Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аспросин в роли нового биологического маркёра атеросклероза и нарушений углеводного обмена
Аспросин в роли нового биологического маркёра атеросклероза и нарушений углеводного обмена
Алиева А.М., Байкова И.Е., Хаджиева Н.Х., Султангалиева А.Б., Рахаев А.М., Эльмурзаева Д.А., Асанов А.О., Ковтюх И.В., Этезова Э.З., Никитин И.Г. Аспросин в роли нового биологического маркёра атеросклероза и нарушений углеводного обмена // CardioСоматика. 2025. Т. 16, № 3. С. 250–262. DOI: 10.17816/CS660866 EDN: EKAFDM
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Сердечно-сосудистые заболевания представляют собой глобальную медицинскую, социальную и экономическую проблему. В настоящее время ведётся активный поиск новых биологических маркёров и терапевтических мишеней с целью разработки эффективных подходов к стратификации риска и вторичной профилактике сердечно-сосудистой патологии. Несмотря на идентификацию множества сердечно-сосудистых биомаркёров, их внедрение в медицинскую практику до сих пор остаётся в значимой степени безуспешным. В последнее время исследователи активно изучают аспросин. Основной целью данной статьи является анализ существующих исследований, посвящённых роли аспросина в качестве биомаркёра при атеросклерозе и нарушениях углеводного обмена. Всё большее количество экспериментальных работ свидетельствует о том, что данный биомаркёр участвует в развитии и усилении выраженности атеросклероза, сахарного диабета, ожирения и синдрома поликистозных яичников. Аспросин регулирует различные процессы, такие как стимуляция аппетита, высвобождение глюкозы, секреция инсулина, апоптоз и воспаление. На основании полученных данных клинических исследований можно заключить, что аспросин представляет собой перспективную молекулу, обладающую как диагностической, так и прогностической ценностью в контексте атеросклероза и нарушений углеводного обмена. Необходимы дополнительные исследования, направленные на изучение аспросина как дополнительного лабораторного инструмента. Регулирование концентрации и экспрессии аспросина может стать многообещающей стратегией для лечения пациентов с атеросклерозом и расстройствами углеводного обмена.
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, ишемическая болезнь сердца, нарушения углеводного обмена, сахарный диабет, биологический маркёр, аспросин
Keywords: cardiovascular diseases, atherosclerosis, coronary artery disease, carbohydrate metabolism, diabetes mellitus, biomarkers, asprosin
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, ишемическая болезнь сердца, нарушения углеводного обмена, сахарный диабет, биологический маркёр, аспросин
________________________________________________
Keywords: cardiovascular diseases, atherosclerosis, coronary artery disease, carbohydrate metabolism, diabetes mellitus, biomarkers, asprosin
Полный текст
Список литературы
1. Badeinikova KK, Mamedov MN. Early markers of atherosclerosis: predictors of cardiovascular events. Russian Journal of Preventive Medicine. 2023;26(1):103–108. doi: 10.17116/profmed202326011103 EDN: OIBMFG
2. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. doi: 10.1038/s41569-023-00877-z EDN: MMDOFI
3. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 — a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
4. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
5. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: miRNA and heart failure. Therapy. 2022;1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
6. Lyu JX, Guo DD, Song YC, et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. doi: 10.31083/j.rcm2502056 EDN: WPGJVY
7. Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. doi: 10.14341/probl12805 EDN: BWJQBG
8. Yuan M, Li W, Zhu Y, et al. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. doi: 10.3389/fendo.2020.00064 EDN: HGJSGQ
9. Farrag M, Ait Eldjoudi D, González-Rodríguez M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2023;13:1101091. doi: 10.3389/fendo.2022.1101091 EDN: FHLZSK
10. Luís C, Fernandes R, Soares R, von Hafe P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. 2020;5(6):e108. doi: 10.1097/j.pbj.0000000000000108
11. Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–579. doi: 10.1016/j.cell.2016.02.063
12. Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021;13(2):620. doi: 10.3390/nu13020620 EDN: GRQXMH
13. Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. doi: 10.1155/2019/2521096
14. Morcos YAT, Lütke S, Tenbieg A, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. doi: 10.1038/s41598-022-05060-x
15. Ovali MA, Bozgeyik I. Asprosin, a C-Terminal Cleavage Product of Fibrillin 1 Encoded by the FBN1 Gene, in Health and Disease. Mol Syndromol. 2022;13(3):175–183. doi: 10.1159/000520333 EDN: LOLQWH
16. Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. doi: 10.1016/j.mce.2019.03.001
17. Zhang Z, Tan Y, Zhu L, et al. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019;231:116554. doi: 10.1016/j.lfs.2019.116554
18. Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi: 10.1002/jcp.28694
19. Zhao Y, Wang Z, Chen Y, et al. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol. 2024;268(Pt 2):131868. doi: 10.1016/j.ijbiomac.2024.131868 EDN: PMSLMQ
20. Xu ZQ, Li XZ, Zhu R, et al. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens. 2024;42(8):1427–1439. doi: 10.1097/HJH.0000000000003751 EDN: CPZNKX
21. Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227. doi: 10.3390/ijms24010227 EDN: XUGLWU
22. Ge R, Chen JL, Zheng F, et al. Asprosin promotes vascular inflammation via TLR4-NFκB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659. doi: 10.1016/j.heliyon.2024.e31659 EDN: KYCEWQ
23. Zheng F, Ye C, Lei JZ, et al. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal. 2024;41(7-9):488–504. doi: 10.1089/ars.2023.0383 EDN: RHILLK
24. Huang Q, Chen S, Xiong X, et al. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF‑κBp65 Pathway. Inflammation. 2023;46(2):623–638. doi: 10.1007/s10753-022-01761-7 EDN: QCPVGR
25. Moradi N, Fouani FZ, Vatannejad A, et al. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis. 2021;20(1):88. doi: 10.1186/s12944-021-01514-9 EDN: FMPELR
26. Güven C, Kafadar H. Evaluation of Plasma Asprosin Concentration in Patients with Coronary Artery Disease. Braz J Cardiovasc Surg. 2022;37(4):493–500. doi: 10.21470/1678-9741-2021-0003 EDN: YVKSIO
27. Ciftci H, Gul HF, Sahin L, et al. Serum myeloperoxidase, paraoxonase, and plasma asprosin concentrations in patients with acute myocardial infarction. Heliyon. 2024;10(8):e29465. doi: 10.1016/j.heliyon.2024.e29465 EDN: GQDPRN
28. Hussein HK, Aubead NM, Kzar HH, et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):74. doi: 10.1186/s13098-022-00844-7 EDN: QKDBKW
29. Wang R, Hu W. Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215–221. doi: 10.1002/jcp.29835 EDN: VAMDTV
30. Katar M, Gevrek F. Relation of the intense physical exercise and asprosin concentrations in type 2 diabetic rats. Tissue Cell. 2024;90:102501. doi: 10.1016/j.tice.2024.102501 EDN: FWQZQD
31. Mishra I, Duerrschmid C, Ku Z, et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. 2021;10:e63784. doi: 10.7554/eLife.63784 EDN: YDNGPH
32. You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial‑to‑mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25. doi: 10.1186/s12933-022-01457-0 EDN: OBAEXO
33. Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129. doi: 10.1155/2021/6622129 EDN: APYZIY
34. Naiemian S, Naeemipour M, Zarei M, et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. 2020;12:65. doi: 10.1186/s13098-020-00564-w EDN: AYZQCC
35. Ma L, Wang Z, Sun L, et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781–1787. doi: 10.1111/jdi.14313 EDN: CTKQEH
36. Deng X, Zhao Z, Zhao L, et al. Association between circulating asprosin levels and carotid atherosclerotic plaque in patients with type 2 diabetes. Clin Biochem. 2022;109–110:44–50. doi: 10.1016/j.clinbiochem.2022.04.018 EDN: DTVATA
37. Timurkaan M, Timurkaan ES. Two Important Players for Type 2 Diabetes Mellitus: Metrnl and Asprosin. Clin Lab. 2022;68(9). doi: 10.7754/Clin.Lab.2021.211015 EDN: DIWDTZ
38. Yigitdol I, Gulumsek E, Demirtas D, et al. The role of serum asprosin levels in predicting the severity of coronary artery disease in patients with diabetes mellitus. Ir J Med Sci. 2024;193(3):1239–1247. doi: 10.1007/s11845-024-03616-6 EDN: DFKGGZ
39. Zhong M, Tian X, Sun Q, et al. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord. 2023;23(1):61. doi: 10.1186/s12902-023-01311-8 EDN: LLHHXO
40. Senyigit A, Durmus S, Tabak O, et al. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med. 2024;13(20):6126. doi: 10.3390/jcm13206126 EDN: LPCPXZ
41. Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi: 10.1007/s11033-021-06551-2 EDN: LIWWXO
42. Boz İB, Aytürk Salt S, Salt Ö, et al. Association Between Plasma Asprosin Levels and Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes. 2023;16:2515–2521. doi: 10.2147/DMSO.S424651
43. Zhong L, Long Y, Wang S, et al. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 2020;93:17–22. doi: 10.1016/j.placenta.2020.02.004 EDN: XSSPIC
44. Hu G, Si W, Zhang Q, Lv F. Circulating asprosin, irisin, and abdominal obesity in Chinese patients with type 2 diabetes mellitus: a case-control study. Endokrynol Pol. 2023;74(1):55–62. doi: 10.5603/EP.a2022.0093 EDN: ZKBQAA
45. Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. doi: 10.5603/EP.a2020.0059 EDN: WLMXVJ
46. Talebi SS, Rezaie S, Hajmiri MS, et al. Comparison of the effects of empagliflozin and sitagliptin, as add-on to metformin, on serum levels of asprosin and metabolic parameters in patients with type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(11):9149–9165. doi: 10.1007/s00210-024-03219-z EDN: WDGVHR
47. Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore). 2022;101(43):e31334. doi: 10.1097/MD.0000000000031334 EDN: TEBWOY
48. Jiang A, Feng Z, Yuan L, et al. Effect of sodium-glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):34. doi: 10.1186/s13098-021-00652-5 EDN: ZDHEUJ
49. Roomi AB, Ali EA, Nori W, Rahmah MI. Asprosin is a Reliable Predictor of Osteoporosis in Type 2 Diabetic Postmenopausal Women: A Case-Control Study. Indian J Clin Biochem. 2025;40(1):97–104. doi: 10.1007/s12291-023-01163-y EDN: DOXLVW
50. Li CH, Zhao X, Xu Y, et al. Increased serum asprosin is correlated with diabetes mellitus-induced erectile dysfunction. Diabetol Metab Syndr. 2024;16(1):91. doi: 10.1186/s13098-024-01333-9 EDN: CGIDAW
2. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. doi: 10.1038/s41569-023-00877-z EDN: MMDOFI
3. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 — a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
4. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
5. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: miRNA and heart failure. Therapy. 2022;1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
6. Lyu JX, Guo DD, Song YC, et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. doi: 10.31083/j.rcm2502056 EDN: WPGJVY
7. Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. doi: 10.14341/probl12805 EDN: BWJQBG
8. Yuan M, Li W, Zhu Y, et al. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. doi: 10.3389/fendo.2020.00064 EDN: HGJSGQ
9. Farrag M, Ait Eldjoudi D, González-Rodríguez M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2023;13:1101091. doi: 10.3389/fendo.2022.1101091 EDN: FHLZSK
10. Luís C, Fernandes R, Soares R, von Hafe P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. 2020;5(6):e108. doi: 10.1097/j.pbj.0000000000000108
11. Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–579. doi: 10.1016/j.cell.2016.02.063
12. Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021;13(2):620. doi: 10.3390/nu13020620 EDN: GRQXMH
13. Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. doi: 10.1155/2019/2521096
14. Morcos YAT, Lütke S, Tenbieg A, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. doi: 10.1038/s41598-022-05060-x
15. Ovali MA, Bozgeyik I. Asprosin, a C-Terminal Cleavage Product of Fibrillin 1 Encoded by the FBN1 Gene, in Health and Disease. Mol Syndromol. 2022;13(3):175–183. doi: 10.1159/000520333 EDN: LOLQWH
16. Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. doi: 10.1016/j.mce.2019.03.001
17. Zhang Z, Tan Y, Zhu L, et al. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019;231:116554. doi: 10.1016/j.lfs.2019.116554
18. Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi: 10.1002/jcp.28694
19. Zhao Y, Wang Z, Chen Y, et al. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol. 2024;268(Pt 2):131868. doi: 10.1016/j.ijbiomac.2024.131868 EDN: PMSLMQ
20. Xu ZQ, Li XZ, Zhu R, et al. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens. 2024;42(8):1427–1439. doi: 10.1097/HJH.0000000000003751 EDN: CPZNKX
21. Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227. doi: 10.3390/ijms24010227 EDN: XUGLWU
22. Ge R, Chen JL, Zheng F, et al. Asprosin promotes vascular inflammation via TLR4-NFκB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659. doi: 10.1016/j.heliyon.2024.e31659 EDN: KYCEWQ
