Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль митохондриальной дисфункции в развитии длительного COVID: обзорная статья
Роль митохондриальной дисфункции в развитии длительного COVID: обзорная статья
Авдеева К.С., Петелина Т.И., Горбачевский А.В., Бессонова М.И. Роль митохондриальной дисфункции в развитии длительного COVID: обзорная статья // CardioСоматика. 2025. Т. 16, № 4. С. 352–362. DOI: 10.17816/CS679567 EDN: FEFBCS
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Несмотря на завершение пандемии COVID-19, многие пациенты продолжают испытывать негативные последствия данного заболевания в виде кардиометаболических нарушений, а количество симптомов длительного COVID весьма многочисленно и разнообразно, что требует углубленного понимания механизмов данного заболевания. Одним из механизмов развития длительного COVID является транзиторная поствирусная митохондриальная дисфункция. Предполагается, что вирус SARS-CoV-2, прямо или опосредованно через системное воспаление, вызывает метаболическое перепрограммирование клеток, нарушая окислительное фосфорилирование, снижая продукцию АТФ и усиливая генерацию активных форм кислорода. При метаболическом перепрограммировании клетки предпочитают использовать гликолиз для выработки лактата. Высокий уровень лактата в крови при низкой интенсивности физической нагрузки указывает на митохондриальную дисфункцию. Кардиореспираторная выносливость напрямую связана с интегральной функцией многих систем и считается отражением общего состояния здоровья организма. Наиболее объективным и точным показателем кардиореспираторной выносливости является прямое измерение максимального потребления кислорода путём проведения кардиопульмонального нагрузочного тестирования (КПНТ). В связи с этим, мониторинг уровня лактата в крови наряду с уровнем пикового потребления кислорода по данным КПНТ можно эффективно использовать при планировании дальнейших научных исследований Поиск, отбор и анализ литературных источников по данной теме осуществлялся в научных базах CyberLeninka, eLibrary.ru, link.springer.com, frontiersin.org, pubmed.ncbi.nlm.nih.gov, Google Scholar и других, и был направлен на систематизацию современных доказательств, подтверждающих роль митохондриальной дисфункции как патогенетического механизма длительного COVID.
Ключевые слова: митохондрии, гликолиз, активные формы кислорода, аденозинтрифосфат, метаболическое перепрограммирование, длительный COVID, лактат, кардиореспираторная выносливость, кардиопульмональное нагрузочное тестирование
Keywords: mitochondria, glycolysis, reactive oxygen species, adenosine triphosphate, metabolic reprogramming, long COVID, lactate, cardiorespiratory fitness, cardiopulmonary exercise testing
Ключевые слова: митохондрии, гликолиз, активные формы кислорода, аденозинтрифосфат, метаболическое перепрограммирование, длительный COVID, лактат, кардиореспираторная выносливость, кардиопульмональное нагрузочное тестирование
________________________________________________
Keywords: mitochondria, glycolysis, reactive oxygen species, adenosine triphosphate, metabolic reprogramming, long COVID, lactate, cardiorespiratory fitness, cardiopulmonary exercise testing
Полный текст
Список литературы
1. Sakellaropoulos SG, Sakellaropoulos PG, Steinberg BS, et al. Five Years of Long COVID Syndrome: An Updated Review on Cardiometabolic and Psychiatric Aspects. Cardiol Res. 2025;16(2):81–85. doi: 10.14740/cr2014 EDN: ZOLNSM
2. Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci. 2023;24(9):8034. doi: 10.3390/ijms24098034 EDN: CTBFLY
3. Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer. 2023;18(1):7. Erratum in: Infect Agent Cancer. 2023;18(1):23. doi: 10.1186/s13027-023-00485-z EDN: CBXAAR
4. Rahmati M, Udeh R, Yon DK, et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: A call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. doi: 10.1002/jmv.28852 EDN: XUOMYC
