Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Оценка взаимосвязи между содержанием витамина D и липидным профилем при заболеваниях щитовидной железы: сравнительный анализ данных пациентов с гипотиреозом, гипертиреозом и здоровых добровольцев - Научно-практический журнал Cardioсоматика Том 16, №1 (2025)
Оценка взаимосвязи между содержанием витамина D и липидным профилем при заболеваниях щитовидной железы: сравнительный анализ данных пациентов с гипотиреозом, гипертиреозом и здоровых добровольцев
Awla A.H., Hamadamin B.J., Omar S.Y., Hamadameen W.A. Оценка взаимосвязи между содержанием витамина D и липидным профилем при заболеваниях щитовидной железы: сравнительный анализ данных пациентов с гипотиреозом, гипертиреозом и здоровых добровольцев // CardioСоматика. 2025. Т. 16, № 1. С. 21–33. DOI: 10.17816/CS631331 EDN: HBHXTS
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Обоснование. Заболевания щитовидной железы, включая гипертиреоз и гипотиреоз, широко распространены во всем мире и наблюдаются у миллионов людей. Гормоны щитовидной железы и витамин D участвуют в регуляции обмена липидов, поддерживают функционирование клеток за счет воздействия на рецепторы стероидов и могут влиять на эффекты друг друга через схожие механизмы работы генов.
Цель исследования — сравненить показатели липидограммы и содержание витамина D у пациентов с заболеваниями щитовидной железы и здоровых добровольцев.
Материалы и методы. Данное одномоментное описательное исследование включало 225 участников: 76 пациентов с гипертиреозом, 75 пациентов с гипотиреозом и 74 здоровых добровольца. В образцах сыворотки крови определяли концентрации тиреотропного гормона (ТТГ), свободного трийодтиронина (T3), свободного тироксина (T4), показатели липидограммы и содержание 25-гидроксивитамина D.
Результаты. По сравнению со здоровыми добровольцами и пациентами с гипертиреозом у участников с гипотиреозом отмечалось статистически значимое повышение ИМТ (24,16±3,62 кг/м2; p <0,001), а также средних концентраций ТТГ (26,29±14,89 мМЕ/л; p <0,001), общего холестерина (ОХС; 220,23±26,41 мг/дл; p <0,001), триглицеридов (ТГ; 134,53±21,37 мг/дл; p <0,001), липопротеинов низкой плотности (ЛПНП; 144,6±25,53 мг/дл; p <0,001), липопротеинов очень низкой плотности (ЛПОНП; 26,90±4,27 мг/дл; p <0,001) и холестерина, не относящегося к фракции ЛПВП (ХС-не-ЛПВП; 157,50±29,63 мг/дл; p=0,032). Кроме того, у пациентов с гипотиреозом средние концентрации свободного Т3 (0,535±0,71 нг/мл; p <0,001) и свободного T4 (10,95±6,41 пмоль/л; p <0,001) были статистически значимо ниже. Содержание витамина D в сыворотке крови участников с гипотиреозом (25,30±13,69 нг/мл; p=0,035) было ниже, чем у здоровых добровольцев (29,43±16,37 нг/мл), но выше, чем у пациентов с гипертиреозом (23,02±15,55 нг/мл). У большинства (60%) участников с гипотиреозом отмечался дефицит витамина D (<20 нг/мл; p <0,001). Концентрация ТТГ характеризовалась статистически значимой положительной корреляцией с показателями липидограммы (p <0,05), за исключением холестерина липопротеинов высокой плотности (ХС-ЛПВП), в отношении которого наблюдалась обратная корреляция. Кроме того, во всех группах была выявлена статистически значимая положительная корреляция между содержанием витамина D и концентрацией ХС-ЛПВП (p <0,05).
Заключение. Авторы исследования пришли к заключению, что заболевания щитовидной железы тесно связаны с такими факторами, как содержание витамина D и метаболизм липидов. Существует подтвержденная взаимосвязь между концентрацией витамина D, липидным профилем и дисфункцией щитовидной железы.
Ключевые слова: витамин D, липидный профиль, гипертиреоз, гипотиреоз
AIM: This study aims to compare the lipid profile and vitamin D status levels in patients with thyroid disorders to those of healthy controls.
