Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Гипертриглицеридемия (триглицерид-богатые липопротеины и их ремнанты): роль в развитии атеросклеротических сердечно-сосудистых заболеваний и стратегия контроля. Заключение Комитета экспертов РКО, НОА, РосОКР
Гипертриглицеридемия (триглицерид-богатые липопротеины и их ремнанты): роль в развитии атеросклеротических сердечно-сосудистых заболеваний и стратегия контроля. Заключение Комитета экспертов РКО, НОА, РосОКР
Бубнова М.Г., Ежов М.В., Аронов Д.М., Галявич А.С., Гуревич В.С., Дупляков Д.В., Зафираки В.К., Карамнова Н.С., Кашталап В.В., Коновалов Г.А., Мешков А.Н., Обрезан А.Г., Семенкин А.А., Сергиенко И.В., Филиппов А.Е. Гипертриглицеридемия (триглицерид-богатые липопротеины и их ремнанты): роль в развитии атеросклеротических сердечно-сосудистых заболеваний и стратегия контроля. Заключение Комитета экспертов Российского кардиологического общества (РКО), Национального общества по изучению атеросклероза (НОА), Российского общества кардиосоматической реабилитации и вторичной профилактики (РосОКР) // CardioСоматика. 2025. Т. 16, № 3. С. 192–218. DOI: 10.17816/CS688224 EDN: COVUTH
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
В представленном экспертном документе обсуждается проблема высокой распространённости сердечно-сосудистых заболеваний (ССЗ), обусловленных атеросклерозом. Сегодня очевидно, что причины и генез атеросклеротических ССЗ (АССЗ) не всегда можно объяснить с позиции нарушения липидного обмена, основанного исключительно на липопротеинах низкой плотности (ЛНП). В последние годы наблюдается рост количества исследований, посвящённых гипертриглицеридемии (ГТГ), обсуждаются механизмы ее формирования и значимость в атеротромбогенезе. В этой связи возникает необходимость актуализации ключевых вопросов, определяющих первопричину развития АССЗ при ГТГ и роль компонентов триглицерид-богатых липопротеинов (ТГ-богатых ЛП) и их ремнантов в этом процессе. К настоящему времени завершены эпидемиологические и генетические исследования, свидетельствующие о причинно-следственной связи ГТГ с развитием АССЗ независимо от уровня холестерина (ХС) ЛНП; определена значимость ТГ‑богатых ЛП в формировании высокого остаточного сердечно-сосудистого риска на фоне контроля уровня ХС ЛНП; получены доказательства профилактической пользы при снижении повышенного уровня ТГ в крови.
Настоящая статья ранее опубликована как: Бубнова М.Г., Ежов М.В., Аронов Д.М., Галявич А.С., Гуревич В.С., Дупляков Д.В., Зафираки В.К., Карамнова Н.С., Кашталап В.В., Коновалов Г.А., Мешков А.Н., Обрезан А.Г., Семенкин А.А., Сергиенко И.В., Филиппов А.Е. Гипертриглицеридемия (триглицерид-богатые липопротеины и их ремнанты): роль в развитии атеросклеротических сердечно-сосудистых заболеваний и стратегия контроля. Заключение Комитета экспертов Российского кардиологического общества (РКО), Национального общества по изучению атеросклероза (НОА), Российского общества кардиосоматической реабилитации и вторичной профилактики (РосОКР). Российский кардиологический журнал. 2025;30(5):6364. doi: 10.15829/1560-4071-2025-6364 EDN: VNFGFQ
Ключевые слова: гипертриглицеридемия, гиперлипидемия, сердечно-сосудистые заболевания, атеросклероз, остаточный сердечно-сосудистый риск, фенофибрат, омега-3 полиненасыщенные жирные кислоты
This article was previously published in: Bubnova MG, Ezhov MV, Aronov DM, Galyavich AS, Gurevich VS, Duplyakov DV, Zafiraki VK, Karamnova NS, Kashtalap VV, Konovalov GA, Meshkov AN, Obrezan AG, Semenkin AA, Sergienko IV, Filippov AE. Hypertriglyceridemia (triglyceride-rich lipoproteins and their remnants): role in the development of atherosclerotic cardiovascular diseases and control strategy. Opinion of the Expert Committee of the Russian Society of Cardiology, the National Atherosclerosis Society, and the Russian Society of Cardiac and Somatic Rehabilitation and Secondary Prevention. Russian Journal of Cardiology. 2025;30(5):6364. doi: 10.15829/1560-4071-2025-6364 EDN: VNFGFQ
Keywords: hypertriglyceridemia, hyperlipidemias, cardiovascular diseases, atherosclerosis, residual cardiovascular risk, fenofibrate, omega-3 polyunsaturated fatty acids
Настоящая статья ранее опубликована как: Бубнова М.Г., Ежов М.В., Аронов Д.М., Галявич А.С., Гуревич В.С., Дупляков Д.В., Зафираки В.К., Карамнова Н.С., Кашталап В.В., Коновалов Г.А., Мешков А.Н., Обрезан А.Г., Семенкин А.А., Сергиенко И.В., Филиппов А.Е. Гипертриглицеридемия (триглицерид-богатые липопротеины и их ремнанты): роль в развитии атеросклеротических сердечно-сосудистых заболеваний и стратегия контроля. Заключение Комитета экспертов Российского кардиологического общества (РКО), Национального общества по изучению атеросклероза (НОА), Российского общества кардиосоматической реабилитации и вторичной профилактики (РосОКР). Российский кардиологический журнал. 2025;30(5):6364. doi: 10.15829/1560-4071-2025-6364 EDN: VNFGFQ
Ключевые слова: гипертриглицеридемия, гиперлипидемия, сердечно-сосудистые заболевания, атеросклероз, остаточный сердечно-сосудистый риск, фенофибрат, омега-3 полиненасыщенные жирные кислоты
________________________________________________
This article was previously published in: Bubnova MG, Ezhov MV, Aronov DM, Galyavich AS, Gurevich VS, Duplyakov DV, Zafiraki VK, Karamnova NS, Kashtalap VV, Konovalov GA, Meshkov AN, Obrezan AG, Semenkin AA, Sergienko IV, Filippov AE. Hypertriglyceridemia (triglyceride-rich lipoproteins and their remnants): role in the development of atherosclerotic cardiovascular diseases and control strategy. Opinion of the Expert Committee of the Russian Society of Cardiology, the National Atherosclerosis Society, and the Russian Society of Cardiac and Somatic Rehabilitation and Secondary Prevention. Russian Journal of Cardiology. 2025;30(5):6364. doi: 10.15829/1560-4071-2025-6364 EDN: VNFGFQ
Keywords: hypertriglyceridemia, hyperlipidemias, cardiovascular diseases, atherosclerosis, residual cardiovascular risk, fenofibrate, omega-3 polyunsaturated fatty acids
Полный текст
Список литературы
1. Ezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. doi: 10.15829/1560-4071-2023-5471 EDN: YVZOWJ
2. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88. doi: 10.1093/eurheartj/ehz455
3. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337. doi: 10.1093/eurheartj/ehab484
4. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–66. doi: 10.1016/S2213-8587(13)70191-8
5. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–56. doi: 10.1161/CIRCULATIONAHA.108.804146
6. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points — a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. doi: 10.1093/eurheartj/ehw152
7. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118:547–63. doi: 10.1161/CIRCRESAHA.115.306249
8. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–806. doi: 10.1093/eurheartj/ehab551
9. Castelli WP. Epidemiology of triglycerides: a view from Framingham. American J Cardiol. 1992;70(19):H3–H9. doi: 10.1016/0002-9149(92)91083-g
10. Carr RA, Rejowski BJ, Cote GA, et al. Systematic review of hypertriglyceridemia-induced acute pancreatitis: a more virulent etiology? Pancreatology. 2016;16:469–76. doi: 10.1016/j.pan.2016.02.011
11. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild‑to‑moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176:1834–42. doi: 10.1001/jamainternmed.2016.6875
12. Murphy M, Shemg X, MacDonald TM. Hypertriglyceridemia and acute pancreatitis. JAMA Intern Med. 2013;173(2):162–4. doi: 10.1001/2013.jamaintermed.477
13. Faghih M, Singh VK. Do elevated triglycerides truly trigger acute pancreatitis? Dig Dis Sci. 2019;64:616–8. doi: 10.1007/s10620-019-05501-0
14. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960–93. doi: 1016/j.jacc.2021.06.011
15. Stürzebecher PE, Katzmann JL, Laufs U. What is ‘remnant cholesterol’? Eur Heart J. 2023;44:1446–8. doi: 10.1093/eurheartj/ehac783
16. Remaley AT, Otvos JD. Methodological issues regarding: "A third of nonfasting plasma cholesterol is in remnant lipoproteins: lipoprotein subclass profiling in 9293 individuals". Atherosclerosis. 2020;302:55–6. doi: 10.1016/j.atherosclerosis.2020.01.020
17. Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J. 2023;44:4196–8. doi: 10.1093/eurheartj/ehad419
18. White KT, Moorthy MV, Akinkuolie AO, et al. Identifying an optimal cutpoint for the diagnosis of hypertriglyceridemia in the nonfasting state. Clin Chem. 2015;61:1156–63. doi: 10.1373/clinchem.2015.241752
19. Raja V, Aguiar C, Alsayed N, et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023;383:117312. doi: 10.1016/j.atherosclerosis.2023.117312
20. Fredrickson DS. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med. Ann Intern Med. 1971;75(3):471–2. doi: 10.7326/0003-4819-75-3-471
21. Gill PK, Dron JS, Berberich AJ, et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021;15(1):79–87. doi: 10.1016/j.jacl.2020.11.006
22. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41:99–109. doi: 10.1093/eurheartj/ehz785
23. Cohen JD, Cziraky MJ, Cai Q, et al. 30-year trends in serum lipids among United States adults: results from the National Health and Nutrition Examination Surveys II, III, and 1999-2006. Am J Cardiol. 2010;106(7):969–75. doi: 10.1016/j.amjcard.2010.05.030
24. Simha V. Management of hypertriglyceridemia. BMJ. 2020;371:m3109. doi: 10.1136/bmj.m3109
25. Chyzhyk V, Kozmic S, Brown AS, et al. Extreme hypertriglyceridemia: genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol. 2019;13(1):89–99. doi: 10.1016/j.jacl.2018.09.007
26. Gitt A.K, Drexel H, Feely J, et al. DYSIS Investigators. Persistent lipid abnormalities in statin-treated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur J Prev Cardiol. 2012;19(2):221–30. doi: 10.1177/1741826711400545
27. Drapkina OM, Imaeva AE, Kutsenko VA, et al. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Cardiovascular Therapy and Prevention. 2023;22(8S):3791. doi: 10.15829/1728-8800-2023-3791 EDN DGYJLA
28. Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross‑sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. doi: 10.1186/s12933-015-0268-2
29. Ghandehari H, Kamal-Bahl S, Wong ND. Prevalence and extent of dyslipidemia and recommended lipid levels in US adults with and without cardiovascular comorbidities: The National Health and Nutrition Examination Survey 2003-2004. Am Heart J. 2008;156(1):112–9. doi: 10.1016/j.ahj.2008.03.005
30. Chait A, Eckel RH. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann Intern Med. 2019;170:626–34. doi: 10.7326/M19-0203
31. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol. 2023;14:1322869. doi: 10.3389/fendo.2023.1322869
32. Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res. 1988;29:1491–500.
33. Bubnova MG, Oganov RG. Impaired edible fats tolerance and its contribution to atherothrombogenesis. Terapevticheskiy arkhiv. 2004;1:73–8. (In Russ.)
34. Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321(4):E493–508. doi: 10.1152/ajpendo.00195.2021
35. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21(3):218–28. doi: 10.1097/MOL.0b013e328338cabc
36. Veniant MM, Zlot CH, Walzem RL, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest. 1998;102(8):1559–68. doi: 10.1172/JCI4164
37. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31:132–9. doi: 10.1097/MOL.0000000000000682
38. Botham K, Bravo E, Elliott J, Wheeler-Jones C. Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharm Des. 2005;11(28):3681–95. doi: 10.2174/138161205774580732
39. Dalla-Riva J, Garonna E, Elliott J, et al. Botham KM, Wheeler-Jones CP. Endothelial cells as targets for chylomicron remnants. Atheroscler Suppl. 2010;11(1):31–7. doi: 10.1016/j.atherosclerosissup.2010.04.001
40. Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117:7–18. doi: 10.1160/TH16-08-0593
41. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–5. doi: 10.1515/CCLM.2003.120
42. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14:1767–74. doi: 10.1161/01.atv.14.11.1767
43. Rosenson RS, Davidson MH, Hirsh BJ, et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardio-vascular disease. J Am Coll Cardiol. 2014;64:2525–40. doi: 10.1016/j.jacc.2014.09.042
44. Nakano T, Nakajima K, Niimi M, et al. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin Chim Acta. 2008;390:38–43. doi: 10.1016/j.cca.2007.12.012
45. Davidson MH. Triglyceride-rich lipoprotein cholesterol (TRL-C): the ugly stepsister of LDL-C. Eur Heart J. 2018;39:620–2. doi: 10.1093/eurheartj/ehx741
46. Örni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall. Curr Med Chem. 2018;26(9):1701–10. doi: 10.2774/0929867325666180530094819
47. Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309. doi: 10.1161/CIRCULATIONAHA.113.003008
48. Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77:3031–41. doi: 10.1016/j.jacc.2021.04.059
49. Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2029;284:24–30. doi: 10.1016/j.atherosclerosis.2019.02.019
50. Bubnova MG, Aronov DM, Perova NV, Mazaev VP. Relationship between the level of lipemia after fat load and the severity of coronary artery atherosclerosis. Therapeutic archive. 2004;76(6):62–7. (In Russ.)
