Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль полиморфизмов генов ренин-ангиотензин‑альдостероновой системы в развитии диастолической дисфункции у пациенток с артериальной гипертензией - Научно-практический журнал Cardioсоматика Том 16, №1 (2025)
Роль полиморфизмов генов ренин-ангиотензин‑альдостероновой системы в развитии диастолической дисфункции у пациенток с артериальной гипертензией
Гренадерова М.А., Изможерова Н.В., Кудрявцева Е.В., Шамбатов М.А., Зорников Д.Л., Попов А.А., Вихарева А.А., Корнилов Д.О., Тряпицын М.А., Симарзина В.М., Бехтер А.А. Роль полиморфизмов генов ренин-ангиотензин-альдостероновой системы в развитии диастолической дисфункции у пациенток с артериальной гипертензией // CardioСоматика. 2025. Т. 16, № 1. С. 34–44. DOI: 10.17816/CS636375 EDN: CTTZUI
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Обоснование. Сердечно-сосудистые заболевания, в том числе артериальная гипертензия (АГ), ежегодно уносят 17 миллионов жизней, из которых 9,4 миллиона связаны с АГ, поражающей около 40% взрослого населения. Генетические полиморфизмы ренин-ангиотензин-альдостероновой системы (РААС) играют значимую роль в развитии АГ и ответе на терапию. Изучение полиморфизмов генов-кандидатов, отвечающих за реализацию механизмов РААС, позволит оптимизировать выбор антигипертензивной терапии на начальных этапах терапии АГ.
Цель. Оценить частоту выявления однонуклеотидных полиморфных вариантов генов РААС и их вклад в развитие диастолической дисфункции (ДД).
Материалы и методы. Проведено одномоментное исследование c участием 87 женщин, находящихся в периоде постменопаузы, в возрасте 67 [65; 70] лет. Оценены однонуклеотидные полиморфизмы генов ADD1, AGT, AGTR1, AGTR2, CYP11B2, GNB3, NOS3 методом полимеразной цепной реакции в режиме реального времени. Исследованы полиморфизмы генов, связанных с РААС, у пациенток с ДД, оценённой трансторакальной эхокардиографией, и без неё.
Результаты. По основным клиническим характеристикам и структуре антигипертензивной терапии значимых различий в группе пациентов с ДД и без неё не выявлено (p >0,05). В ходе текущего исследования не отмечено статистически значимых различий (p >0,05) в полиморфных вариантах генотипов. Аллель T полиморфизма 344 C/T гена CYP11B2 у пациентов с ДД выявлялся значимо чаще. Построена двухлокусная модель, включающая полиморфизм гена AGT и гена CYP11B2, чувствительность способа — 66,1%, специфичность — 67,7%. Модель, включающая полиморфизм генов AGTR2, CYP11B2 и NOS3, оказалась наиболее эффективной трёхлокусной моделью: чувствительность модели составила 80,4%, специфичность — 71,0%.
Заключение. Мультилокусный анализ и прогностическая модель, основанные на комбинации различных полиморфных генов, позволят провести оценку рисков развития ДД у пациентов с АГ. Выявление вклада генетических факторов в развитие сердечно-сосудистой патологии и понимание их клинического значения будет способствовать персонификации терапии.
Ключевые слова: диастолическая дисфункция, гипертензия, однонуклеотидный полиморфизм, альфа-аддуцин, транскрипционный фактор, ангиотензиноген, рецептор ангиотензина II, альдостеронсинтаза (cyp11b2), гуаниннуклеотидсвязывающий белок G (GNB3), эндотелиальная синтаза оксида азота (NOS3)
AIM: To assess the frequency of single-nucleotide polymorphisms in renin-angiotensin-aldosterone system genes and their contribution to the development of diastolic dysfunction.
MATERIALS AND METHODS: A cross-sectional study was conducted in 87 postmenopausal women aged 67 years (interquartile range, 65–70 years). Single-nucleotide polymorphisms in the ADD1, AGT, AGTR1, AGTR2, CYP11B2, GNB3, NOS3 genes were analyzed using real-time polymerase chain reaction. Renin-angiotensin-aldosterone system-related gene polymorphisms were evaluated in patients with and without diastolic dysfunction, as assessed by transthoracic echocardiography.