MATERIALS AND METHODS: This cross-sectional, descriptive study included 225 individuals: 76 with hyperthyroidism, 75 with hypothyroidism, and 74 healthy controls. Blood serum samples were analyzed for concentrations of Thyroid-Stimulating Hormone (TSH), Free Triiodothyronine (FT3), Free Thyroxine (FT4), lipid profile, and 25-Hydroxyvitamin D (25(OH)D.
RESULTS: Hypothyroidism patients exhibited significantly higher mean values of TSH (26.29±14.89 mU/L; p <0.001), BMI (24.16±3.62 kg/m2; p <0.001), total cholesterol (TC) (220.23±26.41 mg/dL; p <0.001), triglycerides (TG) (134.53±21.37 mg/dL; p <0.001), low-density lipoproteins (LDL) (144.6±25.53 mg/dL; p <0.001), very-low-density lipoproteins (VLDL) (26.90±4.27 mg/dL; p <0.001), and non-HDL cholesterol (157.50±29.63 mg/dL; p=0.032) compared to controls and hyperthyroidism patients. They also exhibited significantly lower mean levels of FT3 (0.535±0.71 ng/mL; p <0.001) and FT4 (10.95±6.41 pmol/L; p <0.001). Vitamin D levels were lower in hypothyroidism patients (25.30±13.69 ng/mL; p=0.035) compared to healthy controls (29.43±16.37 ng/mL) but higher than hyperthyroidism patients (23.02±15.55 ng/mL). A majority (60%) of hypothyroidism patients were vitamin D deficient (<20 ng/mL; p <0.001).TSH showed a significant positive correlation with lipid parameters (p <0.05) except for High‑Density Lipoprotein Cholesterol (HDL-C), which was inversely correlated. Vitamin D levels demonstrated a significant positive correlation with HDL-C across all groups (p <0.05).
CONCLUSIONS: The study concludes that thyroid disorders are closely associated with vitamin D levels and lipid metabolism. There is a confirmed link between vitamin D, lipid profile, and cardiovascular risks in patients with thyroid disorders.
Keywords: vitamin D, lipid profile, hyperthyroidism, hypothyroidism
Цель исследования — сравненить показатели липидограммы и содержание витамина D у пациентов с заболеваниями щитовидной железы и здоровых добровольцев.
Материалы и методы. Данное одномоментное описательное исследование включало 225 участников: 76 пациентов с гипертиреозом, 75 пациентов с гипотиреозом и 74 здоровых добровольца. В образцах сыворотки крови определяли концентрации тиреотропного гормона (ТТГ), свободного трийодтиронина (T3), свободного тироксина (T4), показатели липидограммы и содержание 25-гидроксивитамина D.
Результаты. По сравнению со здоровыми добровольцами и пациентами с гипертиреозом у участников с гипотиреозом отмечалось статистически значимое повышение ИМТ (24,16±3,62 кг/м2; p <0,001), а также средних концентраций ТТГ (26,29±14,89 мМЕ/л; p <0,001), общего холестерина (ОХС; 220,23±26,41 мг/дл; p <0,001), триглицеридов (ТГ; 134,53±21,37 мг/дл; p <0,001), липопротеинов низкой плотности (ЛПНП; 144,6±25,53 мг/дл; p <0,001), липопротеинов очень низкой плотности (ЛПОНП; 26,90±4,27 мг/дл; p <0,001) и холестерина, не относящегося к фракции ЛПВП (ХС-не-ЛПВП; 157,50±29,63 мг/дл; p=0,032). Кроме того, у пациентов с гипотиреозом средние концентрации свободного Т3 (0,535±0,71 нг/мл; p <0,001) и свободного T4 (10,95±6,41 пмоль/л; p <0,001) были статистически значимо ниже. Содержание витамина D в сыворотке крови участников с гипотиреозом (25,30±13,69 нг/мл; p=0,035) было ниже, чем у здоровых добровольцев (29,43±16,37 нг/мл), но выше, чем у пациентов с гипертиреозом (23,02±15,55 нг/мл). У большинства (60%) участников с гипотиреозом отмечался дефицит витамина D (<20 нг/мл; p <0,001). Концентрация ТТГ характеризовалась статистически значимой положительной корреляцией с показателями липидограммы (p <0,05), за исключением холестерина липопротеинов высокой плотности (ХС-ЛПВП), в отношении которого наблюдалась обратная корреляция. Кроме того, во всех группах была выявлена статистически значимая положительная корреляция между содержанием витамина D и концентрацией ХС-ЛПВП (p <0,05).