51. Elshazly MB, Mani P, Nissen S, et al. Remnant cholesterol, coronary atheroma progression and clinical events in statin-treated patients with coronary artery disease. Eur J Prev Cardiol. 2020;27:1091–100. doi: 10.1177/2047487319887578
52. Krauss RM, Williams PT, Brensike J, et al. Intermediate‑density lipoproteins and progression of coronary artery disease in hypercholesterolemic men. Lancet. 1987;2:62–6. doi: 10.1016/s0140-6736(87)92734-6
53. Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-x
54. Phillips NR, Water D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation. 1993;88:2762–70. doi: 10.1161/01.cir.88.6.2762
55. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30. doi: 10.1093/eurheartj/ehz962
56. Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–42. doi: 10.1016/j.cca.2014.01.015
57. Björnson E, Packard CJ, Adiels M, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med. 2019;285:562–77. doi: 10.1111/joim.12877
58. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb. 1991;11:2–14. doi: 10.1161/01.atv.11.1.2
59. Stavenow L, Kjellström T. Influence of serum triglyceride levels on the risk for myocardial infarction in 12,510 middle aged males: interaction with serum cholesterol. Atherosclerosis. 1999;147(2):243–7. doi: 10.1016/s0021-9150(99)00190-2
60. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B. doi: 10.1016/s0002-9149(98)00031-9
61. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450–8. doi: 10.1161/CIRCULATIONAHA.106.637793
62. Di Angelantonio E, Sarwar N, Perry P, et al. Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. doi: 10.1001/jama.2009.1619
63. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626-35. doi: 10.1016/S0140-6736(14)61177-6
64. Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112,512 individuals from the general population. Ann Neurol. 2019;85:550–9. doi: 10.1002/ana.25432
65. Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride‑lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321:364–73. doi: 10.1001/jama.2018.20045
66. Kalthoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J. 2020;41:2288–99. doi: 10.1093/eurheartj/ehaa172
67. Park H-B, Arsanjani R, Hong S-J, et al. Impact of hypertriglyceridaemia on cardiovascular mortality according to low-density lipoprotein cholesterol in a 15.6-million population. Eur J Prevent Cardiol. 2024;31:280–90. doi: 10.1093/eurjpc/zwad330
68. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.
69. Patel A, Barzi F, Jamrozik K, et al. Asia Pacific Cohort Studies Collaboration. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation. 2004;110:2678–86. doi: 10.1161/01.CIR.0000145615.33955.83
70. Arca M, Veronesi C, D’Erasmo L, et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low‑Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J Am Heart Assoc. 2020;9:e015801. doi: 10.1161/JAHA.119.015801
71. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi: 10.1186/s12933-022-01525-5
72. Lee H, Park J-B, Hwang I-C, et al. Association of four lipid components with mortality, myocardial infarction, and stroke in statin-naïve young adults: A nationwide cohort study. Eur J Prevent Cardiol. 2020;27(8):870–81. doi: 10.1177/2047487319898571
73. Pletcher MJ, Bibbins-Domingo K, Liu K, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010;153(3):137–46. doi: 10.7326/0003-4819-153-3-201008030-00004
74. Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol. 1997;17(6):1114–20. doi: 10.1161/01.atv.17.6.1114
75. Kivioja R, Pietila A, Martinez-Majander N, et al. Risk factors for early-onset ischemic stroke: a case-control study. J Am Heart Assoc. 2018;7(21):e009774. doi: 10.1161/JAHA.118.009774
76. Nordestgaard BG, Benn M, Schnohr P, Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. doi: 10.1001/jama.298.3.299
77. Freiberg JJ, Tybjærg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300(18):2142–52. doi: 10.1001/jama.2008.621
78. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16. doi: 10.1001/jama.298.3.309
79. Varbo A, Nordestgaard BG. Nonfasting triglycerides, low-density lipoprotein cholesterol, and heart failure risk: two cohort studies of 113 554 individuals. Arterioscler Thromb Vasc Biol. 2018;38(2):464-72. doi: 10.1161/ATVBAHA.117.310269
80. Toth PP, Sephy P, Hull M, Granowitz C. Elevated Triglycerides (≥150 mg/dL) and High Triglycerides (200-499 mg/dL) Are Significant Predictors of New Heart Failure Diagnosis: A Real-World Analysis of High-Risk Statin‑Treated Patients. Vascular Health and Risk Management. 2019;15:533–8. doi: 10.2147/VHRM.S221289
81. Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi: 10.1016/j.jacc.2012.08.1026
82. Goliasch G, Wiesbauer F, Blessberger H, et al. Premature myocardial infarction is strongly associated with increased levels of remnant cholesterol. J Clin Lipidol. 2015;9:801–6. doi: 10.1016/j.jacl.2015.08.009
83. Varbo A, Freiberg JJ, Nordestgaard BG. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–43. doi: 10.1373/clinchem.2014.234146
84. Jepsen AM, Langsted A, Varbo A, et al. Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clin Chem. 2016;62(4):593–604. doi: 10.1373/clinchem.2015.253757
85. Bittencourt MS, Santos RD, Staniak H, et al. Relation of fasting triglyceride-rich lipoprotein cholesterol to coronary artery calcium score (from the ELSA-Brasil Study). Am J Cardiol. 2017;119(9):1352–8. doi: 10.1016/j.amjcard.2017.01.033
86. Doi T, Langsted A, Nordestgaard BG. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis. 2023;379:117141. doi: 10.1016/j.atherosclerosis.2023.05.010
87. Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;42:4324–32. doi: 10.1093/eurheartj/ehab432
88. Lee SJ, Kim S-E, Go T-H, et al. Remnant cholesterol, low-density lipoprotein cholesterol, and incident cardiovascular disease among Koreans: a national population-based study. Eur J Prevent Cardiol. 2023;30:1142–50. doi: 10.1093/eurjpc/zwad036
89. Wadström BN, Wulff AB, Pedersen KM, et al. Elevated remnant cholesterol increases the risk of peripheral artery disease, myocardial infarction, and ischaemic stroke: a cohort-based study. Eur Heart J. 2022;43:3258–69. doi: 10.1093/eurheartj/ehab705
90. Yang XH, Zhang BL, Cheng Y, et al. Association of remnant cholesterol with risk of cardiovascular disease events, stroke, and mortality: A systemic review and meta-analysis. Atherosclerosis. 2023;371:21–31. doi: 10.1016/j.atherosclerosis.2023.03.012
91. Cordero A, Alvarez-Alvarez B, Escribano D, et al. Remnant cholesterol in patients admitted for acute coronary syndromes. Eur J Prevent Cardiol. 2023;30:340–8. doi: 10.1093/eurjpc/zwac286
92. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75. doi: 10.1111/j.1365-2796.2010.02333.x
93. Wadström BN, Pedersen KM, Wulff AB, et al. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023;44:1432–45. doi: 10.1093/eurheartj/ehac822
94. Jørgensen AB, Frikke-Schmidt R, West AS, et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34:1826–33. doi: 10.1093/eurheartj/ehs431
95. Chapman MJ, Ginsberg HN, Amarenco P, et al. the European Atherosclerosis Society Consensus Panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61. doi: 10.1093/eurheartj/ehr112
96. Boullart AC, de Graaf J, Stalenhoef AF. Serum triglycerides and risk of cardiovascular disease. Biochim Biophys Acta. 2012;1821:867–75. doi: 10.1016/j.bbalip.2011.10.002
97. Björnson E, Adiels M, Taskinen M-R, et al. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44:4186–95. doi: 10.1093/eurheartj/ehad337
98. Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6. doi: 10.1038/nature13917
99. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. doi: 10.1056/NEJMoa1308027
100. Khera AV, Won HH, Peloso GM, et al. Myocardial Infarction Genetics Consortium, DiscovEHR Study Group, CARDIoGRAM Exome Consortium, and Global Lipids Genetics Consortium. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317:937–46. doi: 10.1001/jama.2017.0972
101. Stitziel NO, Khera AV, Wang X, et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63. doi: 10.1016/j.jacc.2017.02.030
102. Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33. doi: 10.1056/NEJMoa1510926
103. Stitziel NO, Stirrups KE, Masca NG, et al. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators; Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44. doi: 10.1056/NEJMoa1507652
104. Helkkula P, Kiiskinen T, Havulinna AS, et al. ANGPTL8 protein‑truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genet. 2021;17:e1009501. doi: 10.1371/journal.pgen.1009501
105. Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60:737–46. doi: 10.1373/clinchem.2013.219881
106. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095
107. Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The evolving understanding and approach to residual cardiovascular risk management. Front Cardiovasc Med. 2020;7:88. doi: 10.3389/fcvm.2020.00088
108. Toth Peter P, Fazio S, Wong ND. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22:279–89. doi: 10.1111/dom.13921
109. Marston NA, Giugliano RP, Im KAh, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation. 2019;140:1308–17. doi: 10.1161/CIRCULATIONAHA.119.041998
110. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75. doi: 10.1016/j.jacc.2015.03.544
111. Sacks FM, Tonkin AM, Shepherd J, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation. 2000;102:1893–900. doi: 10.1161/01.cir.102.16.1893
112. Miller M, Cannon CP, Murphy SA, et al. PROVE IT-TIMI 22 Investigators. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30. doi: 10.1016/j.jacc.2007.10.038
113. Faergeman O, Holme I, Fayyad R, et al. Steering Committees of IDEAL and TNT Trials. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi: 10.1016/j.amjcard.2009.04.008
114. Anderson JW, Konz EC. Obesity and disease management: effects of weight loss on comorbid conditions. Obes Res. 2001;9(Suppl 4):326S–334S. doi: 10.1038/oby.2001.138
115. Couillard C, Després JP, Lamarche B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001;21(7):1226–32. doi: 10.1161/hq0701.092137
116. Bubnova MG, Aronov DM, Olferyev AM, Bondarenko IZ. Modification of blood lipoprotein and apolipoprotein levels by physical exercise of various type and intensity in healthy men with normo- and hyperlipidemia. Cardiovascular Therapy and Prevention. 2005;4(2):74–83. (In Russ.)
117. Aronov DM, Bubnova MG, Perova NV, et al. The effect of maximal versus submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. J Clin Lipidol. 2017;11:369–76. doi: 10.1016/j.jacl.2017.01.007
118. Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J Clin Lipidol. 2023;17(4):428–51. doi: 10.1016/j.jacl.2023.05.099
119. Williams L, Rhodes KS, Karmally W, et al. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908–19. doi: 10.1016/j.jacl.2018.04.010
120. Fechner E, Smeets ETHC, Schrauwen P, Mensink RP. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans-A Systematic Review and Meta-Analysis. Nutrients. 2020;12(4):991. doi: 10.3390/nu12040991
121. Stoernell CK, Tangney CC, Rockway SW. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res. 2008;28(7):443–9. doi: 10.1016/j.nutres.2008.03.013
122. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy‑restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta‑analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98. doi: 10.3945/ajcn.112.044321
123. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose‑sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. doi: 10.1172/JCI37385
124. Kodama S, Horikawa C, Fujihara K, et al. Relationship between intake of fruit separately from vegetables and triglycerides – A meta-analysis. Clin Nutr ESPEN. 2018;27:53–8. doi: 10.1016/j.clnesp.2018.07.001
125. Leslie MA, Cohen DJA, Liddle DM, et al. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7
126. Liu YX, Yu JH, Sun JH, et al. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12(4):725. doi: 10.3390/foods12040725
127. Khorshidi M, Hazaveh ZS, Alimohammadi-kamalabadi M, et al. Effect of omega-3 supplementation on lipid profile in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2023;22:9. doi.10.1186/s12937-022-00826-5
128. Jones PH, Davidson MH, Stein EA, et al.; STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol. 2003;92(2):152–60. doi: 10.1016/s0002-9149(03)00530-7
129. Arutyunov GP, Boytsov SA, Voyevoda MI, et al. Correction of Hypertriglyceridemia as the Way to Reduce Residual Risk in Diseases Caused by Atherosclerosis. Conclusion of the Advisory Board of the RussianSociety of Cardiology, the Russian Scientific Medical Society of Therapists, the Eurasian Association of Therapists, the Russian National Atherosclerosis Society, the Russian Association of Endocrinologists, and the National League of Cardiologic Genetics. Rational Pharmacotherapy in Cardiology. 2019;15(2):282–8. doi: 10.20996/1819-6446-2019-15-2-282-288
130. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation. 1998;98:2088–93. doi: 10.1161/01.cir.98.19.2088
131. Kim NH, Kim SG. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab J. 2020;44:213–21. doi.10.4093/dmj.2020.0001
132. Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc). 2006;42(1):39–64. doi: 10.1358/dot.2006.42.1.963528
133. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs. 2007;67(1):121–53. doi: 10.2165/00003495-200767010-00013
134. Feher MD, Caslake M, Foxton J, et al. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999;15:395. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<395:AID-DMRR65>3.0.CO;2-N
135. Ezhov MV, Arutyunov GP. Effectiveness and Safety of Fenofibrate in Routine Treatment of Patients with Hypertriglyceridemia and Metabolic Syndrome. Diseases. 2023;11:140. doi: 10.3390/diseases11040140
136. DAIS investigators. Effect of fenofibrate on progression of coronary‑artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10. doi: 10.1016/S0140-6736(00)04209-4
137. Keech A, Simes RJ, Barter P, et al. The FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61. doi: 10.1016/S0140-6736(05)67667-2
138. Ginsberg HN, Elam MB, Lovato LС, et al. The ACCORD Study Group. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med. 2010;362:1563–74. doi: 10.1056/NEJMoa1001282
139. Wierzbicki AS. FIELD of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract. 2006;60(4):442–9. doi: 10.1111/j.1368-5031.2006.00882.x
140. Jo SH, Nam H, Lee J, Park S, et al. Fenofibrate Use Is Associated With Lower Mortality and Fewer Cardiovascular Events in Patients With Diabetes: Results of 10,114 Patients From the Korean National Health Insurance Service Cohort. Diabetes Care. 2021;44:1868–76. doi: 10.2337/dc20-1533
141. Kim NH, Han KH, Choi J, et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019;366:5125. doi: 10.1136/bmj.l5125
142. Das Pradhan A, Glynn RJ, Fruchart JC, et al. PROMINENT Investigators. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387:1923–34. doi: 10.1056/NEJMoa2210645
143. Ku EJ, Kim B, Han K, et al. Fenofibrate to prevent amputation and reduce vascular complications in patients with diabetes: FENO-PREVENT. Cardiovascular Diabetology. 2024;23:329. doi: 10.1186/s12933-024-02422-9
144. Elam M, Lovato L, Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus Clin Lipidol. 2011;6(1):9–20. doi: 10.2217/clp.10.84
145. Li J, Shi L, Zhao G, et al. High triglyceride levels increase the risk of diabetic microvascular complications: a cross-sectional study. Lipids Health Dis. 2023;22(1):109. doi: 10.1186/s12944-023-01873-5
146. Gitay MN, Sohail A, Arzoo Y, Shakir MA. Changes in serum lipids with the onset and progression of Diabetic Retinopathy in Type-II Diabetes Mellitus. Pak J Med Sci. 2023;39(1):188–91. doi: 10.12669/pjms.39.1.6265
147. Franssen R, Vergeer M, Stroes ES, Kastelein JJ. Combination statin‑fibrate therapy: safety aspects. Diabetes Obes Metab. 2009;11(2):89–94. doi: 10.1111/j.1463-1326.2008.00917.х
148. Jones PH, Cusi K, Davidson MH, et al. Efficacy and safety of fenofibric acid co-administered with low- or moderate-dose statin in patients with mixed dyslipidemia and type 2 diabetes mellitus: results of a pooled subgroup analysis from three randomized, controlled, double-blind trials. Am J Cardiovasc Drugs. 2010;10(2):73–84. doi: 10.2165/10061630-000000000-00000
149. Roth EM, McKenney JM, Kelly MT, et al. Efficacy and safety of rosuvastatin and fenofibric acid combination therapy versus simvastatin monotherapy in patients with hypercholesterolemia and hypertriglyceridemia: a randomized, double-blind study. Am J Cardiovasc Drugs. 2010;10(3):175–86. doi: 10.2165/11533430-000000000-00000
150. Kim NH, Kim JY, Choi J, Kim SG. Associations of omega-3 fatty acids vs. fenofibrate with adverse cardiovascular outcomes in people with metabolic syndrome: propensity matched cohort study. Eur Heart J Cardiovascular Pharmacotherapy. 2024;10(2):118–27. doi: 10.1093/ehjcvp/pvad090
151. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids in Health and Disease. 2017;16(1):149. doi: 10.1186/s12944-017-0541-3
152. Drexel H, Tamargo J, Kaski JC, et al. Triglycerides revisited: is hypertriglyceridaemia a necessary therapeutic target in cardiovascular disease? Eur Heart J Cardiovascular Pharmacotherapy. 2023;9(6):570–82. doi: 10.1093/ehjcvp/pvad044
153. Kaur Gurleen, Mason RP, Steg PhG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prevent Cardiol. 2024;31:1005–14. doi: 10.1093/eurjpc/zwae003
154. Banaszak M, Dobrzyńska M, Kawka A, et al. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases — Reports from the last 10 years. Clin Nutr ESPEN. 2024;63:240–58. doi: 10.1016/j.clnesp.2024.06.053
155. Sezai A, Unosawa S, Taoka M, et al. Long-Term Comparison of Ethyl Icosapentate vs. Omega-3-Acid Ethyl in Patients With Cardiovascular Disease and Hypertriglyceridemia (DEFAT Trial). Circ J. 2019;83(6):1368–76. doi: 10.1253/circj.CJ-18-076
156. Wang T, Zhang X, Zhou N, et al. Association between omega-3 fatty acid intake and dyslipidemia: a continuous dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2023;12(11):e029512. doi: 10.1161/JAHA.123.029512
157. Budoff MJ, Muhlestein JB, Bhatt DL, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovascular Research. 2021;117(4):1070–7. doi: 10.1093/cvr/cvaa184
158. Bernasconi AA, Wiest MM, Lavie CJ, et al. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta‑Regression of Interventional Trials. Mayo Clinic Proceedings. 2021;96(2):304–13. doi: 10.1016/j.mayocp.2020.08.034.