23. Zheng F, Ye C, Lei JZ, et al. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal. 2024;41(7-9):488–504. doi: 10.1089/ars.2023.0383 EDN: RHILLK
24. Huang Q, Chen S, Xiong X, et al. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF‑κBp65 Pathway. Inflammation. 2023;46(2):623–638. doi: 10.1007/s10753-022-01761-7 EDN: QCPVGR
25. Moradi N, Fouani FZ, Vatannejad A, et al. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis. 2021;20(1):88. doi: 10.1186/s12944-021-01514-9 EDN: FMPELR
26. Güven C, Kafadar H. Evaluation of Plasma Asprosin Concentration in Patients with Coronary Artery Disease. Braz J Cardiovasc Surg. 2022;37(4):493–500. doi: 10.21470/1678-9741-2021-0003 EDN: YVKSIO
27. Ciftci H, Gul HF, Sahin L, et al. Serum myeloperoxidase, paraoxonase, and plasma asprosin concentrations in patients with acute myocardial infarction. Heliyon. 2024;10(8):e29465. doi: 10.1016/j.heliyon.2024.e29465 EDN: GQDPRN
28. Hussein HK, Aubead NM, Kzar HH, et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):74. doi: 10.1186/s13098-022-00844-7 EDN: QKDBKW
29. Wang R, Hu W. Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215–221. doi: 10.1002/jcp.29835 EDN: VAMDTV
30. Katar M, Gevrek F. Relation of the intense physical exercise and asprosin concentrations in type 2 diabetic rats. Tissue Cell. 2024;90:102501. doi: 10.1016/j.tice.2024.102501 EDN: FWQZQD
31. Mishra I, Duerrschmid C, Ku Z, et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. 2021;10:e63784. doi: 10.7554/eLife.63784 EDN: YDNGPH
32. You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial‑to‑mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25. doi: 10.1186/s12933-022-01457-0 EDN: OBAEXO
33. Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129. doi: 10.1155/2021/6622129 EDN: APYZIY
34. Naiemian S, Naeemipour M, Zarei M, et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. 2020;12:65. doi: 10.1186/s13098-020-00564-w EDN: AYZQCC
35. Ma L, Wang Z, Sun L, et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781–1787. doi: 10.1111/jdi.14313 EDN: CTKQEH
36. Deng X, Zhao Z, Zhao L, et al. Association between circulating asprosin levels and carotid atherosclerotic plaque in patients with type 2 diabetes. Clin Biochem. 2022;109–110:44–50. doi: 10.1016/j.clinbiochem.2022.04.018 EDN: DTVATA
37. Timurkaan M, Timurkaan ES. Two Important Players for Type 2 Diabetes Mellitus: Metrnl and Asprosin. Clin Lab. 2022;68(9). doi: 10.7754/Clin.Lab.2021.211015 EDN: DIWDTZ
38. Yigitdol I, Gulumsek E, Demirtas D, et al. The role of serum asprosin levels in predicting the severity of coronary artery disease in patients with diabetes mellitus. Ir J Med Sci. 2024;193(3):1239–1247. doi: 10.1007/s11845-024-03616-6 EDN: DFKGGZ
39. Zhong M, Tian X, Sun Q, et al. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord. 2023;23(1):61. doi: 10.1186/s12902-023-01311-8 EDN: LLHHXO
40. Senyigit A, Durmus S, Tabak O, et al. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med. 2024;13(20):6126. doi: 10.3390/jcm13206126 EDN: LPCPXZ
41. Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi: 10.1007/s11033-021-06551-2 EDN: LIWWXO
42. Boz İB, Aytürk Salt S, Salt Ö, et al. Association Between Plasma Asprosin Levels and Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes. 2023;16:2515–2521. doi: 10.2147/DMSO.S424651
43. Zhong L, Long Y, Wang S, et al. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 2020;93:17–22. doi: 10.1016/j.placenta.2020.02.004 EDN: XSSPIC
44. Hu G, Si W, Zhang Q, Lv F. Circulating asprosin, irisin, and abdominal obesity in Chinese patients with type 2 diabetes mellitus: a case-control study. Endokrynol Pol. 2023;74(1):55–62. doi: 10.5603/EP.a2022.0093 EDN: ZKBQAA
45. Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. doi: 10.5603/EP.a2020.0059 EDN: WLMXVJ
46. Talebi SS, Rezaie S, Hajmiri MS, et al. Comparison of the effects of empagliflozin and sitagliptin, as add-on to metformin, on serum levels of asprosin and metabolic parameters in patients with type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(11):9149–9165. doi: 10.1007/s00210-024-03219-z EDN: WDGVHR
47. Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore). 2022;101(43):e31334. doi: 10.1097/MD.0000000000031334 EDN: TEBWOY
48. Jiang A, Feng Z, Yuan L, et al. Effect of sodium-glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):34. doi: 10.1186/s13098-021-00652-5 EDN: ZDHEUJ