Заключение. Авторы исследования пришли к заключению, что заболевания щитовидной железы тесно связаны с такими факторами, как содержание витамина D и метаболизм липидов. Существует подтвержденная взаимосвязь между концентрацией витамина D, липидным профилем и дисфункцией щитовидной железы.
Ключевые слова: витамин D, липидный профиль, гипертиреоз, гипотиреоз
________________________________________________
AIM: This study aims to compare the lipid profile and vitamin D status levels in patients with thyroid disorders to those of healthy controls.
MATERIALS AND METHODS: This cross-sectional, descriptive study included 225 individuals: 76 with hyperthyroidism, 75 with hypothyroidism, and 74 healthy controls. Blood serum samples were analyzed for concentrations of Thyroid-Stimulating Hormone (TSH), Free Triiodothyronine (FT3), Free Thyroxine (FT4), lipid profile, and 25-Hydroxyvitamin D (25(OH)D.
RESULTS: Hypothyroidism patients exhibited significantly higher mean values of TSH (26.29±14.89 mU/L; p <0.001), BMI (24.16±3.62 kg/m2; p <0.001), total cholesterol (TC) (220.23±26.41 mg/dL; p <0.001), triglycerides (TG) (134.53±21.37 mg/dL; p <0.001), low-density lipoproteins (LDL) (144.6±25.53 mg/dL; p <0.001), very-low-density lipoproteins (VLDL) (26.90±4.27 mg/dL; p <0.001), and non-HDL cholesterol (157.50±29.63 mg/dL; p=0.032) compared to controls and hyperthyroidism patients. They also exhibited significantly lower mean levels of FT3 (0.535±0.71 ng/mL; p <0.001) and FT4 (10.95±6.41 pmol/L; p <0.001). Vitamin D levels were lower in hypothyroidism patients (25.30±13.69 ng/mL; p=0.035) compared to healthy controls (29.43±16.37 ng/mL) but higher than hyperthyroidism patients (23.02±15.55 ng/mL). A majority (60%) of hypothyroidism patients were vitamin D deficient (<20 ng/mL; p <0.001).TSH showed a significant positive correlation with lipid parameters (p <0.05) except for High‑Density Lipoprotein Cholesterol (HDL-C), which was inversely correlated. Vitamin D levels demonstrated a significant positive correlation with HDL-C across all groups (p <0.05).
CONCLUSIONS: The study concludes that thyroid disorders are closely associated with vitamin D levels and lipid metabolism. There is a confirmed link between vitamin D, lipid profile, and cardiovascular risks in patients with thyroid disorders.
Keywords: vitamin D, lipid profile, hyperthyroidism, hypothyroidism
Полный текст
Список литературы
1. Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nature Reviews Endocrinology. 2018;14(5): 301–316. doi: 10.1038/nrendo.2018.18
2. Cappola AR, Desai AS, Medici M, et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. Circulation. 2019;139(25):2892–2909. doi: 10.1161/CIRCULATIONAHA.118.036859
3. Gopalakrishnan M, Ramidha P, Vinitha V. Comparative study of lipid profile anomalies in thyroid dysfunction. Natl J Physiol Pharm Pharmacol. 2022;12(9):1366–1370. doi: 10.5455/njppp.2022.12.01014202213012022
4. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12(4):287–293. doi: 10.1089/10507250252949405
5. Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
6. Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol. 2011;8(3):243–247. doi: 10.1038/cmi.2010.73
7. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
8. Muscogiuri G, Mitri J, Mathieu C, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 2014;171(3):R101–110. doi: 10.1530/EJE-14-0158
9. Pearce EN. Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;97(2):326–33. doi: 10.1210/jc.2011-2532
10. Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med. 2014;174(2):287–289. doi: 10.1001/jamainternmed.2013.12188
11. Wang CY, Chang TC, Chen MF. Associations between subclinical thyroid disease and metabolic syndrome. Endocr J. 2012;59(10):911–917. doi: 10.1507/endocrj.ej12-0076
12. Sun X, Sun Y, Li WC, et al. Association of thyroid‑stimulating hormone and cardiovascular risk factors. Intern Med. 2015;54(20):2537–2544. doi: 10.2169/internalmedicine.54.4514
13. Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809. doi: 10.1001/archinternmed.2012.402
14. Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4(1): 11–18. doi: 10.11648/j.ajlm.20190401.12
15. Saedisomeolia A, Taheri E, Djalali M, et al. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J Diabetes Metab Disord. 2014;13(1):7. doi: 10.1186/2251-6581-13-7
16. Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr. 2022;9:1082500. doi: 10.3389/fnut.2022.1082500
17. Sun CJ, McCudden C, Brisson D, et al. Calculated Non‑HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019;4(1):bvz010. doi: 10.1210/jendso/bvz010
18. Abu-Helalah M, Alshraideh HA, Al-Sarayreh SA, et al. A Cross‑Sectional Study to Assess the Prevalence of Adult Thyroid Dysfunction Disorders in Jordan. Thyroid. 2019;29(8):1052–1059. doi: 10.1089/thy.2018.0579
19. Murgod R, Soans G. Changes in electrolyte and lipid profile in hypothyroidism. Int J Life Sci Pharma Res. 2012;2(3):185–194.
