Патогенетические предпосылки применения ингибиторов дипептидилпептидазы-4 в управлении сахарным диабетом типа 2
Патогенетические предпосылки применения ингибиторов дипептидилпептидазы-4 в управлении сахарным диабетом типа 2
Демидова Т.Ю., Куленок С.Г., Гасанзаде П.А. Патогенетические предпосылки применения ингибиторов дипептидилпептидазы-4 в управлении сахарным диабетом типа 2. Consilium Medicum. 2017; 19 (4): 23–28.
________________________________________________
Demidova T.Yu., Kulenok S.G., Gasanzade P.A. Pathogenetic background of dipeptidyl peptidase-4 inhibitors application in the management of diabetes mellitus type 2. Consilium Medicum. 2017; 19 (4): 23–28.
Патогенетические предпосылки применения ингибиторов дипептидилпептидазы-4 в управлении сахарным диабетом типа 2
Демидова Т.Ю., Куленок С.Г., Гасанзаде П.А. Патогенетические предпосылки применения ингибиторов дипептидилпептидазы-4 в управлении сахарным диабетом типа 2. Consilium Medicum. 2017; 19 (4): 23–28.
________________________________________________
Demidova T.Yu., Kulenok S.G., Gasanzade P.A. Pathogenetic background of dipeptidyl peptidase-4 inhibitors application in the management of diabetes mellitus type 2. Consilium Medicum. 2017; 19 (4): 23–28.
Управление сахарным диабетом (СД) типа 2 предполагает как можно более раннее назначение терапии. Отмечается, что у больных СД типа 2 b-клеточная масса снижается более чем на 50%, и ее уменьшение начинается на стадии предиабета. Уже на стадии нарушения толерантности к глюкозе наблюдается снижение инкретинового эффекта, заключающегося в увеличении концентрации инсулина в ответ на пероральный прием глюкозы или пищевые стимулы. Индуцированная глюкагоноподобным пептидом-1 секреция инсулина у больных СД типа 2 снижена по сравнению со здоровыми людьми в результате сокращения функционирующей массы b-клеток. Таким образом, b-клеточная дисфункция не только является предпосылкой для развития СД типа 2, но также определяет неизбежно прогрессирующее течение болезни. Это наблюдение указывает на возможность улучшения инкретинового эффекта на фоне улучшения функционального состояния b-клеток, например в результате устранения глюкозотоксичности. Предпочтение отдается препаратам, одновременно воздействующим на несколько звеньев патогенеза и обладающим при этом высокой степенью безопасности. Ингибиторы дипептидилпептидазы-4 значительно восстанавливают массу b-клеток и морфологию островков поджелудочной железы, тем самым сохраняя функцию секреции инсулина. В данной статье описаны преимущества раннего применения ингибиторов дипептидилпептидазы-4 с целью коррекции патогенетических дефектов, а также сообщается о разработках новых направлений воздействия на инкретиновую систему.
Management of type 2 diabetes mellitus (DM) suggests the earliest therapy appointment. It is noted that in patients with DM type 2 the b-cell mass is reduced by more than 50%, and this reduction begins at the stage of pre-diabetes. The reducing of incretin effect can be observed at the stage of impaired glucose tolerance in the incensement of insulin concentration in response to oral intake of glucose and nutritional stimulus. Insulin secretion induced by glucagon-like peptide-1 in patients with type 2 DM is reduced in comparison with healthy people as a result of reduced functioning of b-cells mass. Thus, b-cell dysfunction is not only the step to developing type 2 DM, but also determines the continuing progressive course of the disease. This study indicates the possibility of improving incretin effect against the background of improved functional status of b-cells, for example, as a result of a removal of glucotoxicity. Drug preference is given to agents, simultaneously affecting several parts of pathogenesis and with the high level of safety. Dipeptidyl peptidase-4 inhibitors significantly restore b-cell mass and morphology of pancreatic islets, thus such function as insulin secretion has been persisting. This article describes the benefits of early application of dipeptidyl peptidase-4 inhibitors to correct the pathogenetic defects, as well as the development of new approaches to affect the incretin system.
1. Kim W, Egan JM. The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacol Rev 2008; 60 (4): 470–512.
2. Brown JC. A gastric inhibitory polypeptide I. The amino acid composition and the tryptic peptides. Can J Biochem 1971; 49: 255–61.
3. Dupre J et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8.
4. Bell GI et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304: 368–71.
5. McIntyre N et al. New interpretation of oral glucose tolerance. Lancet 1964; 2: 20–1.
6. Elrick H et al. Plasma insulin response to oral and intravenous glucose administration. J Clin. Endocrinol Metab 1964; 24: 1076–82.
7. Nauck MA et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492–8.
8. Holst JJ et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011; 34 (Suppl. 2): S251–S257.
9. Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. Endocrinology 1991; 128: 3175–82.
10. Timper K et al. Glucose-dependent insulinotropic pep-tide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin-6, produced by alpha cells. Gastroenterology 2016.
11. Brian Finan et al. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine 2016; 22 (5).
12. Oh TJ, Kim MY, Shin JY et al. The incretin eff ect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin Endocrinol (Oxf) 2014; 80: 221–7.