49. Roomi AB, Ali EA, Nori W, Rahmah MI. Asprosin is a Reliable Predictor of Osteoporosis in Type 2 Diabetic Postmenopausal Women: A Case-Control Study. Indian J Clin Biochem. 2025;40(1):97–104. doi: 10.1007/s12291-023-01163-y EDN: DOXLVW
50. Li CH, Zhao X, Xu Y, et al. Increased serum asprosin is correlated with diabetes mellitus-induced erectile dysfunction. Diabetol Metab Syndr. 2024;16(1):91. doi: 10.1186/s13098-024-01333-9 EDN: CGIDAW
2. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. doi: 10.1038/s41569-023-00877-z EDN: MMDOFI
3. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 — a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
4. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
5. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: miRNA and heart failure. Therapy. 2022;1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
6. Lyu JX, Guo DD, Song YC, et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. doi: 10.31083/j.rcm2502056 EDN: WPGJVY
7. Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. doi: 10.14341/probl12805 EDN: BWJQBG
8. Yuan M, Li W, Zhu Y, et al. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. doi: 10.3389/fendo.2020.00064 EDN: HGJSGQ
9. Farrag M, Ait Eldjoudi D, González-Rodríguez M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2023;13:1101091. doi: 10.3389/fendo.2022.1101091 EDN: FHLZSK
10. Luís C, Fernandes R, Soares R, von Hafe P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. 2020;5(6):e108. doi: 10.1097/j.pbj.0000000000000108
11. Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–579. doi: 10.1016/j.cell.2016.02.063
12. Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021;13(2):620. doi: 10.3390/nu13020620 EDN: GRQXMH
13. Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. doi: 10.1155/2019/2521096
14. Morcos YAT, Lütke S, Tenbieg A, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. doi: 10.1038/s41598-022-05060-x
15. Ovali MA, Bozgeyik I. Asprosin, a C-Terminal Cleavage Product of Fibrillin 1 Encoded by the FBN1 Gene, in Health and Disease. Mol Syndromol. 2022;13(3):175–183. doi: 10.1159/000520333 EDN: LOLQWH
16. Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. doi: 10.1016/j.mce.2019.03.001
17. Zhang Z, Tan Y, Zhu L, et al. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019;231:116554. doi: 10.1016/j.lfs.2019.116554
18. Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi: 10.1002/jcp.28694
19. Zhao Y, Wang Z, Chen Y, et al. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol. 2024;268(Pt 2):131868. doi: 10.1016/j.ijbiomac.2024.131868 EDN: PMSLMQ
20. Xu ZQ, Li XZ, Zhu R, et al. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens. 2024;42(8):1427–1439. doi: 10.1097/HJH.0000000000003751 EDN: CPZNKX
21. Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227. doi: 10.3390/ijms24010227 EDN: XUGLWU
22. Ge R, Chen JL, Zheng F, et al. Asprosin promotes vascular inflammation via TLR4-NFκB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659. doi: 10.1016/j.heliyon.2024.e31659 EDN: KYCEWQ
23. Zheng F, Ye C, Lei JZ, et al. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal. 2024;41(7-9):488–504. doi: 10.1089/ars.2023.0383 EDN: RHILLK
24. Huang Q, Chen S, Xiong X, et al. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF‑κBp65 Pathway. Inflammation. 2023;46(2):623–638. doi: 10.1007/s10753-022-01761-7 EDN: QCPVGR
25. Moradi N, Fouani FZ, Vatannejad A, et al. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis. 2021;20(1):88. doi: 10.1186/s12944-021-01514-9 EDN: FMPELR
26. Güven C, Kafadar H. Evaluation of Plasma Asprosin Concentration in Patients with Coronary Artery Disease. Braz J Cardiovasc Surg. 2022;37(4):493–500. doi: 10.21470/1678-9741-2021-0003 EDN: YVKSIO
27. Ciftci H, Gul HF, Sahin L, et al. Serum myeloperoxidase, paraoxonase, and plasma asprosin concentrations in patients with acute myocardial infarction. Heliyon. 2024;10(8):e29465. doi: 10.1016/j.heliyon.2024.e29465 EDN: GQDPRN
28. Hussein HK, Aubead NM, Kzar HH, et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):74. doi: 10.1186/s13098-022-00844-7 EDN: QKDBKW
29. Wang R, Hu W. Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215–221. doi: 10.1002/jcp.29835 EDN: VAMDTV
30. Katar M, Gevrek F. Relation of the intense physical exercise and asprosin concentrations in type 2 diabetic rats. Tissue Cell. 2024;90:102501. doi: 10.1016/j.tice.2024.102501 EDN: FWQZQD