20. Dipankar SP, Mali BY. Estimation of lipid profile, body fat percentage, body mass index, waist to hip ratio in patients with hypothyroidism and hyperthyroidism. J Phys Pharm Adv. 2012;2(9):330–336.
21. Chen, Y., Wu X, Wu R, et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;6(1):26174. DOI:10.1038/srep26174
22. Rizos C, Elisaf M, Liberopoulos E. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011;5:76–84. doi: 10.2174/1874192401105010076
23. Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol. 2011;91(2):115–124. doi: 10.2340/00015555-0980
24. Kim MR, Jeong SJ. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites. 2019;9(7):125. doi: 10.3390/metabo9070125
25. Al-Mafraji EHA, Al-Samarrai RRH. Evaluation the Correlation between Vitamin D and Thyroid Hormones in Women with Thyroid Diseases in Kirkuk City. Int J Med Sci. 2020;3(1):114–115.
26. Rani P, Gupta S, Gupta G. Relation of serum 25 (OH) D with variables of thyroid and lipid profile in perimenopausal women. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2017;6(3):1088. doi: 10.18203/2320-1770.ijrcog20170590
27. Walsh JP, Bremner AP, Bulsara MK, et al. Thyroid dysfunction and serum lipids: a community-based study. Clin Endocrinol. 2005;63(6):670–675. doi: 10.1111/j.1365-2265.2005.02399.x
28. Jiffri EH. Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus. Adv Obes Weight Manag Control. 2017;6(6):178–182. doi: 10.15406/aowmc.2017.06.00176
29. Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. Oxid Med Cell Longev. 2020;2020:6640402. doi: 10.1155/2020/6640402
30. Wang Y, Si S, Liu J, et al. The Associations of Serum Lipids with Vitamin D Status. PLoS One. 2016;11(10):e0165157. doi: 10.1371/journal.pone.0165157
31. Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. Proc Nutr Soc. 2015;74(3):245–257. doi: 10.1017/S0029665115000014
2. Cappola AR, Desai AS, Medici M, et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. Circulation. 2019;139(25):2892–2909. doi: 10.1161/CIRCULATIONAHA.118.036859
3. Gopalakrishnan M, Ramidha P, Vinitha V. Comparative study of lipid profile anomalies in thyroid dysfunction. Natl J Physiol Pharm Pharmacol. 2022;12(9):1366–1370. doi: 10.5455/njppp.2022.12.01014202213012022
4. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12(4):287–293. doi: 10.1089/10507250252949405
5. Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
6. Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol. 2011;8(3):243–247. doi: 10.1038/cmi.2010.73
7. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
8. Muscogiuri G, Mitri J, Mathieu C, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 2014;171(3):R101–110. doi: 10.1530/EJE-14-0158
9. Pearce EN. Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;97(2):326–33. doi: 10.1210/jc.2011-2532
10. Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med. 2014;174(2):287–289. doi: 10.1001/jamainternmed.2013.12188
11. Wang CY, Chang TC, Chen MF. Associations between subclinical thyroid disease and metabolic syndrome. Endocr J. 2012;59(10):911–917. doi: 10.1507/endocrj.ej12-0076
12. Sun X, Sun Y, Li WC, et al. Association of thyroid‑stimulating hormone and cardiovascular risk factors. Intern Med. 2015;54(20):2537–2544. doi: 10.2169/internalmedicine.54.4514
13. Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809. doi: 10.1001/archinternmed.2012.402
14. Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4(1): 11–18. doi: 10.11648/j.ajlm.20190401.12
15. Saedisomeolia A, Taheri E, Djalali M, et al. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J Diabetes Metab Disord. 2014;13(1):7. doi: 10.1186/2251-6581-13-7
16. Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr. 2022;9:1082500. doi: 10.3389/fnut.2022.1082500
17. Sun CJ, McCudden C, Brisson D, et al. Calculated Non‑HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019;4(1):bvz010. doi: 10.1210/jendso/bvz010
18. Abu-Helalah M, Alshraideh HA, Al-Sarayreh SA, et al. A Cross‑Sectional Study to Assess the Prevalence of Adult Thyroid Dysfunction Disorders in Jordan. Thyroid. 2019;29(8):1052–1059. doi: 10.1089/thy.2018.0579
19. Murgod R, Soans G. Changes in electrolyte and lipid profile in hypothyroidism. Int J Life Sci Pharma Res. 2012;2(3):185–194.