RESULTS: No significant differences in the main clinical characteristics or the structure of antihypertensive therapy were observed between the groups with and without diastolic dysfunction (p >0.05). The current study did not reveal statistically significant differences in the distribution of polymorphic genotypes (p >0.05) The T allele of the CYP11B2 344 C/T polymorphism was significantly more frequent in patients with diastolic dysfunction. A two-locus model including AGT and CYP11B2 gene polymorphisms demonstrated a sensitivity of 66.1% and a specificity of 67.7%. The most effective three-locus model included polymorphisms in AGTR2, CYP11B2, and NOS3, yielding a sensitivity of 80.4% and a specificity of 71.0%.
CONCLUSION: Multilocus analysis and a predictive model based on a combination of gene polymorphisms may support the assessment of risk for developing diastolic dysfunction in patients with hypertension. Identifying the contribution of genetic factors to the development of cardiovascular diseases and understanding their clinical relevance may facilitate the personalization of therapy.
Keywords: diastolic dysfunction, hypertension, single-nucleotide polymorphism, alpha-adducin, transcription factors, angiotensinogen, angiotensin II receptor, aldosterone synthase (CYP11B2), guanine nucleotide–binding protein G (GNB3), endothelial nitric oxide synthase (NOS3)
Цель. Оценить частоту выявления однонуклеотидных полиморфных вариантов генов РААС и их вклад в развитие диастолической дисфункции (ДД).
Материалы и методы. Проведено одномоментное исследование c участием 87 женщин, находящихся в периоде постменопаузы, в возрасте 67 [65; 70] лет. Оценены однонуклеотидные полиморфизмы генов ADD1, AGT, AGTR1, AGTR2, CYP11B2, GNB3, NOS3 методом полимеразной цепной реакции в режиме реального времени. Исследованы полиморфизмы генов, связанных с РААС, у пациенток с ДД, оценённой трансторакальной эхокардиографией, и без неё.
Результаты. По основным клиническим характеристикам и структуре антигипертензивной терапии значимых различий в группе пациентов с ДД и без неё не выявлено (p >0,05). В ходе текущего исследования не отмечено статистически значимых различий (p >0,05) в полиморфных вариантах генотипов. Аллель T полиморфизма 344 C/T гена CYP11B2 у пациентов с ДД выявлялся значимо чаще. Построена двухлокусная модель, включающая полиморфизм гена AGT и гена CYP11B2, чувствительность способа — 66,1%, специфичность — 67,7%. Модель, включающая полиморфизм генов AGTR2, CYP11B2 и NOS3, оказалась наиболее эффективной трёхлокусной моделью: чувствительность модели составила 80,4%, специфичность — 71,0%.
Заключение. Мультилокусный анализ и прогностическая модель, основанные на комбинации различных полиморфных генов, позволят провести оценку рисков развития ДД у пациентов с АГ. Выявление вклада генетических факторов в развитие сердечно-сосудистой патологии и понимание их клинического значения будет способствовать персонификации терапии.
Ключевые слова: диастолическая дисфункция, гипертензия, однонуклеотидный полиморфизм, альфа-аддуцин, транскрипционный фактор, ангиотензиноген, рецептор ангиотензина II, альдостеронсинтаза (cyp11b2), гуаниннуклеотидсвязывающий белок G (GNB3), эндотелиальная синтаза оксида азота (NOS3)
________________________________________________
AIM: To assess the frequency of single-nucleotide polymorphisms in renin-angiotensin-aldosterone system genes and their contribution to the development of diastolic dysfunction.
MATERIALS AND METHODS: A cross-sectional study was conducted in 87 postmenopausal women aged 67 years (interquartile range, 65–70 years). Single-nucleotide polymorphisms in the ADD1, AGT, AGTR1, AGTR2, CYP11B2, GNB3, NOS3 genes were analyzed using real-time polymerase chain reaction. Renin-angiotensin-aldosterone system-related gene polymorphisms were evaluated in patients with and without diastolic dysfunction, as assessed by transthoracic echocardiography.
RESULTS: No significant differences in the main clinical characteristics or the structure of antihypertensive therapy were observed between the groups with and without diastolic dysfunction (p >0.05). The current study did not reveal statistically significant differences in the distribution of polymorphic genotypes (p >0.05) The T allele of the CYP11B2 344 C/T polymorphism was significantly more frequent in patients with diastolic dysfunction. A two-locus model including AGT and CYP11B2 gene polymorphisms demonstrated a sensitivity of 66.1% and a specificity of 67.7%. The most effective three-locus model included polymorphisms in AGTR2, CYP11B2, and NOS3, yielding a sensitivity of 80.4% and a specificity of 71.0%.