159. Yokoyama M, Origasa H, Matsuzaki M, et al. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8 doi: 10.1016/S0140-6736(07)60527-3
160. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. doi: 10.1056/NEJMoa1812792
161. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT. J Am Coll Cardiol. 2019;73(22):2791–802. doi: 10.1016/j.jacc.2019.02.032
162. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose Omega-3 fatty acids vs corn oil on Major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80. doi: 10.1001/jama.2020.22258
163. Barbarawi M, Lakshman H, Barbarawi O, et al. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemporary Clinical Trials. 2021;107:106458. doi: 10.1016/j.cct.2021.106458
164. Sarker J, Kim M, Munger MA, Kim K. Icosapent Ethyl‑Associated New Atrial Fibrillation Incidence compared to Omega-3 Fatty Acids: An Observational Cohort Study. Circulation. 2024;150(Suppl 1):A4140072-A4140072. doi: 10.1101/2024.09.16.24313779
165. Valdivielso P, Ramirez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–94. doi: 10.1016/j.ejim.2014.08.008
166. Berberich AJ, Ziada A, Zou GY, Hegele RA. Conservative management in hypertriglyceridemia-associated pancreatitis. J Intern Med. 2019;286:644–50. doi: 10.1111/joim.12925
167. Konovalov GA, Filonenko IV, Akopyan VS, et al. Rheopheresis in clinical practice. Kremlin medicine. Clinical Bulletin. 2004;3:48–53. (In Russ.)
168. Konovalov GA, Chebyshev AN, Zvezdkin PV, et al. Extracorporeal methods in the treatment of severe forms of atherosclerosis, metabolic syndrome and dilated cardiomyopathy. Kremlin medicine. Clinical Bulletin. 2001;4:48–54. (In Russ.)
2. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88. doi: 10.1093/eurheartj/ehz455
3. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337. doi: 10.1093/eurheartj/ehab484
4. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–66. doi: 10.1016/S2213-8587(13)70191-8
5. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–56. doi: 10.1161/CIRCULATIONAHA.108.804146
6. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points — a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. doi: 10.1093/eurheartj/ehw152
7. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118:547–63. doi: 10.1161/CIRCRESAHA.115.306249
8. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–806. doi: 10.1093/eurheartj/ehab551
9. Castelli WP. Epidemiology of triglycerides: a view from Framingham. American J Cardiol. 1992;70(19):H3–H9. doi: 10.1016/0002-9149(92)91083-g
10. Carr RA, Rejowski BJ, Cote GA, et al. Systematic review of hypertriglyceridemia-induced acute pancreatitis: a more virulent etiology? Pancreatology. 2016;16:469–76. doi: 10.1016/j.pan.2016.02.011
11. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild‑to‑moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176:1834–42. doi: 10.1001/jamainternmed.2016.6875
12. Murphy M, Shemg X, MacDonald TM. Hypertriglyceridemia and acute pancreatitis. JAMA Intern Med. 2013;173(2):162–4. doi: 10.1001/2013.jamaintermed.477
13. Faghih M, Singh VK. Do elevated triglycerides truly trigger acute pancreatitis? Dig Dis Sci. 2019;64:616–8. doi: 10.1007/s10620-019-05501-0
14. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960–93. doi: 1016/j.jacc.2021.06.011
15. Stürzebecher PE, Katzmann JL, Laufs U. What is ‘remnant cholesterol’? Eur Heart J. 2023;44:1446–8. doi: 10.1093/eurheartj/ehac783
16. Remaley AT, Otvos JD. Methodological issues regarding: "A third of nonfasting plasma cholesterol is in remnant lipoproteins: lipoprotein subclass profiling in 9293 individuals". Atherosclerosis. 2020;302:55–6. doi: 10.1016/j.atherosclerosis.2020.01.020
17. Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J. 2023;44:4196–8. doi: 10.1093/eurheartj/ehad419
18. White KT, Moorthy MV, Akinkuolie AO, et al. Identifying an optimal cutpoint for the diagnosis of hypertriglyceridemia in the nonfasting state. Clin Chem. 2015;61:1156–63. doi: 10.1373/clinchem.2015.241752
19. Raja V, Aguiar C, Alsayed N, et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023;383:117312. doi: 10.1016/j.atherosclerosis.2023.117312
20. Fredrickson DS. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med. Ann Intern Med. 1971;75(3):471–2. doi: 10.7326/0003-4819-75-3-471
21. Gill PK, Dron JS, Berberich AJ, et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021;15(1):79–87. doi: 10.1016/j.jacl.2020.11.006
22. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41:99–109. doi: 10.1093/eurheartj/ehz785
23. Cohen JD, Cziraky MJ, Cai Q, et al. 30-year trends in serum lipids among United States adults: results from the National Health and Nutrition Examination Surveys II, III, and 1999-2006. Am J Cardiol. 2010;106(7):969–75. doi: 10.1016/j.amjcard.2010.05.030
24. Simha V. Management of hypertriglyceridemia. BMJ. 2020;371:m3109. doi: 10.1136/bmj.m3109
25. Chyzhyk V, Kozmic S, Brown AS, et al. Extreme hypertriglyceridemia: genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol. 2019;13(1):89–99. doi: 10.1016/j.jacl.2018.09.007
26. Gitt A.K, Drexel H, Feely J, et al. DYSIS Investigators. Persistent lipid abnormalities in statin-treated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur J Prev Cardiol. 2012;19(2):221–30. doi: 10.1177/1741826711400545
27. Drapkina OM, Imaeva AE, Kutsenko VA, et al. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Cardiovascular Therapy and Prevention. 2023;22(8S):3791. doi: 10.15829/1728-8800-2023-3791 EDN DGYJLA
28. Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross‑sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. doi: 10.1186/s12933-015-0268-2
29. Ghandehari H, Kamal-Bahl S, Wong ND. Prevalence and extent of dyslipidemia and recommended lipid levels in US adults with and without cardiovascular comorbidities: The National Health and Nutrition Examination Survey 2003-2004. Am Heart J. 2008;156(1):112–9. doi: 10.1016/j.ahj.2008.03.005
30. Chait A, Eckel RH. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann Intern Med. 2019;170:626–34. doi: 10.7326/M19-0203
31. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol. 2023;14:1322869. doi: 10.3389/fendo.2023.1322869
32. Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res. 1988;29:1491–500.
33. Bubnova MG, Oganov RG. Impaired edible fats tolerance and its contribution to atherothrombogenesis. Terapevticheskiy arkhiv. 2004;1:73–8. (In Russ.)
34. Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321(4):E493–508. doi: 10.1152/ajpendo.00195.2021
35. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21(3):218–28. doi: 10.1097/MOL.0b013e328338cabc
36. Veniant MM, Zlot CH, Walzem RL, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest. 1998;102(8):1559–68. doi: 10.1172/JCI4164
37. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31:132–9. doi: 10.1097/MOL.0000000000000682
38. Botham K, Bravo E, Elliott J, Wheeler-Jones C. Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharm Des. 2005;11(28):3681–95. doi: 10.2174/138161205774580732
39. Dalla-Riva J, Garonna E, Elliott J, et al. Botham KM, Wheeler-Jones CP. Endothelial cells as targets for chylomicron remnants. Atheroscler Suppl. 2010;11(1):31–7. doi: 10.1016/j.atherosclerosissup.2010.04.001
40. Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117:7–18. doi: 10.1160/TH16-08-0593
41. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–5. doi: 10.1515/CCLM.2003.120
42. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14:1767–74. doi: 10.1161/01.atv.14.11.1767
43. Rosenson RS, Davidson MH, Hirsh BJ, et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardio-vascular disease. J Am Coll Cardiol. 2014;64:2525–40. doi: 10.1016/j.jacc.2014.09.042
44. Nakano T, Nakajima K, Niimi M, et al. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin Chim Acta. 2008;390:38–43. doi: 10.1016/j.cca.2007.12.012
45. Davidson MH. Triglyceride-rich lipoprotein cholesterol (TRL-C): the ugly stepsister of LDL-C. Eur Heart J. 2018;39:620–2. doi: 10.1093/eurheartj/ehx741
46. Örni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall. Curr Med Chem. 2018;26(9):1701–10. doi: 10.2774/0929867325666180530094819
47. Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309. doi: 10.1161/CIRCULATIONAHA.113.003008
48. Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77:3031–41. doi: 10.1016/j.jacc.2021.04.059
49. Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2029;284:24–30. doi: 10.1016/j.atherosclerosis.2019.02.019
50. Bubnova MG, Aronov DM, Perova NV, Mazaev VP. Relationship between the level of lipemia after fat load and the severity of coronary artery atherosclerosis. Therapeutic archive. 2004;76(6):62–7. (In Russ.)
51. Elshazly MB, Mani P, Nissen S, et al. Remnant cholesterol, coronary atheroma progression and clinical events in statin-treated patients with coronary artery disease. Eur J Prev Cardiol. 2020;27:1091–100. doi: 10.1177/2047487319887578
52. Krauss RM, Williams PT, Brensike J, et al. Intermediate‑density lipoproteins and progression of coronary artery disease in hypercholesterolemic men. Lancet. 1987;2:62–6. doi: 10.1016/s0140-6736(87)92734-6
53. Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-x
54. Phillips NR, Water D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation. 1993;88:2762–70. doi: 10.1161/01.cir.88.6.2762
55. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30. doi: 10.1093/eurheartj/ehz962
56. Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–42. doi: 10.1016/j.cca.2014.01.015
57. Björnson E, Packard CJ, Adiels M, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med. 2019;285:562–77. doi: 10.1111/joim.12877
58. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb. 1991;11:2–14. doi: 10.1161/01.atv.11.1.2
59. Stavenow L, Kjellström T. Influence of serum triglyceride levels on the risk for myocardial infarction in 12,510 middle aged males: interaction with serum cholesterol. Atherosclerosis. 1999;147(2):243–7. doi: 10.1016/s0021-9150(99)00190-2
60. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B. doi: 10.1016/s0002-9149(98)00031-9
61. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450–8. doi: 10.1161/CIRCULATIONAHA.106.637793
62. Di Angelantonio E, Sarwar N, Perry P, et al. Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. doi: 10.1001/jama.2009.1619
63. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626-35. doi: 10.1016/S0140-6736(14)61177-6
64. Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112,512 individuals from the general population. Ann Neurol. 2019;85:550–9. doi: 10.1002/ana.25432
65. Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride‑lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321:364–73. doi: 10.1001/jama.2018.20045
66. Kalthoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J. 2020;41:2288–99. doi: 10.1093/eurheartj/ehaa172
67. Park H-B, Arsanjani R, Hong S-J, et al. Impact of hypertriglyceridaemia on cardiovascular mortality according to low-density lipoprotein cholesterol in a 15.6-million population. Eur J Prevent Cardiol. 2024;31:280–90. doi: 10.1093/eurjpc/zwad330
68. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.