20. Dipankar SP, Mali BY. Estimation of lipid profile, body fat percentage, body mass index, waist to hip ratio in patients with hypothyroidism and hyperthyroidism. J Phys Pharm Adv. 2012;2(9):330–336.
21. Chen, Y., Wu X, Wu R, et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;6(1):26174. DOI:10.1038/srep26174
22. Rizos C, Elisaf M, Liberopoulos E. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011;5:76–84. doi: 10.2174/1874192401105010076
23. Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol. 2011;91(2):115–124. doi: 10.2340/00015555-0980
24. Kim MR, Jeong SJ. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites. 2019;9(7):125. doi: 10.3390/metabo9070125
25. Al-Mafraji EHA, Al-Samarrai RRH. Evaluation the Correlation between Vitamin D and Thyroid Hormones in Women with Thyroid Diseases in Kirkuk City. Int J Med Sci. 2020;3(1):114–115.
26. Rani P, Gupta S, Gupta G. Relation of serum 25 (OH) D with variables of thyroid and lipid profile in perimenopausal women. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2017;6(3):1088. doi: 10.18203/2320-1770.ijrcog20170590
27. Walsh JP, Bremner AP, Bulsara MK, et al. Thyroid dysfunction and serum lipids: a community-based study. Clin Endocrinol. 2005;63(6):670–675. doi: 10.1111/j.1365-2265.2005.02399.x
28. Jiffri EH. Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus. Adv Obes Weight Manag Control. 2017;6(6):178–182. doi: 10.15406/aowmc.2017.06.00176
29. Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. Oxid Med Cell Longev. 2020;2020:6640402. doi: 10.1155/2020/6640402
30. Wang Y, Si S, Liu J, et al. The Associations of Serum Lipids with Vitamin D Status. PLoS One. 2016;11(10):e0165157. doi: 10.1371/journal.pone.0165157
31. Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. Proc Nutr Soc. 2015;74(3):245–257. doi: 10.1017/S0029665115000014
2. Cappola AR, Desai AS, Medici M, et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. Circulation. 2019;139(25):2892–2909. doi: 10.1161/CIRCULATIONAHA.118.036859
3. Gopalakrishnan M, Ramidha P, Vinitha V. Comparative study of lipid profile anomalies in thyroid dysfunction. Natl J Physiol Pharm Pharmacol. 2022;12(9):1366–1370. doi: 10.5455/njppp.2022.12.01014202213012022
4. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12(4):287–293. doi: 10.1089/10507250252949405
5. Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
6. Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol. 2011;8(3):243–247. doi: 10.1038/cmi.2010.73
7. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
8. Muscogiuri G, Mitri J, Mathieu C, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 2014;171(3):R101–110. doi: 10.1530/EJE-14-0158
9. Pearce EN. Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;97(2):326–33. doi: 10.1210/jc.2011-2532
10. Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med. 2014;174(2):287–289. doi: 10.1001/jamainternmed.2013.12188
11. Wang CY, Chang TC, Chen MF. Associations between subclinical thyroid disease and metabolic syndrome. Endocr J. 2012;59(10):911–917. doi: 10.1507/endocrj.ej12-0076
12. Sun X, Sun Y, Li WC, et al. Association of thyroid‑stimulating hormone and cardiovascular risk factors. Intern Med. 2015;54(20):2537–2544. doi: 10.2169/internalmedicine.54.4514
13. Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809. doi: 10.1001/archinternmed.2012.402
14. Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4(1): 11–18. doi: 10.11648/j.ajlm.20190401.12
15. Saedisomeolia A, Taheri E, Djalali M, et al. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J Diabetes Metab Disord. 2014;13(1):7. doi: 10.1186/2251-6581-13-7
16. Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr. 2022;9:1082500. doi: 10.3389/fnut.2022.1082500
17. Sun CJ, McCudden C, Brisson D, et al. Calculated Non‑HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019;4(1):bvz010. doi: 10.1210/jendso/bvz010
18. Abu-Helalah M, Alshraideh HA, Al-Sarayreh SA, et al. A Cross‑Sectional Study to Assess the Prevalence of Adult Thyroid Dysfunction Disorders in Jordan. Thyroid. 2019;29(8):1052–1059. doi: 10.1089/thy.2018.0579
19. Murgod R, Soans G. Changes in electrolyte and lipid profile in hypothyroidism. Int J Life Sci Pharma Res. 2012;2(3):185–194.