CONCLUSION: Multilocus analysis and a predictive model based on a combination of gene polymorphisms may support the assessment of risk for developing diastolic dysfunction in patients with hypertension. Identifying the contribution of genetic factors to the development of cardiovascular diseases and understanding their clinical relevance may facilitate the personalization of therapy.
Keywords: diastolic dysfunction, hypertension, single-nucleotide polymorphism, alpha-adducin, transcription factors, angiotensinogen, angiotensin II receptor, aldosterone synthase (CYP11B2), guanine nucleotide–binding protein G (GNB3), endothelial nitric oxide synthase (NOS3)
Полный текст
Список литературы
1. Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. Lancet. 2021;398(10296):249–261. doi: 10.1016/S0140-6736(21)00221-X
2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339
3. Menick DR, Li MS, Chernysh O, et al. Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx Expression in Cardiac Hypertrophy and Failure. Adv Exp Med Biol. 2013;961:125–135. doi: 10.1007/978-1-4614-4756-6_11
4. Scurrah K, Lamantia A, Ellis JA, Harrap S. Epistatic and sex-dependent association analyses of genes of the renin-angiotensin-aldosterone system and blood pressure in families. J Hypertens. 2016;34(1):e68-e69. doi: 10.1161/CIRCGENETICS.116.001595
5. Valencia DM, Naranjo CA, Parra MV, et al. Association and interaction of AGT, AGTR1, ACE, ADRB2, DRD1, ADD1, ADD2, ATP2B1, TBXA2R and PTGS2 genes on the risk of hypertension in Antioquian population. Biomedica. 2013;33(4):598–614. doi: 10.7705/biomedica.v33i4.1489 EDN: SQYXOJ
6. Savinkova IA, Zavarin VV, Mazur IC. Genetic polymorphism in pathogenesis of arterial hypertension and left ventricular hypertrophy (review of literature). Verkhnevolzhsky Medical Journal. 2012;10(2):16–21. EDN: PAJWCV
7. Maamor NH, Ismail J, Malek KA, et al. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J Med Res. 2024;159(6):619–626. doi: 10.25259/ijmr_520_23
8. Lozinskii SE. Prediction of effectiveness of antihypertensive treatment in patients with consideration of the role of polymorphisms of angiotensin receptors ATR1. Kardiologiia. 2013;53(11):49–54. EDN: ROFEYF
9. Abdullaeva GZh, Tursunova NB, Trutneva EI, et al. The antiremodeling efficiency of indapamide associated with C344T-polymorphism of CYP11B2 gene in uzbek patients with arterial hypertension. Cardiology in Belarus. 2015;39(2):117–127. EDN: TTZYHF
10. Liu Y, Kong X, Jiang Y, et al. Association of AGTR1 A1166C and CYP2C93 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens. 2022;2022:7677252. doi: 10.1155/2022/7677252
11. Dong H, Wang FZ, Shi K, et al. Association of Cytochrome P450 2C93 and Angiotensin II Receptor 1 (1166A>C) Gene Polymorphisms With the Antihypertensive Effect of Irbesartan. Am J of Hypertens. 2021;34(1):121. doi: 10.1093/ajh/hpaa134
12. Kobalava ZhD, Konradi AO, Nedogoda SV. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. doi: 10.15829/1560-4071-2024-6117
13. Р 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. doi: 10.15829/1560-4071-2020-4083
14. Porter TR, Mulvagh SL, Abdelmoneim SS, et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr. 2018;31(3):241–274. doi: 10.1016/j.echo.2017.11.013
15. Motsinger A, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Human Genomics. 2007;2(5):318–328. doi: 10.1186/1479-7364-2-5-318
16. Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great obstetric syndromes: “gordian knot” of genetic networks. Ural Medical Journal. 2018;(13):40–47. doi: 10.25694/URMJ.2018.13.45
17. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Assotsiirovannye s khronicheskoi serdechnoi nedostatochnostyu geneticheskie polimorfizmy. Bulletin of the Russian Military Medical Academy. 2024;26(2):275–288. doi: 10.17816/brmma609539 EDN: OTEHHZ
18. Swynghedauw B. Molecular Mechanisms of Myocardial Remodeling. Physiol Rev. 1999;79(1):215–262. doi: 10.1152/physrev.1999.79.1.215
19. Kuzmina S, Mutafyan O.A, Larionova V.I. Renin-angiotensin aldosterone system gene polymorphism and arterial hypertension in children. Arterialnaya gipertenziya. 2009;4:475–480. EDN: LATBPX
20. Stepanov VA, Puzyrev KV, Spiridonova MG, et al. Polymorphism of angiotensin-converting enzyme and endothelial nitric oxide synthase genes in people with arterial hypertension, left ventricular hypertrophy, and hypertrophic cardiomyopathy. Genetika. 1998;34(11):1578–1581.