5. Haunhorst S, Dudziak D, Scheibenbogen C, et al. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection. 2025;53(1):1–13. doi: 10.1007/s15010-024-02386-8 EDN: CRAYWL
6. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2):2100870. doi: 10.1183/13993003.00870-2021 EDN: USSXNS
7. Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol. 2023;12(3):204–208. doi: 10.5501/wjv.v12.i3.204 EDN: FSZMHJ
8. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–692. doi: 10.1016/j.tim.2021.12.011 EDN: NAKODW
9. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/
10. Deshpande OA, Mohiuddin SS. Biochemistry, Oxidative Phosphorylation [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553192/
11. Hantzidiamantis PJ, Awosika AO, Lappin SL. Physiology, Glucose [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545201/
12. Dunn J, Grider MH. Physiology, Adenosine Triphosphate [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553175/
13. Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39. doi: 10.1016/j.molmed.2019.10.007 EDN: TJZLPW
14. Liskova A, Samec M, Koklesova L, et al. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci. 2021;22(4):2007. doi: 10.3390/ijms22042007
15. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the smolensk state medical academy. 2015;14(2):13–22. EDN: UHOVFR
16. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021;118(34):e2024358118. doi: 10.1073/pnas.2024358118 EDN: HPBNVE
17. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi: 10.1016/j.bbadis.2020.165838 EDN: UMSWSR
18. Xu M, Wang W, Cheng J, et al. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother. 2024;174:116587. doi: 10.1016/j.biopha.2024.116587 EDN: KFSZKA
19. Shemiakova T, Ivanova E, Wu WK, et al. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med. 2021;8:660473. doi: 10.3389/fcvm.2021.660473 EDN: LSHVIH
20. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267. doi: 10.1152/ajpcell.00224.2020 EDN: DRKJZQ
21. Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem. 2023;478(6):1325–1343. doi: 10.1007/s11010-022-04593-z EDN: NVBXAY
22. Guarnieri JW, Dybas JM, Fazelinia H, et al. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi: 10.1126/scitranslmed.abq1533 EDN: FECDGF
23. Guarnieri JW, Haltom JA, Albrecht YES, et al. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res. 2024;204:107170. doi: 10.1016/j.phrs.2024.107170 EDN: JLHSVO
24. Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024;46(5):5267–5286. doi: 10.1007/s11357-024-01165-5 EDN: EVOCDQ
25. Tereshin AE, Kiriyanova VV, Reshetnik DA. Correction of mitochondrial dysfunction in the complex rehabilitation of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(8):25–29. doi: 10.17116/jnevro202112108125 EDN: TJZMSC
26. Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses. 2022;14(3):602. doi: 10.3390/v14030602
27. Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev. 2020;48(3):119–124. doi: 10.1249/JES.0000000000000220 EDN: DYRIBV
28. Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells. 2024;13(14):1177. doi: 10.3390/cells13141177 EDN: TETOZL
29. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454 EDN: ESQFLJ
30. Chepur SV, Pluzhnikov NN, Chubar OV, et al. Lactic acid: dynamics of ideas about the lactate biology. Uspekhi sovremennoi biologii. 2021;141(3):227–247. doi: 10.31857/S0042132421030042 EDN: ROJMSR
31. Faghy PMA, Ashton DRE, McNelis MR, Arena R, Duncan DR. Attenuating post-exertional malaise in Myalgic encephalomyelitis/chronic fatigue syndrome and long-COVID: Is blood lactate monitoring the answer? Curr Probl Cardiol. 2024;49(6):102554. doi: 10.1016/j.cpcardiol.2024.102554 EDN: WPOLLM
32. Sakellaropoulos SG, Ali M, Papadis A, et al. Is Long COVID Syndrome a Transient Mitochondriopathy Newly Discovered: Implications of CPET. Cardiol Res. 2022;13(5):264–267. doi: 10.14740/cr1419 EDN: UZKRXR
33. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461 EDN: YWFEOZ
34. Ravichandran S, Gajjar P, Walker ME, et al. Life's Essential 8 Cardiovascular Health Score and Cardiorespiratory Fitness in the Community. J Am Heart Assoc. 2024;13(9):e032944. doi: 10.1161/JAHA.123.032944 EDN: VUYITM
35. Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation. 2020;142(7):e101–e118. doi: 10.1161/CIR.0000000000000866 EDN: OFMKAQ
36. Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. Cleve Clin J Med. 2017;84(2):161–168. Erratum in: Cleve Clin J Med. 2017;84(3):214. doi: 10.3949/ccjm.84a.15013
37. Gomes-Neto M, Almeida KO, Correia HF, et al. Determinants of cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors: a systematic review with meta-analysis and meta regression. Braz J Phys Ther. 2024;28(4):101089. doi: 10.1016/j.bjpt.2024.101089 EDN: WRVYKC
38. Harber MP, Peterman JE, Imboden M, et al. Cardiorespiratory fitness as a vital sign of CVD risk in the COVID-19 era. Prog Cardiovasc Dis. 2023;76:44–48. doi: 10.1016/j.pcad.2022.12.001 EDN: DMKATN
39. Arena R, Faghy MA. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev Cardiovasc Ther. 2021;19(10):877–880. doi: 10.1080/14779072.2021.1985466 EDN: WWSJPN
40. Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033 EDN: LFWBYS
41. Zheng C, Chen JJ, Dai ZH, et al. Physical exercise-related manifestations of long COVID: A systematic review and meta-analysis. J Exerc Sci Fit. 2024;22(4):341–349. doi: 10.1016/j.jesf.2024.06.001 EDN: ICNWQK
42. Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low Cardiorespiratory Fitness Post-COVID-19: A Narrative Review. Sports Med. 2023;53(1):51–74. doi: 10.1007/s40279-022-01751-7 EDN: CIWRNZ
43. Durstenfeld MS, Sun K, Tahir P, et al. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(10):e2236057. doi: 10.1001/jamanetworkopen.2022.36057 EDN: WZVFNI
44. Persiyanova-Dubrova AL, Matveeva IF, Bubnova MG. Approaches to choosing the intensity of aerobic training in cardiac rehabilitation. Profilakticheskaya meditsina. 2023;26(10):123–129. doi: 10.17116/profmed202326101123 EDN: MXXMVV
45. Khodanovich AN. Anaerobic metabolism threshold: evolution of diagnostic methods and testing protocols. Physical culture. sport. tourism. motor recreation. 2024;9(4):59–65. doi: 10.47475/2500-0365-2024-9-4-59-65 EDN: EIDXVX
2. Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci. 2023;24(9):8034. doi: 10.3390/ijms24098034 EDN: CTBFLY
3. Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer. 2023;18(1):7. Erratum in: Infect Agent Cancer. 2023;18(1):23. doi: 10.1186/s13027-023-00485-z EDN: CBXAAR
4. Rahmati M, Udeh R, Yon DK, et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: A call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. doi: 10.1002/jmv.28852 EDN: XUOMYC
5. Haunhorst S, Dudziak D, Scheibenbogen C, et al. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection. 2025;53(1):1–13. doi: 10.1007/s15010-024-02386-8 EDN: CRAYWL
6. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2):2100870. doi: 10.1183/13993003.00870-2021 EDN: USSXNS
7. Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol. 2023;12(3):204–208. doi: 10.5501/wjv.v12.i3.204 EDN: FSZMHJ
8. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–692. doi: 10.1016/j.tim.2021.12.011 EDN: NAKODW
9. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/
10. Deshpande OA, Mohiuddin SS. Biochemistry, Oxidative Phosphorylation [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553192/
11. Hantzidiamantis PJ, Awosika AO, Lappin SL. Physiology, Glucose [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545201/
12. Dunn J, Grider MH. Physiology, Adenosine Triphosphate [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553175/
13. Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39. doi: 10.1016/j.molmed.2019.10.007 EDN: TJZLPW
