et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease // Biosci Rep. 2019. Vol. 39, N. 5. P. BSR20182016. doi: 10.1042/BSR20182016
37. Shen J., Chang C., Ma J., et al. Potential of circulating proangiogenic microRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting // Cardiology. 2021. Vol. 146, N. 3. P. 400–408. doi: 10.1159/000509275
38. Dai R., Liu Y., Zhou Y., et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention // J Clin Lab Anal. 2020. Vol. 34, N. 1. P. e23013. doi: 10.1002/jcla.23013
39. Chen Z., Li C., Xu Y., et al. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis // PLoS One. 2014. Vol. 9, N. 8. P. e105702.
doi: 10.1371/journal.pone.0105702
40. Беграмбекова Ю.Л., Каранадзе Н.А., Плисюк А.Г., и др. Комплексная физическая реабилитация пациентов с хронической сердечной недостаточностью: влияние на клинико-функциональные показатели и анализ проблем, связанных с набором в исследование // Российский кардиологический журнал. 2022. Т. 27, № 2. С. 4814.
doi: 10.15829/1560-4071-2022-4814
41. Pala M. Exercise and microrna // Georgian Med News. 2023. N. 345. P. 146–153.
42. Xu T., Zhou Q., Che L., et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients // Oncotarget. 2016. Vol. 7, N. 11. P. 12414–12425. doi: 10.18632/oncotarget.6966
________________________________________________
1. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapija. 2022;(1):60–70. doi: 10.18565/therapy.2022.1.60-70
2. Li X, Han Y, Meng Y, et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol. 2024;21(1):1–20.
doi: 10.1080/15476286.2023.2293343
3. Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep. 2024;26(2):51–60. doi: 10.1007/s11886-023-02014-1
4. Yan J, Zhong X, Zhao Y, et al. Role and mechanism of miRNA in cardiac microvascular endothelial cells in cardiovascular diseases. Front Cardiovasc Med. 2024;11:1356152.
doi: 10.3389/fcvm.2024.1356152
5. Cao Y, Zheng M, Sewani MA, et al. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res. 2024;116(1):e2273. doi: 10.1002/bdr2.2273
6. Alieva AM, Reznik EV, Teplova NV, et al. MicroRNA-34a in cardiovascular disease: a glimpse into the future. Russian Cardiology Bulletin. 2023;18(1):14–22.
doi: 10.17116/Cardiobulletin20231801114
7. Wang H, Shi J, Wang J, et al. MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep. 2023;28(3):172. doi: 10.3892/mmr.2023.13059
8. Alieva AM, Teplova NV, Reznik EV, et al. miRNA-122 as a new player in cardiovascular disease. Rossiiskii meditsinskii zhurnal. 2022;28(4):451–463. doi: 10.17816/medjrf111180
9. Krist B, Florczyk U, Pietraszek-Gremplewicz K, et al. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology. Int J Endocrinol. 2015;2015:281756.
doi: 10.1155/2015/281756
10. Kuang Z, Wu J, Tan Y, et al. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules. 2023;13(3):568. doi: 10.3390/biom13030568
11. Li Y, Jiang J, Liu W, et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A. 2018;115(46):E10849–E10858.
doi: 10.1073/pnas.1803377115
12. Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer. 2014;13:28. doi: 10.1186/1476-4598-13-28
13. Zhang J, Ma J, Long K, et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 2017;18(4):711.
doi: 10.3390/ijms18040711
14. Xing Y, Hou J, Guo T, et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 2014;5(6):130. doi: 10.1186/scrt520
15. Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342.
doi: 10.1093/icvts/ivy058
16. Templin C, Volkmann J, Emmert MY, et al. Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression. Arterioscler Thromb Vasc Biol. 2017;37(2):341–349. doi: 10.1161/ATVBAHA.116.308695
17. Chong H, Wei Z, Na M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis. 2020;297:136–145. doi: 10.1016/j.atherosclerosis.2020.02.001
18. Chen W, Li X, Wang J, et al. miR-378a modulates macrophage phagocytosis and differentiation through targeting CD47-SIRPα axis in atherosclerosis. Scand J Immunol. 2019;90(1):e12766. doi: 10.1111/sji.12766
19. Yuan W, Liang X, Liu Y, et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI. Hypertens Res. 2022;45(4):650–664. doi: 10.1038/s41440-022-00851-1
20. Zhou R, Jia Y, Wang Y, et al. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 2021;13(4):2350–2364.
21. Yan T, Li X, Nian T, et al. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting mir-378a-3p via the IGF1R/PI3K/AKT signaling pathway. Transplant Proc. 2022;54(7):1970–1983. doi: 10.1016/j.transproceed.2022.05.017
22. Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 2013;127(21):2097–2106. doi: 10.1161/CIRCULATIONAHA.112.000882
23. Chen YH, Zhong LF, Hong X, et al. Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy. Front Genet. 2022;13:781676.