21. Drobotya NV, Arutyunyan LV, Pirozhenko AA. The role of the genetic polymorphism determination in arterial hypertension pathogenesis with the aim of individualization medical therapy. Consilium Medicum. 2017;19(5):26–30. EDN: ZGBOOJ
22. Kuznetsova T, Citterio L, Herbots L, et al. Effects of genetic variation in adducin on left ventricular diastolic function as assessed by tissue Doppler imaging in a Flemish population. J Hypertens. 2008;26(6):1229–1236. doi: 10.1097/HJH.0b013e3282f97dcd
23. Chauhan K, Devereux RB, Rao D, et al. Adducin 1 (alpha) Gly460Trp variant is associated with left ventricular geometry in Caucasians and African Americans: The HyperGEN Study. Int J Mol Epidemiol Genet. 2010;1(4):367–376.
24. Wu CK, Tsai CT, Chang YC, et al. Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure. J Hypertens. 2009;27(3):502–507. doi: 10.1097/hjh.0b013e32831fda3a
25. Mishra A, Srivastava A, Kumar S, et al. Role of angiotensin II type I (AT1 A1166C) receptor polymorphism in susceptibility of left ventricular dysfunction. Indian Heart J. 2015;67(3):214–221. doi: 10.1016/j.ihj.2015.04.013
26. Terzi S, Emre A, Yesilcimen K, et al. The Endothelial Nitric Oxide Synthase (NOS3-786T>C) Genetic Polymorphism in Chronic Heart Failure: Effects of Mutant -786C allele on Long-term Mortality. Acta Cardiol Sin. 2017;33(4):420–428. doi: 10.6515/acs20161215b
27. Oliveira RVM, Albuquerque FN, Duque GS, et al. Heart failure and endothelial nitric oxide synthase G894T gene polymorphism frequency variations within ancestries. Nitric Oxide. 2018;73:60–65. doi: 10.1016/j.niox.2017.05.006
28. Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150
2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339
3. Menick DR, Li MS, Chernysh O, et al. Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx Expression in Cardiac Hypertrophy and Failure. Adv Exp Med Biol. 2013;961:125–135. doi: 10.1007/978-1-4614-4756-6_11
4. Scurrah K, Lamantia A, Ellis JA, Harrap S. Epistatic and sex-dependent association analyses of genes of the renin-angiotensin-aldosterone system and blood pressure in families. J Hypertens. 2016;34(1):e68-e69. doi: 10.1161/CIRCGENETICS.116.001595
5. Valencia DM, Naranjo CA, Parra MV, et al. Association and interaction of AGT, AGTR1, ACE, ADRB2, DRD1, ADD1, ADD2, ATP2B1, TBXA2R and PTGS2 genes on the risk of hypertension in Antioquian population. Biomedica. 2013;33(4):598–614. doi: 10.7705/biomedica.v33i4.1489 EDN: SQYXOJ
6. Savinkova IA, Zavarin VV, Mazur IC. Genetic polymorphism in pathogenesis of arterial hypertension and left ventricular hypertrophy (review of literature). Verkhnevolzhsky Medical Journal. 2012;10(2):16–21. EDN: PAJWCV
7. Maamor NH, Ismail J, Malek KA, et al. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J Med Res. 2024;159(6):619–626. doi: 10.25259/ijmr_520_23
8. Lozinskii SE. Prediction of effectiveness of antihypertensive treatment in patients with consideration of the role of polymorphisms of angiotensin receptors ATR1. Kardiologiia. 2013;53(11):49–54. EDN: ROFEYF