14. Liskova A, Samec M, Koklesova L, et al. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci. 2021;22(4):2007. doi: 10.3390/ijms22042007
15. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the smolensk state medical academy. 2015;14(2):13–22. EDN: UHOVFR
16. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021;118(34):e2024358118. doi: 10.1073/pnas.2024358118 EDN: HPBNVE
17. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi: 10.1016/j.bbadis.2020.165838 EDN: UMSWSR
18. Xu M, Wang W, Cheng J, et al. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother. 2024;174:116587. doi: 10.1016/j.biopha.2024.116587 EDN: KFSZKA
19. Shemiakova T, Ivanova E, Wu WK, et al. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med. 2021;8:660473. doi: 10.3389/fcvm.2021.660473 EDN: LSHVIH
20. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267. doi: 10.1152/ajpcell.00224.2020 EDN: DRKJZQ
21. Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem. 2023;478(6):1325–1343. doi: 10.1007/s11010-022-04593-z EDN: NVBXAY
22. Guarnieri JW, Dybas JM, Fazelinia H, et al. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi: 10.1126/scitranslmed.abq1533 EDN: FECDGF
23. Guarnieri JW, Haltom JA, Albrecht YES, et al. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res. 2024;204:107170. doi: 10.1016/j.phrs.2024.107170 EDN: JLHSVO
24. Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024;46(5):5267–5286. doi: 10.1007/s11357-024-01165-5 EDN: EVOCDQ
25. Tereshin AE, Kiriyanova VV, Reshetnik DA. Correction of mitochondrial dysfunction in the complex rehabilitation of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(8):25–29. doi: 10.17116/jnevro202112108125 EDN: TJZMSC
26. Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses. 2022;14(3):602. doi: 10.3390/v14030602
27. Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev. 2020;48(3):119–124. doi: 10.1249/JES.0000000000000220 EDN: DYRIBV
28. Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells. 2024;13(14):1177. doi: 10.3390/cells13141177 EDN: TETOZL
29. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454 EDN: ESQFLJ
30. Chepur SV, Pluzhnikov NN, Chubar OV, et al. Lactic acid: dynamics of ideas about the lactate biology. Uspekhi sovremennoi biologii. 2021;141(3):227–247. doi: 10.31857/S0042132421030042 EDN: ROJMSR
31. Faghy PMA, Ashton DRE, McNelis MR, Arena R, Duncan DR. Attenuating post-exertional malaise in Myalgic encephalomyelitis/chronic fatigue syndrome and long-COVID: Is blood lactate monitoring the answer? Curr Probl Cardiol. 2024;49(6):102554. doi: 10.1016/j.cpcardiol.2024.102554 EDN: WPOLLM
32. Sakellaropoulos SG, Ali M, Papadis A, et al. Is Long COVID Syndrome a Transient Mitochondriopathy Newly Discovered: Implications of CPET. Cardiol Res. 2022;13(5):264–267. doi: 10.14740/cr1419 EDN: UZKRXR
33. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461 EDN: YWFEOZ
34. Ravichandran S, Gajjar P, Walker ME, et al. Life's Essential 8 Cardiovascular Health Score and Cardiorespiratory Fitness in the Community. J Am Heart Assoc. 2024;13(9):e032944. doi: 10.1161/JAHA.123.032944 EDN: VUYITM
35. Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation. 2020;142(7):e101–e118. doi: 10.1161/CIR.0000000000000866 EDN: OFMKAQ
36. Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. Cleve Clin J Med. 2017;84(2):161–168. Erratum in: Cleve Clin J Med. 2017;84(3):214. doi: 10.3949/ccjm.84a.15013
37. Gomes-Neto M, Almeida KO, Correia HF, et al. Determinants of cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors: a systematic review with meta-analysis and meta regression. Braz J Phys Ther. 2024;28(4):101089. doi: 10.1016/j.bjpt.2024.101089 EDN: WRVYKC
38. Harber MP, Peterman JE, Imboden M, et al. Cardiorespiratory fitness as a vital sign of CVD risk in the COVID-19 era. Prog Cardiovasc Dis. 2023;76:44–48. doi: 10.1016/j.pcad.2022.12.001 EDN: DMKATN