31. Mishra I, Duerrschmid C, Ku Z, et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. 2021;10:e63784. doi: 10.7554/eLife.63784 EDN: YDNGPH
32. You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial‑to‑mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25. doi: 10.1186/s12933-022-01457-0 EDN: OBAEXO
33. Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129. doi: 10.1155/2021/6622129 EDN: APYZIY
34. Naiemian S, Naeemipour M, Zarei M, et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. 2020;12:65. doi: 10.1186/s13098-020-00564-w EDN: AYZQCC
35. Ma L, Wang Z, Sun L, et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781–1787. doi: 10.1111/jdi.14313 EDN: CTKQEH
36. Deng X, Zhao Z, Zhao L, et al. Association between circulating asprosin levels and carotid atherosclerotic plaque in patients with type 2 diabetes. Clin Biochem. 2022;109–110:44–50. doi: 10.1016/j.clinbiochem.2022.04.018 EDN: DTVATA
37. Timurkaan M, Timurkaan ES. Two Important Players for Type 2 Diabetes Mellitus: Metrnl and Asprosin. Clin Lab. 2022;68(9). doi: 10.7754/Clin.Lab.2021.211015 EDN: DIWDTZ
38. Yigitdol I, Gulumsek E, Demirtas D, et al. The role of serum asprosin levels in predicting the severity of coronary artery disease in patients with diabetes mellitus. Ir J Med Sci. 2024;193(3):1239–1247. doi: 10.1007/s11845-024-03616-6 EDN: DFKGGZ
39. Zhong M, Tian X, Sun Q, et al. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord. 2023;23(1):61. doi: 10.1186/s12902-023-01311-8 EDN: LLHHXO
40. Senyigit A, Durmus S, Tabak O, et al. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med. 2024;13(20):6126. doi: 10.3390/jcm13206126 EDN: LPCPXZ
41. Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi: 10.1007/s11033-021-06551-2 EDN: LIWWXO
42. Boz İB, Aytürk Salt S, Salt Ö, et al. Association Between Plasma Asprosin Levels and Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes. 2023;16:2515–2521. doi: 10.2147/DMSO.S424651
43. Zhong L, Long Y, Wang S, et al. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 2020;93:17–22. doi: 10.1016/j.placenta.2020.02.004 EDN: XSSPIC
44. Hu G, Si W, Zhang Q, Lv F. Circulating asprosin, irisin, and abdominal obesity in Chinese patients with type 2 diabetes mellitus: a case-control study. Endokrynol Pol. 2023;74(1):55–62. doi: 10.5603/EP.a2022.0093 EDN: ZKBQAA
45. Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. doi: 10.5603/EP.a2020.0059 EDN: WLMXVJ
46. Talebi SS, Rezaie S, Hajmiri MS, et al. Comparison of the effects of empagliflozin and sitagliptin, as add-on to metformin, on serum levels of asprosin and metabolic parameters in patients with type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(11):9149–9165. doi: 10.1007/s00210-024-03219-z EDN: WDGVHR
47. Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore). 2022;101(43):e31334. doi: 10.1097/MD.0000000000031334 EDN: TEBWOY
48. Jiang A, Feng Z, Yuan L, et al. Effect of sodium-glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):34. doi: 10.1186/s13098-021-00652-5 EDN: ZDHEUJ
49. Roomi AB, Ali EA, Nori W, Rahmah MI. Asprosin is a Reliable Predictor of Osteoporosis in Type 2 Diabetic Postmenopausal Women: A Case-Control Study. Indian J Clin Biochem. 2025;40(1):97–104. doi: 10.1007/s12291-023-01163-y EDN: DOXLVW
50. Li CH, Zhao X, Xu Y, et al. Increased serum asprosin is correlated with diabetes mellitus-induced erectile dysfunction. Diabetol Metab Syndr. 2024;16(1):91. doi: 10.1186/s13098-024-01333-9 EDN: CGIDAW
________________________________________________
2. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. doi: 10.1038/s41569-023-00877-z EDN: MMDOFI
3. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 — a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. doi: 10.26442/20751753.2022.1.201382 EDN: MTPNUO
4. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14–23. doi: 10.20514/2226-6704-2023-13-1-14-23 EDN: DHDDPP
5. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: miRNA and heart failure. Therapy. 2022;1:60–70. doi: 10.18565/therapy.2022.1.60-70 EDN: FKQBDC
6. Lyu JX, Guo DD, Song YC, et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. doi: 10.31083/j.rcm2502056 EDN: WPGJVY
7. Markova TN, Mishchenko NK, Petina DV. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology. 2022;68(1):73–80. doi: 10.14341/probl12805 EDN: BWJQBG