69. Patel A, Barzi F, Jamrozik K, et al. Asia Pacific Cohort Studies Collaboration. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation. 2004;110:2678–86. doi: 10.1161/01.CIR.0000145615.33955.83
70. Arca M, Veronesi C, D’Erasmo L, et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low‑Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J Am Heart Assoc. 2020;9:e015801. doi: 10.1161/JAHA.119.015801
71. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi: 10.1186/s12933-022-01525-5
72. Lee H, Park J-B, Hwang I-C, et al. Association of four lipid components with mortality, myocardial infarction, and stroke in statin-naïve young adults: A nationwide cohort study. Eur J Prevent Cardiol. 2020;27(8):870–81. doi: 10.1177/2047487319898571
73. Pletcher MJ, Bibbins-Domingo K, Liu K, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010;153(3):137–46. doi: 10.7326/0003-4819-153-3-201008030-00004
74. Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol. 1997;17(6):1114–20. doi: 10.1161/01.atv.17.6.1114
75. Kivioja R, Pietila A, Martinez-Majander N, et al. Risk factors for early-onset ischemic stroke: a case-control study. J Am Heart Assoc. 2018;7(21):e009774. doi: 10.1161/JAHA.118.009774
76. Nordestgaard BG, Benn M, Schnohr P, Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. doi: 10.1001/jama.298.3.299
77. Freiberg JJ, Tybjærg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300(18):2142–52. doi: 10.1001/jama.2008.621
78. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16. doi: 10.1001/jama.298.3.309
79. Varbo A, Nordestgaard BG. Nonfasting triglycerides, low-density lipoprotein cholesterol, and heart failure risk: two cohort studies of 113 554 individuals. Arterioscler Thromb Vasc Biol. 2018;38(2):464-72. doi: 10.1161/ATVBAHA.117.310269
80. Toth PP, Sephy P, Hull M, Granowitz C. Elevated Triglycerides (≥150 mg/dL) and High Triglycerides (200-499 mg/dL) Are Significant Predictors of New Heart Failure Diagnosis: A Real-World Analysis of High-Risk Statin‑Treated Patients. Vascular Health and Risk Management. 2019;15:533–8. doi: 10.2147/VHRM.S221289
81. Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi: 10.1016/j.jacc.2012.08.1026
82. Goliasch G, Wiesbauer F, Blessberger H, et al. Premature myocardial infarction is strongly associated with increased levels of remnant cholesterol. J Clin Lipidol. 2015;9:801–6. doi: 10.1016/j.jacl.2015.08.009
83. Varbo A, Freiberg JJ, Nordestgaard BG. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–43. doi: 10.1373/clinchem.2014.234146
84. Jepsen AM, Langsted A, Varbo A, et al. Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clin Chem. 2016;62(4):593–604. doi: 10.1373/clinchem.2015.253757
85. Bittencourt MS, Santos RD, Staniak H, et al. Relation of fasting triglyceride-rich lipoprotein cholesterol to coronary artery calcium score (from the ELSA-Brasil Study). Am J Cardiol. 2017;119(9):1352–8. doi: 10.1016/j.amjcard.2017.01.033
86. Doi T, Langsted A, Nordestgaard BG. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis. 2023;379:117141. doi: 10.1016/j.atherosclerosis.2023.05.010
87. Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;42:4324–32. doi: 10.1093/eurheartj/ehab432
88. Lee SJ, Kim S-E, Go T-H, et al. Remnant cholesterol, low-density lipoprotein cholesterol, and incident cardiovascular disease among Koreans: a national population-based study. Eur J Prevent Cardiol. 2023;30:1142–50. doi: 10.1093/eurjpc/zwad036
89. Wadström BN, Wulff AB, Pedersen KM, et al. Elevated remnant cholesterol increases the risk of peripheral artery disease, myocardial infarction, and ischaemic stroke: a cohort-based study. Eur Heart J. 2022;43:3258–69. doi: 10.1093/eurheartj/ehab705
90. Yang XH, Zhang BL, Cheng Y, et al. Association of remnant cholesterol with risk of cardiovascular disease events, stroke, and mortality: A systemic review and meta-analysis. Atherosclerosis. 2023;371:21–31. doi: 10.1016/j.atherosclerosis.2023.03.012
91. Cordero A, Alvarez-Alvarez B, Escribano D, et al. Remnant cholesterol in patients admitted for acute coronary syndromes. Eur J Prevent Cardiol. 2023;30:340–8. doi: 10.1093/eurjpc/zwac286
92. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75. doi: 10.1111/j.1365-2796.2010.02333.x
93. Wadström BN, Pedersen KM, Wulff AB, et al. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023;44:1432–45. doi: 10.1093/eurheartj/ehac822
94. Jørgensen AB, Frikke-Schmidt R, West AS, et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34:1826–33. doi: 10.1093/eurheartj/ehs431
95. Chapman MJ, Ginsberg HN, Amarenco P, et al. the European Atherosclerosis Society Consensus Panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61. doi: 10.1093/eurheartj/ehr112
96. Boullart AC, de Graaf J, Stalenhoef AF. Serum triglycerides and risk of cardiovascular disease. Biochim Biophys Acta. 2012;1821:867–75. doi: 10.1016/j.bbalip.2011.10.002
97. Björnson E, Adiels M, Taskinen M-R, et al. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44:4186–95. doi: 10.1093/eurheartj/ehad337
98. Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6. doi: 10.1038/nature13917
99. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. doi: 10.1056/NEJMoa1308027
100. Khera AV, Won HH, Peloso GM, et al. Myocardial Infarction Genetics Consortium, DiscovEHR Study Group, CARDIoGRAM Exome Consortium, and Global Lipids Genetics Consortium. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317:937–46. doi: 10.1001/jama.2017.0972
101. Stitziel NO, Khera AV, Wang X, et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63. doi: 10.1016/j.jacc.2017.02.030
102. Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33. doi: 10.1056/NEJMoa1510926
103. Stitziel NO, Stirrups KE, Masca NG, et al. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators; Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44. doi: 10.1056/NEJMoa1507652
104. Helkkula P, Kiiskinen T, Havulinna AS, et al. ANGPTL8 protein‑truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genet. 2021;17:e1009501. doi: 10.1371/journal.pgen.1009501
105. Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60:737–46. doi: 10.1373/clinchem.2013.219881
106. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095
107. Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The evolving understanding and approach to residual cardiovascular risk management. Front Cardiovasc Med. 2020;7:88. doi: 10.3389/fcvm.2020.00088
108. Toth Peter P, Fazio S, Wong ND. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22:279–89. doi: 10.1111/dom.13921
109. Marston NA, Giugliano RP, Im KAh, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation. 2019;140:1308–17. doi: 10.1161/CIRCULATIONAHA.119.041998
110. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75. doi: 10.1016/j.jacc.2015.03.544
111. Sacks FM, Tonkin AM, Shepherd J, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation. 2000;102:1893–900. doi: 10.1161/01.cir.102.16.1893
112. Miller M, Cannon CP, Murphy SA, et al. PROVE IT-TIMI 22 Investigators. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30. doi: 10.1016/j.jacc.2007.10.038
113. Faergeman O, Holme I, Fayyad R, et al. Steering Committees of IDEAL and TNT Trials. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi: 10.1016/j.amjcard.2009.04.008
114. Anderson JW, Konz EC. Obesity and disease management: effects of weight loss on comorbid conditions. Obes Res. 2001;9(Suppl 4):326S–334S. doi: 10.1038/oby.2001.138
115. Couillard C, Després JP, Lamarche B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001;21(7):1226–32. doi: 10.1161/hq0701.092137
116. Bubnova MG, Aronov DM, Olferyev AM, Bondarenko IZ. Modification of blood lipoprotein and apolipoprotein levels by physical exercise of various type and intensity in healthy men with normo- and hyperlipidemia. Cardiovascular Therapy and Prevention. 2005;4(2):74–83. (In Russ.)
117. Aronov DM, Bubnova MG, Perova NV, et al. The effect of maximal versus submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. J Clin Lipidol. 2017;11:369–76. doi: 10.1016/j.jacl.2017.01.007
118. Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J Clin Lipidol. 2023;17(4):428–51. doi: 10.1016/j.jacl.2023.05.099
119. Williams L, Rhodes KS, Karmally W, et al. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908–19. doi: 10.1016/j.jacl.2018.04.010
120. Fechner E, Smeets ETHC, Schrauwen P, Mensink RP. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans-A Systematic Review and Meta-Analysis. Nutrients. 2020;12(4):991. doi: 10.3390/nu12040991
121. Stoernell CK, Tangney CC, Rockway SW. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res. 2008;28(7):443–9. doi: 10.1016/j.nutres.2008.03.013
122. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy‑restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta‑analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98. doi: 10.3945/ajcn.112.044321
123. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose‑sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. doi: 10.1172/JCI37385
124. Kodama S, Horikawa C, Fujihara K, et al. Relationship between intake of fruit separately from vegetables and triglycerides – A meta-analysis. Clin Nutr ESPEN. 2018;27:53–8. doi: 10.1016/j.clnesp.2018.07.001
125. Leslie MA, Cohen DJA, Liddle DM, et al. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7
126. Liu YX, Yu JH, Sun JH, et al. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12(4):725. doi: 10.3390/foods12040725
127. Khorshidi M, Hazaveh ZS, Alimohammadi-kamalabadi M, et al. Effect of omega-3 supplementation on lipid profile in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2023;22:9. doi.10.1186/s12937-022-00826-5
128. Jones PH, Davidson MH, Stein EA, et al.; STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol. 2003;92(2):152–60. doi: 10.1016/s0002-9149(03)00530-7
129. Arutyunov GP, Boytsov SA, Voyevoda MI, et al. Correction of Hypertriglyceridemia as the Way to Reduce Residual Risk in Diseases Caused by Atherosclerosis. Conclusion of the Advisory Board of the RussianSociety of Cardiology, the Russian Scientific Medical Society of Therapists, the Eurasian Association of Therapists, the Russian National Atherosclerosis Society, the Russian Association of Endocrinologists, and the National League of Cardiologic Genetics. Rational Pharmacotherapy in Cardiology. 2019;15(2):282–8. doi: 10.20996/1819-6446-2019-15-2-282-288
130. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation. 1998;98:2088–93. doi: 10.1161/01.cir.98.19.2088
131. Kim NH, Kim SG. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab J. 2020;44:213–21. doi.10.4093/dmj.2020.0001
132. Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc). 2006;42(1):39–64. doi: 10.1358/dot.2006.42.1.963528
133. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs. 2007;67(1):121–53. doi: 10.2165/00003495-200767010-00013
134. Feher MD, Caslake M, Foxton J, et al. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999;15:395. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<395:AID-DMRR65>3.0.CO;2-N
135. Ezhov MV, Arutyunov GP. Effectiveness and Safety of Fenofibrate in Routine Treatment of Patients with Hypertriglyceridemia and Metabolic Syndrome. Diseases. 2023;11:140. doi: 10.3390/diseases11040140
136. DAIS investigators. Effect of fenofibrate on progression of coronary‑artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10. doi: 10.1016/S0140-6736(00)04209-4
137. Keech A, Simes RJ, Barter P, et al. The FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61. doi: 10.1016/S0140-6736(05)67667-2
138. Ginsberg HN, Elam MB, Lovato LС, et al. The ACCORD Study Group. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med. 2010;362:1563–74. doi: 10.1056/NEJMoa1001282
139. Wierzbicki AS. FIELD of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract. 2006;60(4):442–9. doi: 10.1111/j.1368-5031.2006.00882.x
140. Jo SH, Nam H, Lee J, Park S, et al. Fenofibrate Use Is Associated With Lower Mortality and Fewer Cardiovascular Events in Patients With Diabetes: Results of 10,114 Patients From the Korean National Health Insurance Service Cohort. Diabetes Care. 2021;44:1868–76. doi: 10.2337/dc20-1533
141. Kim NH, Han KH, Choi J, et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019;366:5125. doi: 10.1136/bmj.l5125
142. Das Pradhan A, Glynn RJ, Fruchart JC, et al. PROMINENT Investigators. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387:1923–34. doi: 10.1056/NEJMoa2210645
143. Ku EJ, Kim B, Han K, et al. Fenofibrate to prevent amputation and reduce vascular complications in patients with diabetes: FENO-PREVENT. Cardiovascular Diabetology. 2024;23:329. doi: 10.1186/s12933-024-02422-9
144. Elam M, Lovato L, Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus Clin Lipidol. 2011;6(1):9–20. doi: 10.2217/clp.10.84
145. Li J, Shi L, Zhao G, et al. High triglyceride levels increase the risk of diabetic microvascular complications: a cross-sectional study. Lipids Health Dis. 2023;22(1):109. doi: 10.1186/s12944-023-01873-5
146. Gitay MN, Sohail A, Arzoo Y, Shakir MA. Changes in serum lipids with the onset and progression of Diabetic Retinopathy in Type-II Diabetes Mellitus. Pak J Med Sci. 2023;39(1):188–91. doi: 10.12669/pjms.39.1.6265
147. Franssen R, Vergeer M, Stroes ES, Kastelein JJ. Combination statin‑fibrate therapy: safety aspects. Diabetes Obes Metab. 2009;11(2):89–94. doi: 10.1111/j.1463-1326.2008.00917.х
148. Jones PH, Cusi K, Davidson MH, et al. Efficacy and safety of fenofibric acid co-administered with low- or moderate-dose statin in patients with mixed dyslipidemia and type 2 diabetes mellitus: results of a pooled subgroup analysis from three randomized, controlled, double-blind trials. Am J Cardiovasc Drugs. 2010;10(2):73–84. doi: 10.2165/10061630-000000000-00000
149. Roth EM, McKenney JM, Kelly MT, et al. Efficacy and safety of rosuvastatin and fenofibric acid combination therapy versus simvastatin monotherapy in patients with hypercholesterolemia and hypertriglyceridemia: a randomized, double-blind study. Am J Cardiovasc Drugs. 2010;10(3):175–86. doi: 10.2165/11533430-000000000-00000
150. Kim NH, Kim JY, Choi J, Kim SG. Associations of omega-3 fatty acids vs. fenofibrate with adverse cardiovascular outcomes in people with metabolic syndrome: propensity matched cohort study. Eur Heart J Cardiovascular Pharmacotherapy. 2024;10(2):118–27. doi: 10.1093/ehjcvp/pvad090
151. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids in Health and Disease. 2017;16(1):149. doi: 10.1186/s12944-017-0541-3
152. Drexel H, Tamargo J, Kaski JC, et al. Triglycerides revisited: is hypertriglyceridaemia a necessary therapeutic target in cardiovascular disease? Eur Heart J Cardiovascular Pharmacotherapy. 2023;9(6):570–82. doi: 10.1093/ehjcvp/pvad044
153. Kaur Gurleen, Mason RP, Steg PhG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prevent Cardiol. 2024;31:1005–14. doi: 10.1093/eurjpc/zwae003
154. Banaszak M, Dobrzyńska M, Kawka A, et al. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases — Reports from the last 10 years. Clin Nutr ESPEN. 2024;63:240–58. doi: 10.1016/j.clnesp.2024.06.053
155. Sezai A, Unosawa S, Taoka M, et al. Long-Term Comparison of Ethyl Icosapentate vs. Omega-3-Acid Ethyl in Patients With Cardiovascular Disease and Hypertriglyceridemia (DEFAT Trial). Circ J. 2019;83(6):1368–76. doi: 10.1253/circj.CJ-18-076
156. Wang T, Zhang X, Zhou N, et al. Association between omega-3 fatty acid intake and dyslipidemia: a continuous dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2023;12(11):e029512. doi: 10.1161/JAHA.123.029512
157. Budoff MJ, Muhlestein JB, Bhatt DL, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovascular Research. 2021;117(4):1070–7. doi: 10.1093/cvr/cvaa184
158. Bernasconi AA, Wiest MM, Lavie CJ, et al. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta‑Regression of Interventional Trials. Mayo Clinic Proceedings. 2021;96(2):304–13. doi: 10.1016/j.mayocp.2020.08.034.