39. Arena R, Faghy MA. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev Cardiovasc Ther. 2021;19(10):877–880. doi: 10.1080/14779072.2021.1985466 EDN: WWSJPN
40. Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033 EDN: LFWBYS
41. Zheng C, Chen JJ, Dai ZH, et al. Physical exercise-related manifestations of long COVID: A systematic review and meta-analysis. J Exerc Sci Fit. 2024;22(4):341–349. doi: 10.1016/j.jesf.2024.06.001 EDN: ICNWQK
42. Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low Cardiorespiratory Fitness Post-COVID-19: A Narrative Review. Sports Med. 2023;53(1):51–74. doi: 10.1007/s40279-022-01751-7 EDN: CIWRNZ
43. Durstenfeld MS, Sun K, Tahir P, et al. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(10):e2236057. doi: 10.1001/jamanetworkopen.2022.36057 EDN: WZVFNI
44. Persiyanova-Dubrova AL, Matveeva IF, Bubnova MG. Approaches to choosing the intensity of aerobic training in cardiac rehabilitation. Profilakticheskaya meditsina. 2023;26(10):123–129. doi: 10.17116/profmed202326101123 EDN: MXXMVV
45. Khodanovich AN. Anaerobic metabolism threshold: evolution of diagnostic methods and testing protocols. Physical culture. sport. tourism. motor recreation. 2024;9(4):59–65. doi: 10.47475/2500-0365-2024-9-4-59-65 EDN: EIDXVX
2. Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci. 2023;24(9):8034. doi: 10.3390/ijms24098034 EDN: CTBFLY
3. Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer. 2023;18(1):7. Erratum in: Infect Agent Cancer. 2023;18(1):23. doi: 10.1186/s13027-023-00485-z EDN: CBXAAR
4. Rahmati M, Udeh R, Yon DK, et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: A call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. doi: 10.1002/jmv.28852 EDN: XUOMYC
5. Haunhorst S, Dudziak D, Scheibenbogen C, et al. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection. 2025;53(1):1–13. doi: 10.1007/s15010-024-02386-8 EDN: CRAYWL
6. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2):2100870. doi: 10.1183/13993003.00870-2021 EDN: USSXNS
7. Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol. 2023;12(3):204–208. doi: 10.5501/wjv.v12.i3.204 EDN: FSZMHJ
8. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–692. doi: 10.1016/j.tim.2021.12.011 EDN: NAKODW
9. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/
10. Deshpande OA, Mohiuddin SS. Biochemistry, Oxidative Phosphorylation [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553192/
11. Hantzidiamantis PJ, Awosika AO, Lappin SL. Physiology, Glucose [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545201/
12. Dunn J, Grider MH. Physiology, Adenosine Triphosphate [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553175/
13. Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39. doi: 10.1016/j.molmed.2019.10.007 EDN: TJZLPW
14. Liskova A, Samec M, Koklesova L, et al. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci. 2021;22(4):2007. doi: 10.3390/ijms22042007
15. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the smolensk state medical academy. 2015;14(2):13–22. EDN: UHOVFR
16. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021;118(34):e2024358118. doi: 10.1073/pnas.2024358118 EDN: HPBNVE
17. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi: 10.1016/j.bbadis.2020.165838 EDN: UMSWSR
18. Xu M, Wang W, Cheng J, et al. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother. 2024;174:116587. doi: 10.1016/j.biopha.2024.116587 EDN: KFSZKA
19. Shemiakova T, Ivanova E, Wu WK, et al. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med. 2021;8:660473. doi: 10.3389/fcvm.2021.660473 EDN: LSHVIH
20. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267. doi: 10.1152/ajpcell.00224.2020 EDN: DRKJZQ
21. Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem. 2023;478(6):1325–1343. doi: 10.1007/s11010-022-04593-z EDN: NVBXAY