20. Dipankar SP, Mali BY. Estimation of lipid profile, body fat percentage, body mass index, waist to hip ratio in patients with hypothyroidism and hyperthyroidism. J Phys Pharm Adv. 2012;2(9):330–336.
21. Chen, Y., Wu X, Wu R, et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;6(1):26174. DOI:10.1038/srep26174
22. Rizos C, Elisaf M, Liberopoulos E. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011;5:76–84. doi: 10.2174/1874192401105010076
23. Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol. 2011;91(2):115–124. doi: 10.2340/00015555-0980
24. Kim MR, Jeong SJ. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites. 2019;9(7):125. doi: 10.3390/metabo9070125
25. Al-Mafraji EHA, Al-Samarrai RRH. Evaluation the Correlation between Vitamin D and Thyroid Hormones in Women with Thyroid Diseases in Kirkuk City. Int J Med Sci. 2020;3(1):114–115.
26. Rani P, Gupta S, Gupta G. Relation of serum 25 (OH) D with variables of thyroid and lipid profile in perimenopausal women. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2017;6(3):1088. doi: 10.18203/2320-1770.ijrcog20170590
27. Walsh JP, Bremner AP, Bulsara MK, et al. Thyroid dysfunction and serum lipids: a community-based study. Clin Endocrinol. 2005;63(6):670–675. doi: 10.1111/j.1365-2265.2005.02399.x
28. Jiffri EH. Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus. Adv Obes Weight Manag Control. 2017;6(6):178–182. doi: 10.15406/aowmc.2017.06.00176
29. Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. Oxid Med Cell Longev. 2020;2020:6640402. doi: 10.1155/2020/6640402
30. Wang Y, Si S, Liu J, et al. The Associations of Serum Lipids with Vitamin D Status. PLoS One. 2016;11(10):e0165157. doi: 10.1371/journal.pone.0165157
31. Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. Proc Nutr Soc. 2015;74(3):245–257. doi: 10.1017/S0029665115000014
________________________________________________
2. Cappola AR, Desai AS, Medici M, et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. Circulation. 2019;139(25):2892–2909. doi: 10.1161/CIRCULATIONAHA.118.036859
3. Gopalakrishnan M, Ramidha P, Vinitha V. Comparative study of lipid profile anomalies in thyroid dysfunction. Natl J Physiol Pharm Pharmacol. 2022;12(9):1366–1370. doi: 10.5455/njppp.2022.12.01014202213012022
4. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12(4):287–293. doi: 10.1089/10507250252949405
5. Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
6. Kivity S, Agmon-Levin N, Zisappl M, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol. 2011;8(3):243–247. doi: 10.1038/cmi.2010.73
7. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
8. Muscogiuri G, Mitri J, Mathieu C, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 2014;171(3):R101–110. doi: 10.1530/EJE-14-0158
9. Pearce EN. Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;97(2):326–33. doi: 10.1210/jc.2011-2532
10. Willard DL, Leung AM, Pearce EN. Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med. 2014;174(2):287–289. doi: 10.1001/jamainternmed.2013.12188
11. Wang CY, Chang TC, Chen MF. Associations between subclinical thyroid disease and metabolic syndrome. Endocr J. 2012;59(10):911–917. doi: 10.1507/endocrj.ej12-0076
12. Sun X, Sun Y, Li WC, et al. Association of thyroid‑stimulating hormone and cardiovascular risk factors. Intern Med. 2015;54(20):2537–2544. doi: 10.2169/internalmedicine.54.4514
13. Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809. doi: 10.1001/archinternmed.2012.402
14. Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4(1): 11–18. doi: 10.11648/j.ajlm.20190401.12
15. Saedisomeolia A, Taheri E, Djalali M, et al. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J Diabetes Metab Disord. 2014;13(1):7. doi: 10.1186/2251-6581-13-7
16. Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr. 2022;9:1082500. doi: 10.3389/fnut.2022.1082500
17. Sun CJ, McCudden C, Brisson D, et al. Calculated Non‑HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc. 2019;4(1):bvz010. doi: 10.1210/jendso/bvz010
18. Abu-Helalah M, Alshraideh HA, Al-Sarayreh SA, et al. A Cross‑Sectional Study to Assess the Prevalence of Adult Thyroid Dysfunction Disorders in Jordan. Thyroid. 2019;29(8):1052–1059. doi: 10.1089/thy.2018.0579
19. Murgod R, Soans G. Changes in electrolyte and lipid profile in hypothyroidism. Int J Life Sci Pharma Res. 2012;2(3):185–194.