159. Yokoyama M, Origasa H, Matsuzaki M, et al. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8 doi: 10.1016/S0140-6736(07)60527-3
160. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. doi: 10.1056/NEJMoa1812792
161. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT. J Am Coll Cardiol. 2019;73(22):2791–802. doi: 10.1016/j.jacc.2019.02.032
162. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose Omega-3 fatty acids vs corn oil on Major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80. doi: 10.1001/jama.2020.22258
163. Barbarawi M, Lakshman H, Barbarawi O, et al. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemporary Clinical Trials. 2021;107:106458. doi: 10.1016/j.cct.2021.106458
164. Sarker J, Kim M, Munger MA, Kim K. Icosapent Ethyl‑Associated New Atrial Fibrillation Incidence compared to Omega-3 Fatty Acids: An Observational Cohort Study. Circulation. 2024;150(Suppl 1):A4140072-A4140072. doi: 10.1101/2024.09.16.24313779
165. Valdivielso P, Ramirez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–94. doi: 10.1016/j.ejim.2014.08.008
166. Berberich AJ, Ziada A, Zou GY, Hegele RA. Conservative management in hypertriglyceridemia-associated pancreatitis. J Intern Med. 2019;286:644–50. doi: 10.1111/joim.12925
167. Konovalov GA, Filonenko IV, Akopyan VS, et al. Rheopheresis in clinical practice. Kremlin medicine. Clinical Bulletin. 2004;3:48–53. (In Russ.)
168. Konovalov GA, Chebyshev AN, Zvezdkin PV, et al. Extracorporeal methods in the treatment of severe forms of atherosclerosis, metabolic syndrome and dilated cardiomyopathy. Kremlin medicine. Clinical Bulletin. 2001;4:48–54. (In Russ.)
2. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88. doi: 10.1093/eurheartj/ehz455
3. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337. doi: 10.1093/eurheartj/ehab484
4. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–66. doi: 10.1016/S2213-8587(13)70191-8
5. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–56. doi: 10.1161/CIRCULATIONAHA.108.804146
6. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points — a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. doi: 10.1093/eurheartj/ehw152
7. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118:547–63. doi: 10.1161/CIRCRESAHA.115.306249
8. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–806. doi: 10.1093/eurheartj/ehab551
9. Castelli WP. Epidemiology of triglycerides: a view from Framingham. American J Cardiol. 1992;70(19):H3–H9. doi: 10.1016/0002-9149(92)91083-g
10. Carr RA, Rejowski BJ, Cote GA, et al. Systematic review of hypertriglyceridemia-induced acute pancreatitis: a more virulent etiology? Pancreatology. 2016;16:469–76. doi: 10.1016/j.pan.2016.02.011
11. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild‑to‑moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176:1834–42. doi: 10.1001/jamainternmed.2016.6875
12. Murphy M, Shemg X, MacDonald TM. Hypertriglyceridemia and acute pancreatitis. JAMA Intern Med. 2013;173(2):162–4. doi: 10.1001/2013.jamaintermed.477
13. Faghih M, Singh VK. Do elevated triglycerides truly trigger acute pancreatitis? Dig Dis Sci. 2019;64:616–8. doi: 10.1007/s10620-019-05501-0
14. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960–93. doi: 1016/j.jacc.2021.06.011
15. Stürzebecher PE, Katzmann JL, Laufs U. What is ‘remnant cholesterol’? Eur Heart J. 2023;44:1446–8. doi: 10.1093/eurheartj/ehac783
16. Remaley AT, Otvos JD. Methodological issues regarding: "A third of nonfasting plasma cholesterol is in remnant lipoproteins: lipoprotein subclass profiling in 9293 individuals". Atherosclerosis. 2020;302:55–6. doi: 10.1016/j.atherosclerosis.2020.01.020
17. Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J. 2023;44:4196–8. doi: 10.1093/eurheartj/ehad419
18. White KT, Moorthy MV, Akinkuolie AO, et al. Identifying an optimal cutpoint for the diagnosis of hypertriglyceridemia in the nonfasting state. Clin Chem. 2015;61:1156–63. doi: 10.1373/clinchem.2015.241752
19. Raja V, Aguiar C, Alsayed N, et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023;383:117312. doi: 10.1016/j.atherosclerosis.2023.117312
20. Fredrickson DS. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med. Ann Intern Med. 1971;75(3):471–2. doi: 10.7326/0003-4819-75-3-471
21. Gill PK, Dron JS, Berberich AJ, et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021;15(1):79–87. doi: 10.1016/j.jacl.2020.11.006
22. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41:99–109. doi: 10.1093/eurheartj/ehz785
23. Cohen JD, Cziraky MJ, Cai Q, et al. 30-year trends in serum lipids among United States adults: results from the National Health and Nutrition Examination Surveys II, III, and 1999-2006. Am J Cardiol. 2010;106(7):969–75. doi: 10.1016/j.amjcard.2010.05.030
24. Simha V. Management of hypertriglyceridemia. BMJ. 2020;371:m3109. doi: 10.1136/bmj.m3109
25. Chyzhyk V, Kozmic S, Brown AS, et al. Extreme hypertriglyceridemia: genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol. 2019;13(1):89–99. doi: 10.1016/j.jacl.2018.09.007
26. Gitt A.K, Drexel H, Feely J, et al. DYSIS Investigators. Persistent lipid abnormalities in statin-treated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur J Prev Cardiol. 2012;19(2):221–30. doi: 10.1177/1741826711400545
27. Drapkina OM, Imaeva AE, Kutsenko VA, et al. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Cardiovascular Therapy and Prevention. 2023;22(8S):3791. doi: 10.15829/1728-8800-2023-3791 EDN DGYJLA
28. Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross‑sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. doi: 10.1186/s12933-015-0268-2
29. Ghandehari H, Kamal-Bahl S, Wong ND. Prevalence and extent of dyslipidemia and recommended lipid levels in US adults with and without cardiovascular comorbidities: The National Health and Nutrition Examination Survey 2003-2004. Am Heart J. 2008;156(1):112–9. doi: 10.1016/j.ahj.2008.03.005
30. Chait A, Eckel RH. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann Intern Med. 2019;170:626–34. doi: 10.7326/M19-0203
31. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol. 2023;14:1322869. doi: 10.3389/fendo.2023.1322869
32. Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res. 1988;29:1491–500.
33. Bubnova MG, Oganov RG. Impaired edible fats tolerance and its contribution to atherothrombogenesis. Terapevticheskiy arkhiv. 2004;1:73–8. (In Russ.)
34. Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321(4):E493–508. doi: 10.1152/ajpendo.00195.2021
35. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21(3):218–28. doi: 10.1097/MOL.0b013e328338cabc
36. Veniant MM, Zlot CH, Walzem RL, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest. 1998;102(8):1559–68. doi: 10.1172/JCI4164
37. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31:132–9. doi: 10.1097/MOL.0000000000000682
38. Botham K, Bravo E, Elliott J, Wheeler-Jones C. Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharm Des. 2005;11(28):3681–95. doi: 10.2174/138161205774580732
39. Dalla-Riva J, Garonna E, Elliott J, et al. Botham KM, Wheeler-Jones CP. Endothelial cells as targets for chylomicron remnants. Atheroscler Suppl. 2010;11(1):31–7. doi: 10.1016/j.atherosclerosissup.2010.04.001
40. Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117:7–18. doi: 10.1160/TH16-08-0593
41. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–5. doi: 10.1515/CCLM.2003.120
42. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14:1767–74. doi: 10.1161/01.atv.14.11.1767
43. Rosenson RS, Davidson MH, Hirsh BJ, et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardio-vascular disease. J Am Coll Cardiol. 2014;64:2525–40. doi: 10.1016/j.jacc.2014.09.042
44. Nakano T, Nakajima K, Niimi M, et al. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin Chim Acta. 2008;390:38–43. doi: 10.1016/j.cca.2007.12.012
45. Davidson MH. Triglyceride-rich lipoprotein cholesterol (TRL-C): the ugly stepsister of LDL-C. Eur Heart J. 2018;39:620–2. doi: 10.1093/eurheartj/ehx741
46. Örni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall. Curr Med Chem. 2018;26(9):1701–10. doi: 10.2774/0929867325666180530094819
47. Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309. doi: 10.1161/CIRCULATIONAHA.113.003008
48. Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77:3031–41. doi: 10.1016/j.jacc.2021.04.059
49. Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2029;284:24–30. doi: 10.1016/j.atherosclerosis.2019.02.019
50. Bubnova MG, Aronov DM, Perova NV, Mazaev VP. Relationship between the level of lipemia after fat load and the severity of coronary artery atherosclerosis. Therapeutic archive. 2004;76(6):62–7. (In Russ.)
51. Elshazly MB, Mani P, Nissen S, et al. Remnant cholesterol, coronary atheroma progression and clinical events in statin-treated patients with coronary artery disease. Eur J Prev Cardiol. 2020;27:1091–100. doi: 10.1177/2047487319887578
52. Krauss RM, Williams PT, Brensike J, et al. Intermediate‑density lipoproteins and progression of coronary artery disease in hypercholesterolemic men. Lancet. 1987;2:62–6. doi: 10.1016/s0140-6736(87)92734-6
53. Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-x
54. Phillips NR, Water D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation. 1993;88:2762–70. doi: 10.1161/01.cir.88.6.2762
55. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30. doi: 10.1093/eurheartj/ehz962
56. Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–42. doi: 10.1016/j.cca.2014.01.015
57. Björnson E, Packard CJ, Adiels M, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med. 2019;285:562–77. doi: 10.1111/joim.12877
58. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb. 1991;11:2–14. doi: 10.1161/01.atv.11.1.2
59. Stavenow L, Kjellström T. Influence of serum triglyceride levels on the risk for myocardial infarction in 12,510 middle aged males: interaction with serum cholesterol. Atherosclerosis. 1999;147(2):243–7. doi: 10.1016/s0021-9150(99)00190-2
60. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B. doi: 10.1016/s0002-9149(98)00031-9
61. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450–8. doi: 10.1161/CIRCULATIONAHA.106.637793
62. Di Angelantonio E, Sarwar N, Perry P, et al. Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. doi: 10.1001/jama.2009.1619
63. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626-35. doi: 10.1016/S0140-6736(14)61177-6
64. Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112,512 individuals from the general population. Ann Neurol. 2019;85:550–9. doi: 10.1002/ana.25432
65. Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride‑lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321:364–73. doi: 10.1001/jama.2018.20045
66. Kalthoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J. 2020;41:2288–99. doi: 10.1093/eurheartj/ehaa172
67. Park H-B, Arsanjani R, Hong S-J, et al. Impact of hypertriglyceridaemia on cardiovascular mortality according to low-density lipoprotein cholesterol in a 15.6-million population. Eur J Prevent Cardiol. 2024;31:280–90. doi: 10.1093/eurjpc/zwad330
68. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.
69. Patel A, Barzi F, Jamrozik K, et al. Asia Pacific Cohort Studies Collaboration. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation. 2004;110:2678–86. doi: 10.1161/01.CIR.0000145615.33955.83
70. Arca M, Veronesi C, D’Erasmo L, et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low‑Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J Am Heart Assoc. 2020;9:e015801. doi: 10.1161/JAHA.119.015801
71. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi: 10.1186/s12933-022-01525-5
72. Lee H, Park J-B, Hwang I-C, et al. Association of four lipid components with mortality, myocardial infarction, and stroke in statin-naïve young adults: A nationwide cohort study. Eur J Prevent Cardiol. 2020;27(8):870–81. doi: 10.1177/2047487319898571
73. Pletcher MJ, Bibbins-Domingo K, Liu K, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010;153(3):137–46. doi: 10.7326/0003-4819-153-3-201008030-00004
74. Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol. 1997;17(6):1114–20. doi: 10.1161/01.atv.17.6.1114
75. Kivioja R, Pietila A, Martinez-Majander N, et al. Risk factors for early-onset ischemic stroke: a case-control study. J Am Heart Assoc. 2018;7(21):e009774. doi: 10.1161/JAHA.118.009774
76. Nordestgaard BG, Benn M, Schnohr P, Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. doi: 10.1001/jama.298.3.299
77. Freiberg JJ, Tybjærg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300(18):2142–52. doi: 10.1001/jama.2008.621
78. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16. doi: 10.1001/jama.298.3.309
79. Varbo A, Nordestgaard BG. Nonfasting triglycerides, low-density lipoprotein cholesterol, and heart failure risk: two cohort studies of 113 554 individuals. Arterioscler Thromb Vasc Biol. 2018;38(2):464-72. doi: 10.1161/ATVBAHA.117.310269
80. Toth PP, Sephy P, Hull M, Granowitz C. Elevated Triglycerides (≥150 mg/dL) and High Triglycerides (200-499 mg/dL) Are Significant Predictors of New Heart Failure Diagnosis: A Real-World Analysis of High-Risk Statin‑Treated Patients. Vascular Health and Risk Management. 2019;15:533–8. doi: 10.2147/VHRM.S221289
81. Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi: 10.1016/j.jacc.2012.08.1026
82. Goliasch G, Wiesbauer F, Blessberger H, et al. Premature myocardial infarction is strongly associated with increased levels of remnant cholesterol. J Clin Lipidol. 2015;9:801–6. doi: 10.1016/j.jacl.2015.08.009
83. Varbo A, Freiberg JJ, Nordestgaard BG. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–43. doi: 10.1373/clinchem.2014.234146
84. Jepsen AM, Langsted A, Varbo A, et al. Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clin Chem. 2016;62(4):593–604. doi: 10.1373/clinchem.2015.253757
85. Bittencourt MS, Santos RD, Staniak H, et al. Relation of fasting triglyceride-rich lipoprotein cholesterol to coronary artery calcium score (from the ELSA-Brasil Study). Am J Cardiol. 2017;119(9):1352–8. doi: 10.1016/j.amjcard.2017.01.033
86. Doi T, Langsted A, Nordestgaard BG. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis. 2023;379:117141. doi: 10.1016/j.atherosclerosis.2023.05.010
87. Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;42:4324–32. doi: 10.1093/eurheartj/ehab432
88. Lee SJ, Kim S-E, Go T-H, et al. Remnant cholesterol, low-density lipoprotein cholesterol, and incident cardiovascular disease among Koreans: a national population-based study. Eur J Prevent Cardiol. 2023;30:1142–50. doi: 10.1093/eurjpc/zwad036
89. Wadström BN, Wulff AB, Pedersen KM, et al. Elevated remnant cholesterol increases the risk of peripheral artery disease, myocardial infarction, and ischaemic stroke: a cohort-based study. Eur Heart J. 2022;43:3258–69. doi: 10.1093/eurheartj/ehab705
90. Yang XH, Zhang BL, Cheng Y, et al. Association of remnant cholesterol with risk of cardiovascular disease events, stroke, and mortality: A systemic review and meta-analysis. Atherosclerosis. 2023;371:21–31. doi: 10.1016/j.atherosclerosis.2023.03.012
91. Cordero A, Alvarez-Alvarez B, Escribano D, et al. Remnant cholesterol in patients admitted for acute coronary syndromes. Eur J Prevent Cardiol. 2023;30:340–8. doi: 10.1093/eurjpc/zwac286
92. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75. doi: 10.1111/j.1365-2796.2010.02333.x
93. Wadström BN, Pedersen KM, Wulff AB, et al. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023;44:1432–45. doi: 10.1093/eurheartj/ehac822
94. Jørgensen AB, Frikke-Schmidt R, West AS, et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34:1826–33. doi: 10.1093/eurheartj/ehs431
95. Chapman MJ, Ginsberg HN, Amarenco P, et al. the European Atherosclerosis Society Consensus Panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61. doi: 10.1093/eurheartj/ehr112
96. Boullart AC, de Graaf J, Stalenhoef AF. Serum triglycerides and risk of cardiovascular disease. Biochim Biophys Acta. 2012;1821:867–75. doi: 10.1016/j.bbalip.2011.10.002
97. Björnson E, Adiels M, Taskinen M-R, et al. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44:4186–95. doi: 10.1093/eurheartj/ehad337
98. Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6. doi: 10.1038/nature13917
99. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. doi: 10.1056/NEJMoa1308027
100. Khera AV, Won HH, Peloso GM, et al. Myocardial Infarction Genetics Consortium, DiscovEHR Study Group, CARDIoGRAM Exome Consortium, and Global Lipids Genetics Consortium. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317:937–46. doi: 10.1001/jama.2017.0972
101. Stitziel NO, Khera AV, Wang X, et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63. doi: 10.1016/j.jacc.2017.02.030
102. Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33. doi: 10.1056/NEJMoa1510926
103. Stitziel NO, Stirrups KE, Masca NG, et al. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators; Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44. doi: 10.1056/NEJMoa1507652
104. Helkkula P, Kiiskinen T, Havulinna AS, et al. ANGPTL8 protein‑truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genet. 2021;17:e1009501. doi: 10.1371/journal.pgen.1009501
105. Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60:737–46. doi: 10.1373/clinchem.2013.219881
106. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095
107. Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The evolving understanding and approach to residual cardiovascular risk management. Front Cardiovasc Med. 2020;7:88. doi: 10.3389/fcvm.2020.00088
108. Toth Peter P, Fazio S, Wong ND. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22:279–89. doi: 10.1111/dom.13921
109. Marston NA, Giugliano RP, Im KAh, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation. 2019;140:1308–17. doi: 10.1161/CIRCULATIONAHA.119.041998
110. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75. doi: 10.1016/j.jacc.2015.03.544
111. Sacks FM, Tonkin AM, Shepherd J, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation. 2000;102:1893–900. doi: 10.1161/01.cir.102.16.1893
112. Miller M, Cannon CP, Murphy SA, et al. PROVE IT-TIMI 22 Investigators. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30. doi: 10.1016/j.jacc.2007.10.038
113. Faergeman O, Holme I, Fayyad R, et al. Steering Committees of IDEAL and TNT Trials. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi: 10.1016/j.amjcard.2009.04.008
114. Anderson JW, Konz EC. Obesity and disease management: effects of weight loss on comorbid conditions. Obes Res. 2001;9(Suppl 4):326S–334S. doi: 10.1038/oby.2001.138
115. Couillard C, Després JP, Lamarche B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001;21(7):1226–32. doi: 10.1161/hq0701.092137
116. Bubnova MG, Aronov DM, Olferyev AM, Bondarenko IZ. Modification of blood lipoprotein and apolipoprotein levels by physical exercise of various type and intensity in healthy men with normo- and hyperlipidemia. Cardiovascular Therapy and Prevention. 2005;4(2):74–83. (In Russ.)