22. Guarnieri JW, Dybas JM, Fazelinia H, et al. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi: 10.1126/scitranslmed.abq1533 EDN: FECDGF
23. Guarnieri JW, Haltom JA, Albrecht YES, et al. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res. 2024;204:107170. doi: 10.1016/j.phrs.2024.107170 EDN: JLHSVO
24. Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024;46(5):5267–5286. doi: 10.1007/s11357-024-01165-5 EDN: EVOCDQ
25. Tereshin AE, Kiriyanova VV, Reshetnik DA. Correction of mitochondrial dysfunction in the complex rehabilitation of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(8):25–29. doi: 10.17116/jnevro202112108125 EDN: TJZMSC
26. Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses. 2022;14(3):602. doi: 10.3390/v14030602
27. Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev. 2020;48(3):119–124. doi: 10.1249/JES.0000000000000220 EDN: DYRIBV
28. Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells. 2024;13(14):1177. doi: 10.3390/cells13141177 EDN: TETOZL
29. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454 EDN: ESQFLJ
30. Chepur SV, Pluzhnikov NN, Chubar OV, et al. Lactic acid: dynamics of ideas about the lactate biology. Uspekhi sovremennoi biologii. 2021;141(3):227–247. doi: 10.31857/S0042132421030042 EDN: ROJMSR
31. Faghy PMA, Ashton DRE, McNelis MR, Arena R, Duncan DR. Attenuating post-exertional malaise in Myalgic encephalomyelitis/chronic fatigue syndrome and long-COVID: Is blood lactate monitoring the answer? Curr Probl Cardiol. 2024;49(6):102554. doi: 10.1016/j.cpcardiol.2024.102554 EDN: WPOLLM
32. Sakellaropoulos SG, Ali M, Papadis A, et al. Is Long COVID Syndrome a Transient Mitochondriopathy Newly Discovered: Implications of CPET. Cardiol Res. 2022;13(5):264–267. doi: 10.14740/cr1419 EDN: UZKRXR
33. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461 EDN: YWFEOZ
34. Ravichandran S, Gajjar P, Walker ME, et al. Life's Essential 8 Cardiovascular Health Score and Cardiorespiratory Fitness in the Community. J Am Heart Assoc. 2024;13(9):e032944. doi: 10.1161/JAHA.123.032944 EDN: VUYITM
35. Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation. 2020;142(7):e101–e118. doi: 10.1161/CIR.0000000000000866 EDN: OFMKAQ
36. Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. Cleve Clin J Med. 2017;84(2):161–168. Erratum in: Cleve Clin J Med. 2017;84(3):214. doi: 10.3949/ccjm.84a.15013
37. Gomes-Neto M, Almeida KO, Correia HF, et al. Determinants of cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors: a systematic review with meta-analysis and meta regression. Braz J Phys Ther. 2024;28(4):101089. doi: 10.1016/j.bjpt.2024.101089 EDN: WRVYKC
38. Harber MP, Peterman JE, Imboden M, et al. Cardiorespiratory fitness as a vital sign of CVD risk in the COVID-19 era. Prog Cardiovasc Dis. 2023;76:44–48. doi: 10.1016/j.pcad.2022.12.001 EDN: DMKATN
39. Arena R, Faghy MA. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev Cardiovasc Ther. 2021;19(10):877–880. doi: 10.1080/14779072.2021.1985466 EDN: WWSJPN
40. Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033 EDN: LFWBYS
41. Zheng C, Chen JJ, Dai ZH, et al. Physical exercise-related manifestations of long COVID: A systematic review and meta-analysis. J Exerc Sci Fit. 2024;22(4):341–349. doi: 10.1016/j.jesf.2024.06.001 EDN: ICNWQK
42. Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low Cardiorespiratory Fitness Post-COVID-19: A Narrative Review. Sports Med. 2023;53(1):51–74. doi: 10.1007/s40279-022-01751-7 EDN: CIWRNZ
43. Durstenfeld MS, Sun K, Tahir P, et al. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(10):e2236057. doi: 10.1001/jamanetworkopen.2022.36057 EDN: WZVFNI
44. Persiyanova-Dubrova AL, Matveeva IF, Bubnova MG. Approaches to choosing the intensity of aerobic training in cardiac rehabilitation. Profilakticheskaya meditsina. 2023;26(10):123–129. doi: 10.17116/profmed202326101123 EDN: MXXMVV