8. Yuan M, Li W, Zhu Y, et al. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64. doi: 10.3389/fendo.2020.00064 EDN: HGJSGQ
9. Farrag M, Ait Eldjoudi D, González-Rodríguez M, et al. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne). 2023;13:1101091. doi: 10.3389/fendo.2022.1101091 EDN: FHLZSK
10. Luís C, Fernandes R, Soares R, von Hafe P. A state of the art review on the novel mediator asprosin in the metabolic syndrome. Porto Biomed J. 2020;5(6):e108. doi: 10.1097/j.pbj.0000000000000108
11. Romere C, Duerrschmid C, Bournat J, et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566–579. doi: 10.1016/j.cell.2016.02.063
12. Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021;13(2):620. doi: 10.3390/nu13020620 EDN: GRQXMH
13. Ugur K, Aydin S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int J Endocrinol. 2019;2019:2521096. doi: 10.1155/2019/2521096
14. Morcos YAT, Lütke S, Tenbieg A, et al. Sensitive asprosin detection in clinical samples reveals serum/saliva correlation and indicates cartilage as source for serum asprosin. Sci Rep. 2022;12(1):1340. doi: 10.1038/s41598-022-05060-x
15. Ovali MA, Bozgeyik I. Asprosin, a C-Terminal Cleavage Product of Fibrillin 1 Encoded by the FBN1 Gene, in Health and Disease. Mol Syndromol. 2022;13(3):175–183. doi: 10.1159/000520333 EDN: LOLQWH
16. Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96–104. doi: 10.1016/j.mce.2019.03.001
17. Zhang Z, Tan Y, Zhu L, et al. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019;231:116554. doi: 10.1016/j.lfs.2019.116554
18. Jung TW, Kim HC, Kim HU, et al. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J Cell Physiol. 2019;234(11):20888–20899. doi: 10.1002/jcp.28694
19. Zhao Y, Wang Z, Chen Y, et al. Asprosin aggravates atherosclerosis via regulating the phenotype transformation of vascular smooth muscle cells. Int J Biol Macromol. 2024;268(Pt 2):131868. doi: 10.1016/j.ijbiomac.2024.131868 EDN: PMSLMQ
20. Xu ZQ, Li XZ, Zhu R, et al. Asprosin contributes to vascular remodeling in hypertensive rats via superoxide signaling. J Hypertens. 2024;42(8):1427–1439. doi: 10.1097/HJH.0000000000003751 EDN: CPZNKX
21. Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227. doi: 10.3390/ijms24010227 EDN: XUGLWU
22. Ge R, Chen JL, Zheng F, et al. Asprosin promotes vascular inflammation via TLR4-NFκB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659. doi: 10.1016/j.heliyon.2024.e31659 EDN: KYCEWQ
23. Zheng F, Ye C, Lei JZ, et al. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal. 2024;41(7-9):488–504. doi: 10.1089/ars.2023.0383 EDN: RHILLK
24. Huang Q, Chen S, Xiong X, et al. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF‑κBp65 Pathway. Inflammation. 2023;46(2):623–638. doi: 10.1007/s10753-022-01761-7 EDN: QCPVGR
25. Moradi N, Fouani FZ, Vatannejad A, et al. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis. 2021;20(1):88. doi: 10.1186/s12944-021-01514-9 EDN: FMPELR
26. Güven C, Kafadar H. Evaluation of Plasma Asprosin Concentration in Patients with Coronary Artery Disease. Braz J Cardiovasc Surg. 2022;37(4):493–500. doi: 10.21470/1678-9741-2021-0003 EDN: YVKSIO
27. Ciftci H, Gul HF, Sahin L, et al. Serum myeloperoxidase, paraoxonase, and plasma asprosin concentrations in patients with acute myocardial infarction. Heliyon. 2024;10(8):e29465. doi: 10.1016/j.heliyon.2024.e29465 EDN: GQDPRN
28. Hussein HK, Aubead NM, Kzar HH, et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):74. doi: 10.1186/s13098-022-00844-7 EDN: QKDBKW
29. Wang R, Hu W. Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215–221. doi: 10.1002/jcp.29835 EDN: VAMDTV
30. Katar M, Gevrek F. Relation of the intense physical exercise and asprosin concentrations in type 2 diabetic rats. Tissue Cell. 2024;90:102501. doi: 10.1016/j.tice.2024.102501 EDN: FWQZQD
31. Mishra I, Duerrschmid C, Ku Z, et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. Elife. 2021;10:e63784. doi: 10.7554/eLife.63784 EDN: YDNGPH
32. You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial‑to‑mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25. doi: 10.1186/s12933-022-01457-0 EDN: OBAEXO
33. Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129. doi: 10.1155/2021/6622129 EDN: APYZIY
34. Naiemian S, Naeemipour M, Zarei M, et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol Metab Syndr. 2020;12:65. doi: 10.1186/s13098-020-00564-w EDN: AYZQCC