117. Aronov DM, Bubnova MG, Perova NV, et al. The effect of maximal versus submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. J Clin Lipidol. 2017;11:369–76. doi: 10.1016/j.jacl.2017.01.007
118. Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J Clin Lipidol. 2023;17(4):428–51. doi: 10.1016/j.jacl.2023.05.099
119. Williams L, Rhodes KS, Karmally W, et al. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908–19. doi: 10.1016/j.jacl.2018.04.010
120. Fechner E, Smeets ETHC, Schrauwen P, Mensink RP. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans-A Systematic Review and Meta-Analysis. Nutrients. 2020;12(4):991. doi: 10.3390/nu12040991
121. Stoernell CK, Tangney CC, Rockway SW. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res. 2008;28(7):443–9. doi: 10.1016/j.nutres.2008.03.013
122. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy‑restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta‑analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98. doi: 10.3945/ajcn.112.044321
123. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose‑sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. doi: 10.1172/JCI37385
124. Kodama S, Horikawa C, Fujihara K, et al. Relationship between intake of fruit separately from vegetables and triglycerides – A meta-analysis. Clin Nutr ESPEN. 2018;27:53–8. doi: 10.1016/j.clnesp.2018.07.001
125. Leslie MA, Cohen DJA, Liddle DM, et al. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7
126. Liu YX, Yu JH, Sun JH, et al. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12(4):725. doi: 10.3390/foods12040725
127. Khorshidi M, Hazaveh ZS, Alimohammadi-kamalabadi M, et al. Effect of omega-3 supplementation on lipid profile in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2023;22:9. doi.10.1186/s12937-022-00826-5
128. Jones PH, Davidson MH, Stein EA, et al.; STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol. 2003;92(2):152–60. doi: 10.1016/s0002-9149(03)00530-7
129. Arutyunov GP, Boytsov SA, Voyevoda MI, et al. Correction of Hypertriglyceridemia as the Way to Reduce Residual Risk in Diseases Caused by Atherosclerosis. Conclusion of the Advisory Board of the RussianSociety of Cardiology, the Russian Scientific Medical Society of Therapists, the Eurasian Association of Therapists, the Russian National Atherosclerosis Society, the Russian Association of Endocrinologists, and the National League of Cardiologic Genetics. Rational Pharmacotherapy in Cardiology. 2019;15(2):282–8. doi: 10.20996/1819-6446-2019-15-2-282-288
130. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation. 1998;98:2088–93. doi: 10.1161/01.cir.98.19.2088
131. Kim NH, Kim SG. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab J. 2020;44:213–21. doi.10.4093/dmj.2020.0001
132. Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc). 2006;42(1):39–64. doi: 10.1358/dot.2006.42.1.963528
133. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs. 2007;67(1):121–53. doi: 10.2165/00003495-200767010-00013
134. Feher MD, Caslake M, Foxton J, et al. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999;15:395. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<395:AID-DMRR65>3.0.CO;2-N
135. Ezhov MV, Arutyunov GP. Effectiveness and Safety of Fenofibrate in Routine Treatment of Patients with Hypertriglyceridemia and Metabolic Syndrome. Diseases. 2023;11:140. doi: 10.3390/diseases11040140
136. DAIS investigators. Effect of fenofibrate on progression of coronary‑artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10. doi: 10.1016/S0140-6736(00)04209-4
137. Keech A, Simes RJ, Barter P, et al. The FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61. doi: 10.1016/S0140-6736(05)67667-2
138. Ginsberg HN, Elam MB, Lovato LС, et al. The ACCORD Study Group. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med. 2010;362:1563–74. doi: 10.1056/NEJMoa1001282
139. Wierzbicki AS. FIELD of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract. 2006;60(4):442–9. doi: 10.1111/j.1368-5031.2006.00882.x
140. Jo SH, Nam H, Lee J, Park S, et al. Fenofibrate Use Is Associated With Lower Mortality and Fewer Cardiovascular Events in Patients With Diabetes: Results of 10,114 Patients From the Korean National Health Insurance Service Cohort. Diabetes Care. 2021;44:1868–76. doi: 10.2337/dc20-1533
141. Kim NH, Han KH, Choi J, et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019;366:5125. doi: 10.1136/bmj.l5125
142. Das Pradhan A, Glynn RJ, Fruchart JC, et al. PROMINENT Investigators. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387:1923–34. doi: 10.1056/NEJMoa2210645
143. Ku EJ, Kim B, Han K, et al. Fenofibrate to prevent amputation and reduce vascular complications in patients with diabetes: FENO-PREVENT. Cardiovascular Diabetology. 2024;23:329. doi: 10.1186/s12933-024-02422-9
144. Elam M, Lovato L, Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus Clin Lipidol. 2011;6(1):9–20. doi: 10.2217/clp.10.84
145. Li J, Shi L, Zhao G, et al. High triglyceride levels increase the risk of diabetic microvascular complications: a cross-sectional study. Lipids Health Dis. 2023;22(1):109. doi: 10.1186/s12944-023-01873-5
146. Gitay MN, Sohail A, Arzoo Y, Shakir MA. Changes in serum lipids with the onset and progression of Diabetic Retinopathy in Type-II Diabetes Mellitus. Pak J Med Sci. 2023;39(1):188–91. doi: 10.12669/pjms.39.1.6265
147. Franssen R, Vergeer M, Stroes ES, Kastelein JJ. Combination statin‑fibrate therapy: safety aspects. Diabetes Obes Metab. 2009;11(2):89–94. doi: 10.1111/j.1463-1326.2008.00917.х
148. Jones PH, Cusi K, Davidson MH, et al. Efficacy and safety of fenofibric acid co-administered with low- or moderate-dose statin in patients with mixed dyslipidemia and type 2 diabetes mellitus: results of a pooled subgroup analysis from three randomized, controlled, double-blind trials. Am J Cardiovasc Drugs. 2010;10(2):73–84. doi: 10.2165/10061630-000000000-00000
149. Roth EM, McKenney JM, Kelly MT, et al. Efficacy and safety of rosuvastatin and fenofibric acid combination therapy versus simvastatin monotherapy in patients with hypercholesterolemia and hypertriglyceridemia: a randomized, double-blind study. Am J Cardiovasc Drugs. 2010;10(3):175–86. doi: 10.2165/11533430-000000000-00000
150. Kim NH, Kim JY, Choi J, Kim SG. Associations of omega-3 fatty acids vs. fenofibrate with adverse cardiovascular outcomes in people with metabolic syndrome: propensity matched cohort study. Eur Heart J Cardiovascular Pharmacotherapy. 2024;10(2):118–27. doi: 10.1093/ehjcvp/pvad090
151. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids in Health and Disease. 2017;16(1):149. doi: 10.1186/s12944-017-0541-3
152. Drexel H, Tamargo J, Kaski JC, et al. Triglycerides revisited: is hypertriglyceridaemia a necessary therapeutic target in cardiovascular disease? Eur Heart J Cardiovascular Pharmacotherapy. 2023;9(6):570–82. doi: 10.1093/ehjcvp/pvad044
153. Kaur Gurleen, Mason RP, Steg PhG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prevent Cardiol. 2024;31:1005–14. doi: 10.1093/eurjpc/zwae003
154. Banaszak M, Dobrzyńska M, Kawka A, et al. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases — Reports from the last 10 years. Clin Nutr ESPEN. 2024;63:240–58. doi: 10.1016/j.clnesp.2024.06.053
155. Sezai A, Unosawa S, Taoka M, et al. Long-Term Comparison of Ethyl Icosapentate vs. Omega-3-Acid Ethyl in Patients With Cardiovascular Disease and Hypertriglyceridemia (DEFAT Trial). Circ J. 2019;83(6):1368–76. doi: 10.1253/circj.CJ-18-076
156. Wang T, Zhang X, Zhou N, et al. Association between omega-3 fatty acid intake and dyslipidemia: a continuous dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2023;12(11):e029512. doi: 10.1161/JAHA.123.029512
157. Budoff MJ, Muhlestein JB, Bhatt DL, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovascular Research. 2021;117(4):1070–7. doi: 10.1093/cvr/cvaa184
158. Bernasconi AA, Wiest MM, Lavie CJ, et al. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta‑Regression of Interventional Trials. Mayo Clinic Proceedings. 2021;96(2):304–13. doi: 10.1016/j.mayocp.2020.08.034.
159. Yokoyama M, Origasa H, Matsuzaki M, et al. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8 doi: 10.1016/S0140-6736(07)60527-3
160. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. doi: 10.1056/NEJMoa1812792
161. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT. J Am Coll Cardiol. 2019;73(22):2791–802. doi: 10.1016/j.jacc.2019.02.032
162. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose Omega-3 fatty acids vs corn oil on Major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80. doi: 10.1001/jama.2020.22258
163. Barbarawi M, Lakshman H, Barbarawi O, et al. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemporary Clinical Trials. 2021;107:106458. doi: 10.1016/j.cct.2021.106458
164. Sarker J, Kim M, Munger MA, Kim K. Icosapent Ethyl‑Associated New Atrial Fibrillation Incidence compared to Omega-3 Fatty Acids: An Observational Cohort Study. Circulation. 2024;150(Suppl 1):A4140072-A4140072. doi: 10.1101/2024.09.16.24313779
165. Valdivielso P, Ramirez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–94. doi: 10.1016/j.ejim.2014.08.008
166. Berberich AJ, Ziada A, Zou GY, Hegele RA. Conservative management in hypertriglyceridemia-associated pancreatitis. J Intern Med. 2019;286:644–50. doi: 10.1111/joim.12925
167. Konovalov GA, Filonenko IV, Akopyan VS, et al. Rheopheresis in clinical practice. Kremlin medicine. Clinical Bulletin. 2004;3:48–53. (In Russ.)
168. Konovalov GA, Chebyshev AN, Zvezdkin PV, et al. Extracorporeal methods in the treatment of severe forms of atherosclerosis, metabolic syndrome and dilated cardiomyopathy. Kremlin medicine. Clinical Bulletin. 2001;4:48–54. (In Russ.)