20. Dipankar SP, Mali BY. Estimation of lipid profile, body fat percentage, body mass index, waist to hip ratio in patients with hypothyroidism and hyperthyroidism. J Phys Pharm Adv. 2012;2(9):330–336.
21. Chen, Y., Wu X, Wu R, et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep. 2016;6(1):26174. DOI:10.1038/srep26174
22. Rizos C, Elisaf M, Liberopoulos E. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011;5:76–84. doi: 10.2174/1874192401105010076
23. Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol. 2011;91(2):115–124. doi: 10.2340/00015555-0980
24. Kim MR, Jeong SJ. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites. 2019;9(7):125. doi: 10.3390/metabo9070125
25. Al-Mafraji EHA, Al-Samarrai RRH. Evaluation the Correlation between Vitamin D and Thyroid Hormones in Women with Thyroid Diseases in Kirkuk City. Int J Med Sci. 2020;3(1):114–115.
26. Rani P, Gupta S, Gupta G. Relation of serum 25 (OH) D with variables of thyroid and lipid profile in perimenopausal women. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2017;6(3):1088. doi: 10.18203/2320-1770.ijrcog20170590
27. Walsh JP, Bremner AP, Bulsara MK, et al. Thyroid dysfunction and serum lipids: a community-based study. Clin Endocrinol. 2005;63(6):670–675. doi: 10.1111/j.1365-2265.2005.02399.x
28. Jiffri EH. Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus. Adv Obes Weight Manag Control. 2017;6(6):178–182. doi: 10.15406/aowmc.2017.06.00176
29. Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. Oxid Med Cell Longev. 2020;2020:6640402. doi: 10.1155/2020/6640402
30. Wang Y, Si S, Liu J, et al. The Associations of Serum Lipids with Vitamin D Status. PLoS One. 2016;11(10):e0165157. doi: 10.1371/journal.pone.0165157
31. Fry CM, Sanders TA. Vitamin D and risk of CVD: a review of the evidence. Proc Nutr Soc. 2015;74(3):245–257. doi: 10.1017/S0029665115000014
Авторы
Awat Hamad Awla*1, Badinan Jalal Hamadamin1, Sleman Yousif Omar1, Wafa Ahmed Hamadameen2
1Университет Рапарин, Сулеймания, Курдистан, Ирак;
2Смарт Хелз Тауэр, Сулеймания, Курдистан, Ирак
*Awat.hamad@uor.edu.krd
1University of Raparin, Sulaymaniyah, Kurdistan region, Iraq;
2Smart Health Tower, Sulaimani, Kurdistan, Iraq
*Awat.hamad@uor.edu.krd
1Университет Рапарин, Сулеймания, Курдистан, Ирак;
2Смарт Хелз Тауэр, Сулеймания, Курдистан, Ирак
*Awat.hamad@uor.edu.krd
________________________________________________
1University of Raparin, Sulaymaniyah, Kurdistan region, Iraq;
2Smart Health Tower, Sulaimani, Kurdistan, Iraq
*Awat.hamad@uor.edu.krd
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