doi: 10.3389/fgene.2022.781676
24. Sun F, Zhuang Y, Zhu H, et al. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol. 2019;133:188–198.
doi: 10.1016/j.yjmcc.2019.06.011
25. Wu L, Gao B, Shen M, et al. lncRNA LENGA sponges miR-378 to promote myocardial fibrosis in atrial fibrillation. Open Med (Wars). 2023;18(1):20230831.
doi: 10.1515/med-2023-0831
26. Florczyk-Soluch U, Polak K, Sabo R, et al. Compromised diabetic heart function is not affected by miR-378a upregulation upon hyperglycemia. Pharmacol Rep.
2023;75(6):1556–1570. doi: 10.1007/s43440-023-00535-8
27. Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem. 2021;21:1–9. doi: 10.1080/13813455.2021.1985144
28. Froldi G. View on metformin: Antidiabetic and pleiotropic effects, pharmacokinetics, side effects, and sex-related differences. Pharmaceuticals (Basel). 2024;17(4):478.
doi: 10.3390/ph17040478
29. Khokhar M, Roy D, Bajpai NK, et al. Metformin mediates microRNA-21 regulated circulating matrix metalloproteinase-9 in diabetic nephropathy: an in-silico and clinical study. Arch Physiol Biochem. 2023;129(6):1200–1210. doi: 10.1080/13813455.2021.1922457
30. Machado IF, Teodoro JS, Castela AC, et al. miR-378a-3p participates in metformin's mechanism of action on C2C12 cells under hyperglycemia. Int J Mol Sci. 2021;22(2):541.
doi: 10.3390/ijms22020541
31. Chaulin AM. The essential strategies to mitigate cardiotoxicity caused by Doxorubicin. Life (Basel). 2023;13(11):2148. doi: 10.3390/life13112148
32. Mattioli R, Ilari A, Colotti B, et al. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med. 2023;93:101205.
doi: 10.1016/j.mam.2023.101205
33. Wang Y, Zhang Q, Wei C, et al. MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res. 2018;10(11):3600–3609.
34. Wang Y, Cui X, Wang Y, et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 2018;233(10):6344–6351.
doi: 10.1002/jcp.26615
35. Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342.
doi: 10.1093/icvts/ivy058
36. Li H, Gao F, Wang X, et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 2019;39(5):BSR20182016. doi: 10.1042/BSR20182016
37. Shen J, Chang C, Ma J, et al. Potential of circulating proangiogenic microRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology. 2021;146(3):400–408. doi: 10.1159/000509275
38. Dai R, Liu Y, Zhou Y, et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J Clin Lab Anal. 2020;34(1):e23013. doi: 10.1002/jcla.23013
39. Chen Z, Li C, Xu Y, et al. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One. 2014;9(8):e105702.
doi: 10.1371/journal.pone.0105702
40. Begrambekova YuL, Karanadze NA, Plisyuk AG, et al. Comprehensive physical rehabilitation of patients with heart failure: impact on clinical and functional status and analysis of problems related to the enrollment. Russian Journal of Cardiology. 2022;27(2):4814. doi: 10.15829/1560-4071-2022-4814
41. Pala M. Exercise and microrna. Georgian Med News. 2023;(345):146–153.
42. Xu T, Zhou Q, Che L, et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 2016;7(11):12414–12425. doi: 10.18632/oncotarget.6966
1Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия; 2Клиника генетики ДНК «МедЭстет», Москва, Россия; 3Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия
*amisha_alieva@mail.ru
________________________________________________
Amina M. Alieva*1, Nyurzhanna Kh. Khadzhieva2, Irina E. Baykova1, Alik M. Rakhaev3, Irina A. Kotikova1, Igor G. Nikitin1
1Pirogov Russian National Research Medical University, Moscow, Russia; 2Clinic of DNA Genetics “MedEstet”, Moscow, Russia; 3Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
*amisha_alieva@mail.ru