9. Abdullaeva GZh, Tursunova NB, Trutneva EI, et al. The antiremodeling efficiency of indapamide associated with C344T-polymorphism of CYP11B2 gene in uzbek patients with arterial hypertension. Cardiology in Belarus. 2015;39(2):117–127. EDN: TTZYHF
10. Liu Y, Kong X, Jiang Y, et al. Association of AGTR1 A1166C and CYP2C93 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens. 2022;2022:7677252. doi: 10.1155/2022/7677252
11. Dong H, Wang FZ, Shi K, et al. Association of Cytochrome P450 2C93 and Angiotensin II Receptor 1 (1166A>C) Gene Polymorphisms With the Antihypertensive Effect of Irbesartan. Am J of Hypertens. 2021;34(1):121. doi: 10.1093/ajh/hpaa134
12. Kobalava ZhD, Konradi AO, Nedogoda SV. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. doi: 10.15829/1560-4071-2024-6117
13. Р 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. doi: 10.15829/1560-4071-2020-4083
14. Porter TR, Mulvagh SL, Abdelmoneim SS, et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr. 2018;31(3):241–274. doi: 10.1016/j.echo.2017.11.013
15. Motsinger A, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Human Genomics. 2007;2(5):318–328. doi: 10.1186/1479-7364-2-5-318
16. Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great obstetric syndromes: “gordian knot” of genetic networks. Ural Medical Journal. 2018;(13):40–47. doi: 10.25694/URMJ.2018.13.45
17. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Assotsiirovannye s khronicheskoi serdechnoi nedostatochnostyu geneticheskie polimorfizmy. Bulletin of the Russian Military Medical Academy. 2024;26(2):275–288. doi: 10.17816/brmma609539 EDN: OTEHHZ
18. Swynghedauw B. Molecular Mechanisms of Myocardial Remodeling. Physiol Rev. 1999;79(1):215–262. doi: 10.1152/physrev.1999.79.1.215
19. Kuzmina S, Mutafyan O.A, Larionova V.I. Renin-angiotensin aldosterone system gene polymorphism and arterial hypertension in children. Arterialnaya gipertenziya. 2009;4:475–480. EDN: LATBPX
20. Stepanov VA, Puzyrev KV, Spiridonova MG, et al. Polymorphism of angiotensin-converting enzyme and endothelial nitric oxide synthase genes in people with arterial hypertension, left ventricular hypertrophy, and hypertrophic cardiomyopathy. Genetika. 1998;34(11):1578–1581.
21. Drobotya NV, Arutyunyan LV, Pirozhenko AA. The role of the genetic polymorphism determination in arterial hypertension pathogenesis with the aim of individualization medical therapy. Consilium Medicum. 2017;19(5):26–30. EDN: ZGBOOJ
22. Kuznetsova T, Citterio L, Herbots L, et al. Effects of genetic variation in adducin on left ventricular diastolic function as assessed by tissue Doppler imaging in a Flemish population. J Hypertens. 2008;26(6):1229–1236. doi: 10.1097/HJH.0b013e3282f97dcd
23. Chauhan K, Devereux RB, Rao D, et al. Adducin 1 (alpha) Gly460Trp variant is associated with left ventricular geometry in Caucasians and African Americans: The HyperGEN Study. Int J Mol Epidemiol Genet. 2010;1(4):367–376.