________________________________________________
2. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88. doi: 10.1093/eurheartj/ehz455
3. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:3227–337. doi: 10.1093/eurheartj/ehab484
4. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–66. doi: 10.1016/S2213-8587(13)70191-8
5. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–56. doi: 10.1161/CIRCULATIONAHA.108.804146
6. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points — a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. doi: 10.1093/eurheartj/ehw152
7. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118:547–63. doi: 10.1161/CIRCRESAHA.115.306249
8. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–806. doi: 10.1093/eurheartj/ehab551
9. Castelli WP. Epidemiology of triglycerides: a view from Framingham. American J Cardiol. 1992;70(19):H3–H9. doi: 10.1016/0002-9149(92)91083-g
10. Carr RA, Rejowski BJ, Cote GA, et al. Systematic review of hypertriglyceridemia-induced acute pancreatitis: a more virulent etiology? Pancreatology. 2016;16:469–76. doi: 10.1016/j.pan.2016.02.011
11. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild‑to‑moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176:1834–42. doi: 10.1001/jamainternmed.2016.6875
12. Murphy M, Shemg X, MacDonald TM. Hypertriglyceridemia and acute pancreatitis. JAMA Intern Med. 2013;173(2):162–4. doi: 10.1001/2013.jamaintermed.477
13. Faghih M, Singh VK. Do elevated triglycerides truly trigger acute pancreatitis? Dig Dis Sci. 2019;64:616–8. doi: 10.1007/s10620-019-05501-0
14. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960–93. doi: 1016/j.jacc.2021.06.011
15. Stürzebecher PE, Katzmann JL, Laufs U. What is ‘remnant cholesterol’? Eur Heart J. 2023;44:1446–8. doi: 10.1093/eurheartj/ehac783
16. Remaley AT, Otvos JD. Methodological issues regarding: "A third of nonfasting plasma cholesterol is in remnant lipoproteins: lipoprotein subclass profiling in 9293 individuals". Atherosclerosis. 2020;302:55–6. doi: 10.1016/j.atherosclerosis.2020.01.020
17. Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J. 2023;44:4196–8. doi: 10.1093/eurheartj/ehad419
18. White KT, Moorthy MV, Akinkuolie AO, et al. Identifying an optimal cutpoint for the diagnosis of hypertriglyceridemia in the nonfasting state. Clin Chem. 2015;61:1156–63. doi: 10.1373/clinchem.2015.241752
19. Raja V, Aguiar C, Alsayed N, et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023;383:117312. doi: 10.1016/j.atherosclerosis.2023.117312
20. Fredrickson DS. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med. Ann Intern Med. 1971;75(3):471–2. doi: 10.7326/0003-4819-75-3-471
21. Gill PK, Dron JS, Berberich AJ, et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021;15(1):79–87. doi: 10.1016/j.jacl.2020.11.006
22. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41:99–109. doi: 10.1093/eurheartj/ehz785
23. Cohen JD, Cziraky MJ, Cai Q, et al. 30-year trends in serum lipids among United States adults: results from the National Health and Nutrition Examination Surveys II, III, and 1999-2006. Am J Cardiol. 2010;106(7):969–75. doi: 10.1016/j.amjcard.2010.05.030
24. Simha V. Management of hypertriglyceridemia. BMJ. 2020;371:m3109. doi: 10.1136/bmj.m3109
25. Chyzhyk V, Kozmic S, Brown AS, et al. Extreme hypertriglyceridemia: genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol. 2019;13(1):89–99. doi: 10.1016/j.jacl.2018.09.007
26. Gitt A.K, Drexel H, Feely J, et al. DYSIS Investigators. Persistent lipid abnormalities in statin-treated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur J Prev Cardiol. 2012;19(2):221–30. doi: 10.1177/1741826711400545
27. Drapkina OM, Imaeva AE, Kutsenko VA, et al. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Cardiovascular Therapy and Prevention. 2023;22(8S):3791. doi: 10.15829/1728-8800-2023-3791 EDN DGYJLA
28. Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross‑sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. doi: 10.1186/s12933-015-0268-2
29. Ghandehari H, Kamal-Bahl S, Wong ND. Prevalence and extent of dyslipidemia and recommended lipid levels in US adults with and without cardiovascular comorbidities: The National Health and Nutrition Examination Survey 2003-2004. Am Heart J. 2008;156(1):112–9. doi: 10.1016/j.ahj.2008.03.005
30. Chait A, Eckel RH. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann Intern Med. 2019;170:626–34. doi: 10.7326/M19-0203
31. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol. 2023;14:1322869. doi: 10.3389/fendo.2023.1322869
32. Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res. 1988;29:1491–500.
33. Bubnova MG, Oganov RG. Impaired edible fats tolerance and its contribution to atherothrombogenesis. Terapevticheskiy arkhiv. 2004;1:73–8. (In Russ.)
34. Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321(4):E493–508. doi: 10.1152/ajpendo.00195.2021
35. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21(3):218–28. doi: 10.1097/MOL.0b013e328338cabc
36. Veniant MM, Zlot CH, Walzem RL, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest. 1998;102(8):1559–68. doi: 10.1172/JCI4164
37. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31:132–9. doi: 10.1097/MOL.0000000000000682
38. Botham K, Bravo E, Elliott J, Wheeler-Jones C. Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharm Des. 2005;11(28):3681–95. doi: 10.2174/138161205774580732
39. Dalla-Riva J, Garonna E, Elliott J, et al. Botham KM, Wheeler-Jones CP. Endothelial cells as targets for chylomicron remnants. Atheroscler Suppl. 2010;11(1):31–7. doi: 10.1016/j.atherosclerosissup.2010.04.001
40. Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117:7–18. doi: 10.1160/TH16-08-0593
41. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–5. doi: 10.1515/CCLM.2003.120
42. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14:1767–74. doi: 10.1161/01.atv.14.11.1767
43. Rosenson RS, Davidson MH, Hirsh BJ, et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardio-vascular disease. J Am Coll Cardiol. 2014;64:2525–40. doi: 10.1016/j.jacc.2014.09.042
44. Nakano T, Nakajima K, Niimi M, et al. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin Chim Acta. 2008;390:38–43. doi: 10.1016/j.cca.2007.12.012
45. Davidson MH. Triglyceride-rich lipoprotein cholesterol (TRL-C): the ugly stepsister of LDL-C. Eur Heart J. 2018;39:620–2. doi: 10.1093/eurheartj/ehx741
46. Örni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-rich lipoproteins as a source of proinflammatory lipids in the arterial wall. Curr Med Chem. 2018;26(9):1701–10. doi: 10.2774/0929867325666180530094819
47. Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309. doi: 10.1161/CIRCULATIONAHA.113.003008
48. Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77:3031–41. doi: 10.1016/j.jacc.2021.04.059
49. Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2029;284:24–30. doi: 10.1016/j.atherosclerosis.2019.02.019
50. Bubnova MG, Aronov DM, Perova NV, Mazaev VP. Relationship between the level of lipemia after fat load and the severity of coronary artery atherosclerosis. Therapeutic archive. 2004;76(6):62–7. (In Russ.)
51. Elshazly MB, Mani P, Nissen S, et al. Remnant cholesterol, coronary atheroma progression and clinical events in statin-treated patients with coronary artery disease. Eur J Prev Cardiol. 2020;27:1091–100. doi: 10.1177/2047487319887578
52. Krauss RM, Williams PT, Brensike J, et al. Intermediate‑density lipoproteins and progression of coronary artery disease in hypercholesterolemic men. Lancet. 1987;2:62–6. doi: 10.1016/s0140-6736(87)92734-6
53. Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis. 1994;106:83–97. doi: 10.1016/0021-9150(94)90085-x
54. Phillips NR, Water D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation. 1993;88:2762–70. doi: 10.1161/01.cir.88.6.2762
55. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30. doi: 10.1093/eurheartj/ehz962
56. Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–42. doi: 10.1016/j.cca.2014.01.015
57. Björnson E, Packard CJ, Adiels M, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med. 2019;285:562–77. doi: 10.1111/joim.12877
58. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb. 1991;11:2–14. doi: 10.1161/01.atv.11.1.2
59. Stavenow L, Kjellström T. Influence of serum triglyceride levels on the risk for myocardial infarction in 12,510 middle aged males: interaction with serum cholesterol. Atherosclerosis. 1999;147(2):243–7. doi: 10.1016/s0021-9150(99)00190-2
60. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B. doi: 10.1016/s0002-9149(98)00031-9
61. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450–8. doi: 10.1161/CIRCULATIONAHA.106.637793
62. Di Angelantonio E, Sarwar N, Perry P, et al. Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. doi: 10.1001/jama.2009.1619
63. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626-35. doi: 10.1016/S0140-6736(14)61177-6
64. Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112,512 individuals from the general population. Ann Neurol. 2019;85:550–9. doi: 10.1002/ana.25432
65. Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride‑lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321:364–73. doi: 10.1001/jama.2018.20045
66. Kalthoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J. 2020;41:2288–99. doi: 10.1093/eurheartj/ehaa172
67. Park H-B, Arsanjani R, Hong S-J, et al. Impact of hypertriglyceridaemia on cardiovascular mortality according to low-density lipoprotein cholesterol in a 15.6-million population. Eur J Prevent Cardiol. 2024;31:280–90. doi: 10.1093/eurjpc/zwad330
68. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.
69. Patel A, Barzi F, Jamrozik K, et al. Asia Pacific Cohort Studies Collaboration. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation. 2004;110:2678–86. doi: 10.1161/01.CIR.0000145615.33955.83
70. Arca M, Veronesi C, D’Erasmo L, et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low‑Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J Am Heart Assoc. 2020;9:e015801. doi: 10.1161/JAHA.119.015801
71. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi: 10.1186/s12933-022-01525-5
72. Lee H, Park J-B, Hwang I-C, et al. Association of four lipid components with mortality, myocardial infarction, and stroke in statin-naïve young adults: A nationwide cohort study. Eur J Prevent Cardiol. 2020;27(8):870–81. doi: 10.1177/2047487319898571
73. Pletcher MJ, Bibbins-Domingo K, Liu K, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010;153(3):137–46. doi: 10.7326/0003-4819-153-3-201008030-00004
74. Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol. 1997;17(6):1114–20. doi: 10.1161/01.atv.17.6.1114
75. Kivioja R, Pietila A, Martinez-Majander N, et al. Risk factors for early-onset ischemic stroke: a case-control study. J Am Heart Assoc. 2018;7(21):e009774. doi: 10.1161/JAHA.118.009774
76. Nordestgaard BG, Benn M, Schnohr P, Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. doi: 10.1001/jama.298.3.299
77. Freiberg JJ, Tybjærg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300(18):2142–52. doi: 10.1001/jama.2008.621
78. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16. doi: 10.1001/jama.298.3.309
79. Varbo A, Nordestgaard BG. Nonfasting triglycerides, low-density lipoprotein cholesterol, and heart failure risk: two cohort studies of 113 554 individuals. Arterioscler Thromb Vasc Biol. 2018;38(2):464-72. doi: 10.1161/ATVBAHA.117.310269
80. Toth PP, Sephy P, Hull M, Granowitz C. Elevated Triglycerides (≥150 mg/dL) and High Triglycerides (200-499 mg/dL) Are Significant Predictors of New Heart Failure Diagnosis: A Real-World Analysis of High-Risk Statin‑Treated Patients. Vascular Health and Risk Management. 2019;15:533–8. doi: 10.2147/VHRM.S221289
81. Varbo A, Benn M, Tybjærg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36. doi: 10.1016/j.jacc.2012.08.1026
82. Goliasch G, Wiesbauer F, Blessberger H, et al. Premature myocardial infarction is strongly associated with increased levels of remnant cholesterol. J Clin Lipidol. 2015;9:801–6. doi: 10.1016/j.jacl.2015.08.009
83. Varbo A, Freiberg JJ, Nordestgaard BG. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–43. doi: 10.1373/clinchem.2014.234146
84. Jepsen AM, Langsted A, Varbo A, et al. Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clin Chem. 2016;62(4):593–604. doi: 10.1373/clinchem.2015.253757
85. Bittencourt MS, Santos RD, Staniak H, et al. Relation of fasting triglyceride-rich lipoprotein cholesterol to coronary artery calcium score (from the ELSA-Brasil Study). Am J Cardiol. 2017;119(9):1352–8. doi: 10.1016/j.amjcard.2017.01.033
86. Doi T, Langsted A, Nordestgaard BG. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis. 2023;379:117141. doi: 10.1016/j.atherosclerosis.2023.05.010
87. Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;42:4324–32. doi: 10.1093/eurheartj/ehab432
88. Lee SJ, Kim S-E, Go T-H, et al. Remnant cholesterol, low-density lipoprotein cholesterol, and incident cardiovascular disease among Koreans: a national population-based study. Eur J Prevent Cardiol. 2023;30:1142–50. doi: 10.1093/eurjpc/zwad036
89. Wadström BN, Wulff AB, Pedersen KM, et al. Elevated remnant cholesterol increases the risk of peripheral artery disease, myocardial infarction, and ischaemic stroke: a cohort-based study. Eur Heart J. 2022;43:3258–69. doi: 10.1093/eurheartj/ehab705
90. Yang XH, Zhang BL, Cheng Y, et al. Association of remnant cholesterol with risk of cardiovascular disease events, stroke, and mortality: A systemic review and meta-analysis. Atherosclerosis. 2023;371:21–31. doi: 10.1016/j.atherosclerosis.2023.03.012
91. Cordero A, Alvarez-Alvarez B, Escribano D, et al. Remnant cholesterol in patients admitted for acute coronary syndromes. Eur J Prevent Cardiol. 2023;30:340–8. doi: 10.1093/eurjpc/zwac286
92. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75. doi: 10.1111/j.1365-2796.2010.02333.x
93. Wadström BN, Pedersen KM, Wulff AB, et al. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur. Heart J. 2023;44:1432–45. doi: 10.1093/eurheartj/ehac822
94. Jørgensen AB, Frikke-Schmidt R, West AS, et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34:1826–33. doi: 10.1093/eurheartj/ehs431
95. Chapman MJ, Ginsberg HN, Amarenco P, et al. the European Atherosclerosis Society Consensus Panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61. doi: 10.1093/eurheartj/ehr112
96. Boullart AC, de Graaf J, Stalenhoef AF. Serum triglycerides and risk of cardiovascular disease. Biochim Biophys Acta. 2012;1821:867–75. doi: 10.1016/j.bbalip.2011.10.002
97. Björnson E, Adiels M, Taskinen M-R, et al. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44:4186–95. doi: 10.1093/eurheartj/ehad337
98. Do R, Stitziel NO, Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6. doi: 10.1038/nature13917
99. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. doi: 10.1056/NEJMoa1308027
100. Khera AV, Won HH, Peloso GM, et al. Myocardial Infarction Genetics Consortium, DiscovEHR Study Group, CARDIoGRAM Exome Consortium, and Global Lipids Genetics Consortium. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317:937–46. doi: 10.1001/jama.2017.0972
101. Stitziel NO, Khera AV, Wang X, et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63. doi: 10.1016/j.jacc.2017.02.030
102. Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33. doi: 10.1056/NEJMoa1510926
103. Stitziel NO, Stirrups KE, Masca NG, et al. Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators; Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44. doi: 10.1056/NEJMoa1507652
104. Helkkula P, Kiiskinen T, Havulinna AS, et al. ANGPTL8 protein‑truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genet. 2021;17:e1009501. doi: 10.1371/journal.pgen.1009501
105. Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60:737–46. doi: 10.1373/clinchem.2013.219881
106. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095
107. Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The evolving understanding and approach to residual cardiovascular risk management. Front Cardiovasc Med. 2020;7:88. doi: 10.3389/fcvm.2020.00088
108. Toth Peter P, Fazio S, Wong ND. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22:279–89. doi: 10.1111/dom.13921
109. Marston NA, Giugliano RP, Im KAh, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation. 2019;140:1308–17. doi: 10.1161/CIRCULATIONAHA.119.041998
110. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75. doi: 10.1016/j.jacc.2015.03.544
111. Sacks FM, Tonkin AM, Shepherd J, et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation. 2000;102:1893–900. doi: 10.1161/01.cir.102.16.1893
112. Miller M, Cannon CP, Murphy SA, et al. PROVE IT-TIMI 22 Investigators. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30. doi: 10.1016/j.jacc.2007.10.038
113. Faergeman O, Holme I, Fayyad R, et al. Steering Committees of IDEAL and TNT Trials. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol. 2009;104(4):459–63. doi: 10.1016/j.amjcard.2009.04.008
114. Anderson JW, Konz EC. Obesity and disease management: effects of weight loss on comorbid conditions. Obes Res. 2001;9(Suppl 4):326S–334S. doi: 10.1038/oby.2001.138
115. Couillard C, Després JP, Lamarche B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001;21(7):1226–32. doi: 10.1161/hq0701.092137
116. Bubnova MG, Aronov DM, Olferyev AM, Bondarenko IZ. Modification of blood lipoprotein and apolipoprotein levels by physical exercise of various type and intensity in healthy men with normo- and hyperlipidemia. Cardiovascular Therapy and Prevention. 2005;4(2):74–83. (In Russ.)