35. Ma L, Wang Z, Sun L, et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781–1787. doi: 10.1111/jdi.14313 EDN: CTKQEH
36. Deng X, Zhao Z, Zhao L, et al. Association between circulating asprosin levels and carotid atherosclerotic plaque in patients with type 2 diabetes. Clin Biochem. 2022;109–110:44–50. doi: 10.1016/j.clinbiochem.2022.04.018 EDN: DTVATA
37. Timurkaan M, Timurkaan ES. Two Important Players for Type 2 Diabetes Mellitus: Metrnl and Asprosin. Clin Lab. 2022;68(9). doi: 10.7754/Clin.Lab.2021.211015 EDN: DIWDTZ
38. Yigitdol I, Gulumsek E, Demirtas D, et al. The role of serum asprosin levels in predicting the severity of coronary artery disease in patients with diabetes mellitus. Ir J Med Sci. 2024;193(3):1239–1247. doi: 10.1007/s11845-024-03616-6 EDN: DFKGGZ
39. Zhong M, Tian X, Sun Q, et al. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord. 2023;23(1):61. doi: 10.1186/s12902-023-01311-8 EDN: LLHHXO
40. Senyigit A, Durmus S, Tabak O, et al. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med. 2024;13(20):6126. doi: 10.3390/jcm13206126 EDN: LPCPXZ
41. Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi: 10.1007/s11033-021-06551-2 EDN: LIWWXO
42. Boz İB, Aytürk Salt S, Salt Ö, et al. Association Between Plasma Asprosin Levels and Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes. 2023;16:2515–2521. doi: 10.2147/DMSO.S424651
43. Zhong L, Long Y, Wang S, et al. Continuous elevation of plasma asprosin in pregnant women complicated with gestational diabetes mellitus: A nested case-control study. Placenta. 2020;93:17–22. doi: 10.1016/j.placenta.2020.02.004 EDN: XSSPIC
44. Hu G, Si W, Zhang Q, Lv F. Circulating asprosin, irisin, and abdominal obesity in Chinese patients with type 2 diabetes mellitus: a case-control study. Endokrynol Pol. 2023;74(1):55–62. doi: 10.5603/EP.a2022.0093 EDN: ZKBQAA
45. Gozel N, Kilinc F. Investigation of plasma asprosin and saliva levels in newly diagnosed type 2 diabetes mellitus patients treated with metformin. Endokrynol Pol. 2021;72(1):37–43. doi: 10.5603/EP.a2020.0059 EDN: WLMXVJ
46. Talebi SS, Rezaie S, Hajmiri MS, et al. Comparison of the effects of empagliflozin and sitagliptin, as add-on to metformin, on serum levels of asprosin and metabolic parameters in patients with type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(11):9149–9165. doi: 10.1007/s00210-024-03219-z EDN: WDGVHR
47. Dai C, Zhu W. Effects of GLP-1 receptor agonists on asprosin levels in normal weight or overweight/obesity patients with type 2 diabetes mellitus. Medicine (Baltimore). 2022;101(43):e31334. doi: 10.1097/MD.0000000000031334 EDN: TEBWOY
48. Jiang A, Feng Z, Yuan L, et al. Effect of sodium-glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr. 2021;13(1):34. doi: 10.1186/s13098-021-00652-5 EDN: ZDHEUJ
49. Roomi AB, Ali EA, Nori W, Rahmah MI. Asprosin is a Reliable Predictor of Osteoporosis in Type 2 Diabetic Postmenopausal Women: A Case-Control Study. Indian J Clin Biochem. 2025;40(1):97–104. doi: 10.1007/s12291-023-01163-y EDN: DOXLVW
50. Li CH, Zhao X, Xu Y, et al. Increased serum asprosin is correlated with diabetes mellitus-induced erectile dysfunction. Diabetol Metab Syndr. 2024;16(1):91. doi: 10.1186/s13098-024-01333-9 EDN: CGIDAW
Авторы
А.М. Алиева*1, И.Е. Байкова1, Н.Х. Хаджиева2, А.Б. Султангалиева1, А.М. Рахаев3, Д.А. Эльмурзаева3, А.О. Асанов3, И.В. Ковтюх1, Э.З. Этезова4, И.Г. Никитин1
1Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия;
2ЛАВ-МЕД, Москва, Россия;
3Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия;
4Кубанский государственный медицинский университет, Краснодар, Россия
*amisha_alieva@mail.ru
1The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russia;
2Lav-Med, Moscow, Russia;
3Kabardino-Balkarian State University, Nalchik, Russia;
4Kuban State Medical University, Krasnodar, Russia
*amisha_alieva@mail.ru
1Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия;
2ЛАВ-МЕД, Москва, Россия;
3Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия;
4Кубанский государственный медицинский университет, Краснодар, Россия
*amisha_alieva@mail.ru
________________________________________________
1The Russian National Research Medical University named after N.I. Pirogov, Moscow, Russia;
2Lav-Med, Moscow, Russia;
3Kabardino-Balkarian State University, Nalchik, Russia;
4Kuban State Medical University, Krasnodar, Russia
*amisha_alieva@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