24. Wu CK, Tsai CT, Chang YC, et al. Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure. J Hypertens. 2009;27(3):502–507. doi: 10.1097/hjh.0b013e32831fda3a
25. Mishra A, Srivastava A, Kumar S, et al. Role of angiotensin II type I (AT1 A1166C) receptor polymorphism in susceptibility of left ventricular dysfunction. Indian Heart J. 2015;67(3):214–221. doi: 10.1016/j.ihj.2015.04.013
26. Terzi S, Emre A, Yesilcimen K, et al. The Endothelial Nitric Oxide Synthase (NOS3-786T>C) Genetic Polymorphism in Chronic Heart Failure: Effects of Mutant -786C allele on Long-term Mortality. Acta Cardiol Sin. 2017;33(4):420–428. doi: 10.6515/acs20161215b
27. Oliveira RVM, Albuquerque FN, Duque GS, et al. Heart failure and endothelial nitric oxide synthase G894T gene polymorphism frequency variations within ancestries. Nitric Oxide. 2018;73:60–65. doi: 10.1016/j.niox.2017.05.006
28. Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150
2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339
3. Menick DR, Li MS, Chernysh O, et al. Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx Expression in Cardiac Hypertrophy and Failure. Adv Exp Med Biol. 2013;961:125–135. doi: 10.1007/978-1-4614-4756-6_11
4. Scurrah K, Lamantia A, Ellis JA, Harrap S. Epistatic and sex-dependent association analyses of genes of the renin-angiotensin-aldosterone system and blood pressure in families. J Hypertens. 2016;34(1):e68-e69. doi: 10.1161/CIRCGENETICS.116.001595
5. Valencia DM, Naranjo CA, Parra MV, et al. Association and interaction of AGT, AGTR1, ACE, ADRB2, DRD1, ADD1, ADD2, ATP2B1, TBXA2R and PTGS2 genes on the risk of hypertension in Antioquian population. Biomedica. 2013;33(4):598–614. doi: 10.7705/biomedica.v33i4.1489 EDN: SQYXOJ
6. Savinkova IA, Zavarin VV, Mazur IC. Genetic polymorphism in pathogenesis of arterial hypertension and left ventricular hypertrophy (review of literature). Verkhnevolzhsky Medical Journal. 2012;10(2):16–21. EDN: PAJWCV
7. Maamor NH, Ismail J, Malek KA, et al. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J Med Res. 2024;159(6):619–626. doi: 10.25259/ijmr_520_23
8. Lozinskii SE. Prediction of effectiveness of antihypertensive treatment in patients with consideration of the role of polymorphisms of angiotensin receptors ATR1. Kardiologiia. 2013;53(11):49–54. EDN: ROFEYF
9. Abdullaeva GZh, Tursunova NB, Trutneva EI, et al. The antiremodeling efficiency of indapamide associated with C344T-polymorphism of CYP11B2 gene in uzbek patients with arterial hypertension. Cardiology in Belarus. 2015;39(2):117–127. EDN: TTZYHF
10. Liu Y, Kong X, Jiang Y, et al. Association of AGTR1 A1166C and CYP2C93 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens. 2022;2022:7677252. doi: 10.1155/2022/7677252
11. Dong H, Wang FZ, Shi K, et al. Association of Cytochrome P450 2C93 and Angiotensin II Receptor 1 (1166A>C) Gene Polymorphisms With the Antihypertensive Effect of Irbesartan. Am J of Hypertens. 2021;34(1):121. doi: 10.1093/ajh/hpaa134
12. Kobalava ZhD, Konradi AO, Nedogoda SV. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. doi: 10.15829/1560-4071-2024-6117
13. Р 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. doi: 10.15829/1560-4071-2020-4083
14. Porter TR, Mulvagh SL, Abdelmoneim SS, et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr. 2018;31(3):241–274. doi: 10.1016/j.echo.2017.11.013
15. Motsinger A, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Human Genomics. 2007;2(5):318–328. doi: 10.1186/1479-7364-2-5-318
16. Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great obstetric syndromes: “gordian knot” of genetic networks. Ural Medical Journal. 2018;(13):40–47. doi: 10.25694/URMJ.2018.13.45
17. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Assotsiirovannye s khronicheskoi serdechnoi nedostatochnostyu geneticheskie polimorfizmy. Bulletin of the Russian Military Medical Academy. 2024;26(2):275–288. doi: 10.17816/brmma609539 EDN: OTEHHZ
18. Swynghedauw B. Molecular Mechanisms of Myocardial Remodeling. Physiol Rev. 1999;79(1):215–262. doi: 10.1152/physrev.1999.79.1.215
19. Kuzmina S, Mutafyan O.A, Larionova V.I. Renin-angiotensin aldosterone system gene polymorphism and arterial hypertension in children. Arterialnaya gipertenziya. 2009;4:475–480. EDN: LATBPX
20. Stepanov VA, Puzyrev KV, Spiridonova MG, et al. Polymorphism of angiotensin-converting enzyme and endothelial nitric oxide synthase genes in people with arterial hypertension, left ventricular hypertrophy, and hypertrophic cardiomyopathy. Genetika. 1998;34(11):1578–1581.