117. Aronov DM, Bubnova MG, Perova NV, et al. The effect of maximal versus submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. J Clin Lipidol. 2017;11:369–76. doi: 10.1016/j.jacl.2017.01.007
118. Kirkpatrick CF, Sikand G, Petersen KS, et al. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J Clin Lipidol. 2023;17(4):428–51. doi: 10.1016/j.jacl.2023.05.099
119. Williams L, Rhodes KS, Karmally W, et al. Familial chylomicronemia syndrome: Bringing to life dietary recommendations throughout the life span. J Clin Lipidol. 2018;12(4):908–19. doi: 10.1016/j.jacl.2018.04.010
120. Fechner E, Smeets ETHC, Schrauwen P, Mensink RP. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans-A Systematic Review and Meta-Analysis. Nutrients. 2020;12(4):991. doi: 10.3390/nu12040991
121. Stoernell CK, Tangney CC, Rockway SW. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res. 2008;28(7):443–9. doi: 10.1016/j.nutres.2008.03.013
122. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy‑restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta‑analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98. doi: 10.3945/ajcn.112.044321
123. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose‑sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. doi: 10.1172/JCI37385
124. Kodama S, Horikawa C, Fujihara K, et al. Relationship between intake of fruit separately from vegetables and triglycerides – A meta-analysis. Clin Nutr ESPEN. 2018;27:53–8. doi: 10.1016/j.clnesp.2018.07.001
125. Leslie MA, Cohen DJA, Liddle DM, et al. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7
126. Liu YX, Yu JH, Sun JH, et al. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods. 2023;12(4):725. doi: 10.3390/foods12040725
127. Khorshidi M, Hazaveh ZS, Alimohammadi-kamalabadi M, et al. Effect of omega-3 supplementation on lipid profile in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2023;22:9. doi.10.1186/s12937-022-00826-5
128. Jones PH, Davidson MH, Stein EA, et al.; STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol. 2003;92(2):152–60. doi: 10.1016/s0002-9149(03)00530-7
129. Arutyunov GP, Boytsov SA, Voyevoda MI, et al. Correction of Hypertriglyceridemia as the Way to Reduce Residual Risk in Diseases Caused by Atherosclerosis. Conclusion of the Advisory Board of the RussianSociety of Cardiology, the Russian Scientific Medical Society of Therapists, the Eurasian Association of Therapists, the Russian National Atherosclerosis Society, the Russian Association of Endocrinologists, and the National League of Cardiologic Genetics. Rational Pharmacotherapy in Cardiology. 2019;15(2):282–8. doi: 10.20996/1819-6446-2019-15-2-282-288
130. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation. 1998;98:2088–93. doi: 10.1161/01.cir.98.19.2088
131. Kim NH, Kim SG. Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes Metab J. 2020;44:213–21. doi.10.4093/dmj.2020.0001
132. Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today (Barc). 2006;42(1):39–64. doi: 10.1358/dot.2006.42.1.963528
133. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs. 2007;67(1):121–53. doi: 10.2165/00003495-200767010-00013
134. Feher MD, Caslake M, Foxton J, et al. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999;15:395. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<395:AID-DMRR65>3.0.CO;2-N
135. Ezhov MV, Arutyunov GP. Effectiveness and Safety of Fenofibrate in Routine Treatment of Patients with Hypertriglyceridemia and Metabolic Syndrome. Diseases. 2023;11:140. doi: 10.3390/diseases11040140
136. DAIS investigators. Effect of fenofibrate on progression of coronary‑artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10. doi: 10.1016/S0140-6736(00)04209-4
137. Keech A, Simes RJ, Barter P, et al. The FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61. doi: 10.1016/S0140-6736(05)67667-2
138. Ginsberg HN, Elam MB, Lovato LС, et al. The ACCORD Study Group. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med. 2010;362:1563–74. doi: 10.1056/NEJMoa1001282
139. Wierzbicki AS. FIELD of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract. 2006;60(4):442–9. doi: 10.1111/j.1368-5031.2006.00882.x
140. Jo SH, Nam H, Lee J, Park S, et al. Fenofibrate Use Is Associated With Lower Mortality and Fewer Cardiovascular Events in Patients With Diabetes: Results of 10,114 Patients From the Korean National Health Insurance Service Cohort. Diabetes Care. 2021;44:1868–76. doi: 10.2337/dc20-1533
141. Kim NH, Han KH, Choi J, et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019;366:5125. doi: 10.1136/bmj.l5125
142. Das Pradhan A, Glynn RJ, Fruchart JC, et al. PROMINENT Investigators. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387:1923–34. doi: 10.1056/NEJMoa2210645
143. Ku EJ, Kim B, Han K, et al. Fenofibrate to prevent amputation and reduce vascular complications in patients with diabetes: FENO-PREVENT. Cardiovascular Diabetology. 2024;23:329. doi: 10.1186/s12933-024-02422-9
144. Elam M, Lovato L, Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus Clin Lipidol. 2011;6(1):9–20. doi: 10.2217/clp.10.84
145. Li J, Shi L, Zhao G, et al. High triglyceride levels increase the risk of diabetic microvascular complications: a cross-sectional study. Lipids Health Dis. 2023;22(1):109. doi: 10.1186/s12944-023-01873-5
146. Gitay MN, Sohail A, Arzoo Y, Shakir MA. Changes in serum lipids with the onset and progression of Diabetic Retinopathy in Type-II Diabetes Mellitus. Pak J Med Sci. 2023;39(1):188–91. doi: 10.12669/pjms.39.1.6265
147. Franssen R, Vergeer M, Stroes ES, Kastelein JJ. Combination statin‑fibrate therapy: safety aspects. Diabetes Obes Metab. 2009;11(2):89–94. doi: 10.1111/j.1463-1326.2008.00917.х
148. Jones PH, Cusi K, Davidson MH, et al. Efficacy and safety of fenofibric acid co-administered with low- or moderate-dose statin in patients with mixed dyslipidemia and type 2 diabetes mellitus: results of a pooled subgroup analysis from three randomized, controlled, double-blind trials. Am J Cardiovasc Drugs. 2010;10(2):73–84. doi: 10.2165/10061630-000000000-00000
149. Roth EM, McKenney JM, Kelly MT, et al. Efficacy and safety of rosuvastatin and fenofibric acid combination therapy versus simvastatin monotherapy in patients with hypercholesterolemia and hypertriglyceridemia: a randomized, double-blind study. Am J Cardiovasc Drugs. 2010;10(3):175–86. doi: 10.2165/11533430-000000000-00000
150. Kim NH, Kim JY, Choi J, Kim SG. Associations of omega-3 fatty acids vs. fenofibrate with adverse cardiovascular outcomes in people with metabolic syndrome: propensity matched cohort study. Eur Heart J Cardiovascular Pharmacotherapy. 2024;10(2):118–27. doi: 10.1093/ehjcvp/pvad090
151. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids in Health and Disease. 2017;16(1):149. doi: 10.1186/s12944-017-0541-3
152. Drexel H, Tamargo J, Kaski JC, et al. Triglycerides revisited: is hypertriglyceridaemia a necessary therapeutic target in cardiovascular disease? Eur Heart J Cardiovascular Pharmacotherapy. 2023;9(6):570–82. doi: 10.1093/ehjcvp/pvad044
153. Kaur Gurleen, Mason RP, Steg PhG, Bhatt DL. Omega-3 fatty acids for cardiovascular event lowering. Eur J Prevent Cardiol. 2024;31:1005–14. doi: 10.1093/eurjpc/zwae003
154. Banaszak M, Dobrzyńska M, Kawka A, et al. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases — Reports from the last 10 years. Clin Nutr ESPEN. 2024;63:240–58. doi: 10.1016/j.clnesp.2024.06.053
155. Sezai A, Unosawa S, Taoka M, et al. Long-Term Comparison of Ethyl Icosapentate vs. Omega-3-Acid Ethyl in Patients With Cardiovascular Disease and Hypertriglyceridemia (DEFAT Trial). Circ J. 2019;83(6):1368–76. doi: 10.1253/circj.CJ-18-076
156. Wang T, Zhang X, Zhou N, et al. Association between omega-3 fatty acid intake and dyslipidemia: a continuous dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2023;12(11):e029512. doi: 10.1161/JAHA.123.029512
157. Budoff MJ, Muhlestein JB, Bhatt DL, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovascular Research. 2021;117(4):1070–7. doi: 10.1093/cvr/cvaa184
158. Bernasconi AA, Wiest MM, Lavie CJ, et al. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta‑Regression of Interventional Trials. Mayo Clinic Proceedings. 2021;96(2):304–13. doi: 10.1016/j.mayocp.2020.08.034.
159. Yokoyama M, Origasa H, Matsuzaki M, et al. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8 doi: 10.1016/S0140-6736(07)60527-3
160. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. doi: 10.1056/NEJMoa1812792
161. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT. J Am Coll Cardiol. 2019;73(22):2791–802. doi: 10.1016/j.jacc.2019.02.032
162. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose Omega-3 fatty acids vs corn oil on Major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80. doi: 10.1001/jama.2020.22258
163. Barbarawi M, Lakshman H, Barbarawi O, et al. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemporary Clinical Trials. 2021;107:106458. doi: 10.1016/j.cct.2021.106458
164. Sarker J, Kim M, Munger MA, Kim K. Icosapent Ethyl‑Associated New Atrial Fibrillation Incidence compared to Omega-3 Fatty Acids: An Observational Cohort Study. Circulation. 2024;150(Suppl 1):A4140072-A4140072. doi: 10.1101/2024.09.16.24313779
165. Valdivielso P, Ramirez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–94. doi: 10.1016/j.ejim.2014.08.008
166. Berberich AJ, Ziada A, Zou GY, Hegele RA. Conservative management in hypertriglyceridemia-associated pancreatitis. J Intern Med. 2019;286:644–50. doi: 10.1111/joim.12925
167. Konovalov GA, Filonenko IV, Akopyan VS, et al. Rheopheresis in clinical practice. Kremlin medicine. Clinical Bulletin. 2004;3:48–53. (In Russ.)
168. Konovalov GA, Chebyshev AN, Zvezdkin PV, et al. Extracorporeal methods in the treatment of severe forms of atherosclerosis, metabolic syndrome and dilated cardiomyopathy. Kremlin medicine. Clinical Bulletin. 2001;4:48–54. (In Russ.)
Авторы
М.Г. Бубнова*1, М.В. Ежов2, Д.М. Аронов1, А.С. Галявич3, В.С. Гуревич4,5, Д.В. Дупляков6, В.К. Зафираки7, Н.С. Карамнова1, В.В. Кашталап8, Г.А. Коновалов9, А.Н. Мешков1, А.Г. Обрезан4, А.А. Семенкин10, И.В. Сергиенко2, А.Е. Филиппов4
1Национальный медицинский исследовательский центр терапии и профилактической медицины, Москва, Россия;
2Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова, Москва, Россия;
3Казанский государственный медицинский университет, Казань, Россия;
4Санкт-Петербургский государственный университет, Санкт-Петербург, Россия;
5Северо-Западный государственный медицинский университет им. И.И. Мечникова, Санкт-Петербург, Россия;
6Самарский государственный медицинский университет, Самара, Россия;
7Кубанский государственный медицинский университет, Краснодар, Россия;
8Кемеровский государственный медицинский университет, Кемерово, Россия;
9Клинико-диагностический центр «МЕДСИ на Белорусской», Москва, Россия;
10Омский государственный медицинский университет, Омск, Россия
*mbubnova@gnicpm.ru
1National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia;
2National Medical Research Center of Cardiology named after Academician E.I. Chazov, Moscow, Russia;
3Kazan State Medical University, Kazan, Russia;
4Saint Petersburg State University, Saint Petersburg, Russia;
5Mechnikov Northwestern State Medical University, Saint Petersburg, Russia;
6Samara State Medical University, Samara, Russia;
7Kuban State Medical University, Krasnodar, Russia;
8Kemerovo State Medical University, Kemerovo, Russia;
9Clinical and Diagnostic Center MEDSI Belorusskaya, Moscow, Russia;
10Omsk State Medical University, Omsk, Russia
*mbubnova@gnicpm.ru
1Национальный медицинский исследовательский центр терапии и профилактической медицины, Москва, Россия;
2Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова, Москва, Россия;
3Казанский государственный медицинский университет, Казань, Россия;
4Санкт-Петербургский государственный университет, Санкт-Петербург, Россия;
5Северо-Западный государственный медицинский университет им. И.И. Мечникова, Санкт-Петербург, Россия;
6Самарский государственный медицинский университет, Самара, Россия;
7Кубанский государственный медицинский университет, Краснодар, Россия;
8Кемеровский государственный медицинский университет, Кемерово, Россия;
9Клинико-диагностический центр «МЕДСИ на Белорусской», Москва, Россия;
10Омский государственный медицинский университет, Омск, Россия
*mbubnova@gnicpm.ru
________________________________________________
1National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia;
2National Medical Research Center of Cardiology named after Academician E.I. Chazov, Moscow, Russia;
3Kazan State Medical University, Kazan, Russia;
4Saint Petersburg State University, Saint Petersburg, Russia;
5Mechnikov Northwestern State Medical University, Saint Petersburg, Russia;
6Samara State Medical University, Samara, Russia;
7Kuban State Medical University, Krasnodar, Russia;
8Kemerovo State Medical University, Kemerovo, Russia;
9Clinical and Diagnostic Center MEDSI Belorusskaya, Moscow, Russia;
10Omsk State Medical University, Omsk, Russia
*mbubnova@gnicpm.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