45. Khodanovich AN. Anaerobic metabolism threshold: evolution of diagnostic methods and testing protocols. Physical culture. sport. tourism. motor recreation. 2024;9(4):59–65. doi: 10.47475/2500-0365-2024-9-4-59-65 EDN: EIDXVX
________________________________________________
2. Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci. 2023;24(9):8034. doi: 10.3390/ijms24098034 EDN: CTBFLY
3. Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer. 2023;18(1):7. Erratum in: Infect Agent Cancer. 2023;18(1):23. doi: 10.1186/s13027-023-00485-z EDN: CBXAAR
4. Rahmati M, Udeh R, Yon DK, et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: A call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. doi: 10.1002/jmv.28852 EDN: XUOMYC
5. Haunhorst S, Dudziak D, Scheibenbogen C, et al. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection. 2025;53(1):1–13. doi: 10.1007/s15010-024-02386-8 EDN: CRAYWL
6. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2):2100870. doi: 10.1183/13993003.00870-2021 EDN: USSXNS
7. Del Carpio-Orantes L. Etiopathogenic theories about long COVID. World J Virol. 2023;12(3):204–208. doi: 10.5501/wjv.v12.i3.204 EDN: FSZMHJ
8. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–692. doi: 10.1016/j.tim.2021.12.011 EDN: NAKODW
9. Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/
10. Deshpande OA, Mohiuddin SS. Biochemistry, Oxidative Phosphorylation [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553192/
11. Hantzidiamantis PJ, Awosika AO, Lappin SL. Physiology, Glucose [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545201/
12. Dunn J, Grider MH. Physiology, Adenosine Triphosphate [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553175/
13. Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39. doi: 10.1016/j.molmed.2019.10.007 EDN: TJZLPW
14. Liskova A, Samec M, Koklesova L, et al. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci. 2021;22(4):2007. doi: 10.3390/ijms22042007
15. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Vestnik of the smolensk state medical academy. 2015;14(2):13–22. EDN: UHOVFR
16. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021;118(34):e2024358118. doi: 10.1073/pnas.2024358118 EDN: HPBNVE
17. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi: 10.1016/j.bbadis.2020.165838 EDN: UMSWSR
18. Xu M, Wang W, Cheng J, et al. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother. 2024;174:116587. doi: 10.1016/j.biopha.2024.116587 EDN: KFSZKA
19. Shemiakova T, Ivanova E, Wu WK, et al. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med. 2021;8:660473. doi: 10.3389/fcvm.2021.660473 EDN: LSHVIH
20. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267. doi: 10.1152/ajpcell.00224.2020 EDN: DRKJZQ
21. Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem. 2023;478(6):1325–1343. doi: 10.1007/s11010-022-04593-z EDN: NVBXAY
22. Guarnieri JW, Dybas JM, Fazelinia H, et al. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi: 10.1126/scitranslmed.abq1533 EDN: FECDGF
23. Guarnieri JW, Haltom JA, Albrecht YES, et al. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res. 2024;204:107170. doi: 10.1016/j.phrs.2024.107170 EDN: JLHSVO
24. Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024;46(5):5267–5286. doi: 10.1007/s11357-024-01165-5 EDN: EVOCDQ
25. Tereshin AE, Kiriyanova VV, Reshetnik DA. Correction of mitochondrial dysfunction in the complex rehabilitation of COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(8):25–29. doi: 10.17116/jnevro202112108125 EDN: TJZMSC
26. Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses. 2022;14(3):602. doi: 10.3390/v14030602
27. Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev. 2020;48(3):119–124. doi: 10.1249/JES.0000000000000220 EDN: DYRIBV
28. Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells. 2024;13(14):1177. doi: 10.3390/cells13141177 EDN: TETOZL
29. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454 EDN: ESQFLJ
30. Chepur SV, Pluzhnikov NN, Chubar OV, et al. Lactic acid: dynamics of ideas about the lactate biology. Uspekhi sovremennoi biologii. 2021;141(3):227–247. doi: 10.31857/S0042132421030042 EDN: ROJMSR
31. Faghy PMA, Ashton DRE, McNelis MR, Arena R, Duncan DR. Attenuating post-exertional malaise in Myalgic encephalomyelitis/chronic fatigue syndrome and long-COVID: Is blood lactate monitoring the answer? Curr Probl Cardiol. 2024;49(6):102554. doi: 10.1016/j.cpcardiol.2024.102554 EDN: WPOLLM
32. Sakellaropoulos SG, Ali M, Papadis A, et al. Is Long COVID Syndrome a Transient Mitochondriopathy Newly Discovered: Implications of CPET. Cardiol Res. 2022;13(5):264–267. doi: 10.14740/cr1419 EDN: UZKRXR
33. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461 EDN: YWFEOZ
34. Ravichandran S, Gajjar P, Walker ME, et al. Life's Essential 8 Cardiovascular Health Score and Cardiorespiratory Fitness in the Community. J Am Heart Assoc. 2024;13(9):e032944. doi: 10.1161/JAHA.123.032944 EDN: VUYITM
35. Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation. 2020;142(7):e101–e118. doi: 10.1161/CIR.0000000000000866 EDN: OFMKAQ
36. Leclerc K. Cardiopulmonary exercise testing: A contemporary and versatile clinical tool. Cleve Clin J Med. 2017;84(2):161–168. Erratum in: Cleve Clin J Med. 2017;84(3):214. doi: 10.3949/ccjm.84a.15013
37. Gomes-Neto M, Almeida KO, Correia HF, et al. Determinants of cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors: a systematic review with meta-analysis and meta regression. Braz J Phys Ther. 2024;28(4):101089. doi: 10.1016/j.bjpt.2024.101089 EDN: WRVYKC
38. Harber MP, Peterman JE, Imboden M, et al. Cardiorespiratory fitness as a vital sign of CVD risk in the COVID-19 era. Prog Cardiovasc Dis. 2023;76:44–48. doi: 10.1016/j.pcad.2022.12.001 EDN: DMKATN
39. Arena R, Faghy MA. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev Cardiovasc Ther. 2021;19(10):877–880. doi: 10.1080/14779072.2021.1985466 EDN: WWSJPN
40. Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033 EDN: LFWBYS
41. Zheng C, Chen JJ, Dai ZH, et al. Physical exercise-related manifestations of long COVID: A systematic review and meta-analysis. J Exerc Sci Fit. 2024;22(4):341–349. doi: 10.1016/j.jesf.2024.06.001 EDN: ICNWQK
42. Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low Cardiorespiratory Fitness Post-COVID-19: A Narrative Review. Sports Med. 2023;53(1):51–74. doi: 10.1007/s40279-022-01751-7 EDN: CIWRNZ
43. Durstenfeld MS, Sun K, Tahir P, et al. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(10):e2236057. doi: 10.1001/jamanetworkopen.2022.36057 EDN: WZVFNI
44. Persiyanova-Dubrova AL, Matveeva IF, Bubnova MG. Approaches to choosing the intensity of aerobic training in cardiac rehabilitation. Profilakticheskaya meditsina. 2023;26(10):123–129. doi: 10.17116/profmed202326101123 EDN: MXXMVV
45. Khodanovich AN. Anaerobic metabolism threshold: evolution of diagnostic methods and testing protocols. Physical culture. sport. tourism. motor recreation. 2024;9(4):59–65. doi: 10.47475/2500-0365-2024-9-4-59-65 EDN: EIDXVX
Авторы
К.С. Авдеева*, Т.И. Петелина, А.В. Горбачевский, М.И. Бессонова
Тюменский кардиологический научный центр, Томский национальный исследовательский медицинский центр Российской академии наук, Томск, Россия
*avdeeva_03@mail.ru
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
*avdeeva_03@mail.ru
Тюменский кардиологический научный центр, Томский национальный исследовательский медицинский центр Российской академии наук, Томск, Россия
*avdeeva_03@mail.ru
________________________________________________
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
*avdeeva_03@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