21. Drobotya NV, Arutyunyan LV, Pirozhenko AA. The role of the genetic polymorphism determination in arterial hypertension pathogenesis with the aim of individualization medical therapy. Consilium Medicum. 2017;19(5):26–30. EDN: ZGBOOJ
22. Kuznetsova T, Citterio L, Herbots L, et al. Effects of genetic variation in adducin on left ventricular diastolic function as assessed by tissue Doppler imaging in a Flemish population. J Hypertens. 2008;26(6):1229–1236. doi: 10.1097/HJH.0b013e3282f97dcd
23. Chauhan K, Devereux RB, Rao D, et al. Adducin 1 (alpha) Gly460Trp variant is associated with left ventricular geometry in Caucasians and African Americans: The HyperGEN Study. Int J Mol Epidemiol Genet. 2010;1(4):367–376.
24. Wu CK, Tsai CT, Chang YC, et al. Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure. J Hypertens. 2009;27(3):502–507. doi: 10.1097/hjh.0b013e32831fda3a
25. Mishra A, Srivastava A, Kumar S, et al. Role of angiotensin II type I (AT1 A1166C) receptor polymorphism in susceptibility of left ventricular dysfunction. Indian Heart J. 2015;67(3):214–221. doi: 10.1016/j.ihj.2015.04.013
26. Terzi S, Emre A, Yesilcimen K, et al. The Endothelial Nitric Oxide Synthase (NOS3-786T>C) Genetic Polymorphism in Chronic Heart Failure: Effects of Mutant -786C allele on Long-term Mortality. Acta Cardiol Sin. 2017;33(4):420–428. doi: 10.6515/acs20161215b
27. Oliveira RVM, Albuquerque FN, Duque GS, et al. Heart failure and endothelial nitric oxide synthase G894T gene polymorphism frequency variations within ancestries. Nitric Oxide. 2018;73:60–65. doi: 10.1016/j.niox.2017.05.006
28. Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150
________________________________________________
2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339
3. Menick DR, Li MS, Chernysh O, et al. Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx Expression in Cardiac Hypertrophy and Failure. Adv Exp Med Biol. 2013;961:125–135. doi: 10.1007/978-1-4614-4756-6_11
4. Scurrah K, Lamantia A, Ellis JA, Harrap S. Epistatic and sex-dependent association analyses of genes of the renin-angiotensin-aldosterone system and blood pressure in families. J Hypertens. 2016;34(1):e68-e69. doi: 10.1161/CIRCGENETICS.116.001595
5. Valencia DM, Naranjo CA, Parra MV, et al. Association and interaction of AGT, AGTR1, ACE, ADRB2, DRD1, ADD1, ADD2, ATP2B1, TBXA2R and PTGS2 genes on the risk of hypertension in Antioquian population. Biomedica. 2013;33(4):598–614. doi: 10.7705/biomedica.v33i4.1489 EDN: SQYXOJ
6. Savinkova IA, Zavarin VV, Mazur IC. Genetic polymorphism in pathogenesis of arterial hypertension and left ventricular hypertrophy (review of literature). Verkhnevolzhsky Medical Journal. 2012;10(2):16–21. EDN: PAJWCV
7. Maamor NH, Ismail J, Malek KA, et al. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J Med Res. 2024;159(6):619–626. doi: 10.25259/ijmr_520_23
8. Lozinskii SE. Prediction of effectiveness of antihypertensive treatment in patients with consideration of the role of polymorphisms of angiotensin receptors ATR1. Kardiologiia. 2013;53(11):49–54. EDN: ROFEYF
9. Abdullaeva GZh, Tursunova NB, Trutneva EI, et al. The antiremodeling efficiency of indapamide associated with C344T-polymorphism of CYP11B2 gene in uzbek patients with arterial hypertension. Cardiology in Belarus. 2015;39(2):117–127. EDN: TTZYHF
10. Liu Y, Kong X, Jiang Y, et al. Association of AGTR1 A1166C and CYP2C93 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens. 2022;2022:7677252. doi: 10.1155/2022/7677252
11. Dong H, Wang FZ, Shi K, et al. Association of Cytochrome P450 2C93 and Angiotensin II Receptor 1 (1166A>C) Gene Polymorphisms With the Antihypertensive Effect of Irbesartan. Am J of Hypertens. 2021;34(1):121. doi: 10.1093/ajh/hpaa134
12. Kobalava ZhD, Konradi AO, Nedogoda SV. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. doi: 10.15829/1560-4071-2024-6117
13. Р 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. doi: 10.15829/1560-4071-2020-4083
14. Porter TR, Mulvagh SL, Abdelmoneim SS, et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr. 2018;31(3):241–274. doi: 10.1016/j.echo.2017.11.013
15. Motsinger A, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Human Genomics. 2007;2(5):318–328. doi: 10.1186/1479-7364-2-5-318
16. Kovalev VV, Kudryavtseva EV, Milyaeva NM, Belomestnov SR. Great obstetric syndromes: “gordian knot” of genetic networks. Ural Medical Journal. 2018;(13):40–47. doi: 10.25694/URMJ.2018.13.45
17. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Assotsiirovannye s khronicheskoi serdechnoi nedostatochnostyu geneticheskie polimorfizmy. Bulletin of the Russian Military Medical Academy. 2024;26(2):275–288. doi: 10.17816/brmma609539 EDN: OTEHHZ
18. Swynghedauw B. Molecular Mechanisms of Myocardial Remodeling. Physiol Rev. 1999;79(1):215–262. doi: 10.1152/physrev.1999.79.1.215
19. Kuzmina S, Mutafyan O.A, Larionova V.I. Renin-angiotensin aldosterone system gene polymorphism and arterial hypertension in children. Arterialnaya gipertenziya. 2009;4:475–480. EDN: LATBPX
20. Stepanov VA, Puzyrev KV, Spiridonova MG, et al. Polymorphism of angiotensin-converting enzyme and endothelial nitric oxide synthase genes in people with arterial hypertension, left ventricular hypertrophy, and hypertrophic cardiomyopathy. Genetika. 1998;34(11):1578–1581.
21. Drobotya NV, Arutyunyan LV, Pirozhenko AA. The role of the genetic polymorphism determination in arterial hypertension pathogenesis with the aim of individualization medical therapy. Consilium Medicum. 2017;19(5):26–30. EDN: ZGBOOJ
22. Kuznetsova T, Citterio L, Herbots L, et al. Effects of genetic variation in adducin on left ventricular diastolic function as assessed by tissue Doppler imaging in a Flemish population. J Hypertens. 2008;26(6):1229–1236. doi: 10.1097/HJH.0b013e3282f97dcd
23. Chauhan K, Devereux RB, Rao D, et al. Adducin 1 (alpha) Gly460Trp variant is associated with left ventricular geometry in Caucasians and African Americans: The HyperGEN Study. Int J Mol Epidemiol Genet. 2010;1(4):367–376.
24. Wu CK, Tsai CT, Chang YC, et al. Genetic polymorphisms of the angiotensin II type 1 receptor gene and diastolic heart failure. J Hypertens. 2009;27(3):502–507. doi: 10.1097/hjh.0b013e32831fda3a
25. Mishra A, Srivastava A, Kumar S, et al. Role of angiotensin II type I (AT1 A1166C) receptor polymorphism in susceptibility of left ventricular dysfunction. Indian Heart J. 2015;67(3):214–221. doi: 10.1016/j.ihj.2015.04.013
26. Terzi S, Emre A, Yesilcimen K, et al. The Endothelial Nitric Oxide Synthase (NOS3-786T>C) Genetic Polymorphism in Chronic Heart Failure: Effects of Mutant -786C allele on Long-term Mortality. Acta Cardiol Sin. 2017;33(4):420–428. doi: 10.6515/acs20161215b
27. Oliveira RVM, Albuquerque FN, Duque GS, et al. Heart failure and endothelial nitric oxide synthase G894T gene polymorphism frequency variations within ancestries. Nitric Oxide. 2018;73:60–65. doi: 10.1016/j.niox.2017.05.006
28. Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol. 2016;221:1073–1080. doi: 10.1016/j.ijcard.2016.07.150
Авторы
М.А. Гренадерова, Н.В. Изможерова*, Е.В. Кудрявцева, М.А. Шамбатов, Д.Л. Зорников, А.А. Попов, А.А. Вихарева, Д.О. Корнилов, М.А. Тряпицын, В.М. Симарзина, А.А. Бехтер
Уральский государственный медицинский университет, Екатеринбург, Россия
*nadezhda_izm@mail.ru
Ural State Medical University, Yekaterinburg, Russia
*nadezhda_izm@mail.ru
Уральский государственный медицинский университет, Екатеринбург, Россия
*nadezhda_izm@mail.ru
________________________________________________
Ural State Medical University, Yekaterinburg, Russia
*nadezhda_izm@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