13. Ma RC, Lin X, Jia W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol 2014; 2: 980–91.
14. Ostoft SH, Bagger JI, Hansen T et al. Incretin eff ect and glucagon responses to oral and intravenous glucose in patients with maturity-onset diabetes of the young – type 2 and type 3. Diabetes 2014; 63: 2838–44.
15. Kosinski M, Knop FK, Vedtofte L et al. Postpartum reversibility of impaired incretin eff ect in gestational diabetes mellitus. Regul Pept 2013; 186: 104–7.
16. Michael A Nauck, Juris J Meier. The incretin eff ect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4: 525–36.
17. Vardarli I, Arndt E, Deacon CF et al. Eff ects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 2014; 63: 663–74.
18. Дедов И.И., Шестакова М.В., Майоров А.Ю. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 8-й вып. Сахарный диабет. 2017; 20 (1S): 31.
19. Del Prato S et al. Efficacy and Safety of Alogliptin Plus Metformin Compared to Glipizide plus Metformin in Patients With Type 2 Diabetes Melitus. Diabetes Obes Metab 2014. doi: 10.1111/dom.12377
20. White WB et al. Examination of Cardiovascular Outcomes With Alogliptin Versus Standart of Care. N Engl J Med 2013; 369: 1327–35.
21. Schauer PR, Kashyap SR, Wolski K et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567–76.
22. Korner J, Bessler M, Inabnet W et al. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 2007; 3: 597–601.
23. Chronaiou A, Tsoli M, Kehagias I et al. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial. Obes Surg 2012; 22: 1761–70.
24. Xu G, Kaneto H, Laybutt DR et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin eff ects in diabetes. Diabetes 2007; 56: 1551–8.
25. Finan B, Yang B, Ottaway N et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 2015; 21: 27–36.
26. Fang S, Suh JM, Reilly SM et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015; 21: 159–65.
27. Brighton CA, Rievaj J, Kuhre RE et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 2015; 156: 3961–70.
28. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord 2014; 15: 189–96.
29. Hwang I, Park YJ, Kim YR et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 2015; 29: 2397–411.
30. Van Genugten RE, van Raalte DH. Diamant Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence. Diabetes Obes Metab 2012; 14: 101–11.
31. Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and b-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab 2011; 13: 337–47.
32. White WB, Pratley R, Fleck P et al. Cardiovascular safety of the dipeptidyl peptidase-4 inhibitor alogliptin in type 2 diabetes mellitus. Diabetes Obes Metab 2013; 15: 668–73.
33. Hur KY, Lee MS. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 2015; 6 (6): 600–9.
34. DeFronzo RA et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 2008; 31: 2315–7.
35. Pratley RE et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabetes Obes Metab 2009; 11: 167–76.
36. Nauck MA et al. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract 2009; 63: 46–55.
37. Pratley RE et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin added to pioglitazone in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Curr Med Res Opin 2009; 25: 2361–71.
38. Rosenstock J et al. Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA(1C) without causing weight gain or increased hypoglycaemia. Diabetes Obes Metab 2009; 11: 1145–52.
39. Инструкция по медицинскому применению препарата Випидия.
________________________________________________
1. Kim W, Egan JM. The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacol Rev 2008; 60 (4): 470–512.
2. Brown JC. A gastric inhibitory polypeptide I. The amino acid composition and the tryptic peptides. Can J Biochem 1971; 49: 255–61.
3. Dupre J et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8.
4. Bell GI et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304: 368–71.
5. McIntyre N et al. New interpretation of oral glucose tolerance. Lancet 1964; 2: 20–1.
6. Elrick H et al. Plasma insulin response to oral and intravenous glucose administration. J Clin. Endocrinol Metab 1964; 24: 1076–82.
7. Nauck MA et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492–8.
8. Holst JJ et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011; 34 (Suppl. 2): S251–S257.
9. Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. Endocrinology 1991; 128: 3175–82.
10. Timper K et al. Glucose-dependent insulinotropic pep-tide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin-6, produced by alpha cells. Gastroenterology 2016.
11. Brian Finan et al. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine 2016; 22 (5).
12. Oh TJ, Kim MY, Shin JY et al. The incretin eff ect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin Endocrinol (Oxf) 2014; 80: 221–7.
13. Ma RC, Lin X, Jia W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol 2014; 2: 980–91.
14. Ostoft SH, Bagger JI, Hansen T et al. Incretin eff ect and glucagon responses to oral and intravenous glucose in patients with maturity-onset diabetes of the young – type 2 and type 3. Diabetes 2014; 63: 2838–44.
15. Kosinski M, Knop FK, Vedtofte L et al. Postpartum reversibility of impaired incretin eff ect in gestational diabetes mellitus. Regul Pept 2013; 186: 104–7.
16. Michael A Nauck, Juris J Meier. The incretin eff ect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4: 525–36.
17. Vardarli I, Arndt E, Deacon CF et al. Eff ects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 2014; 63: 663–74.
18. Дедов И.И., Шестакова М.В., Майоров А.Ю. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 8-й вып. Сахарный диабет. 2017; 20 (1S): 31.
19. Del Prato S et al. Efficacy and Safety of Alogliptin Plus Metformin Compared to Glipizide plus Metformin in Patients With Type 2 Diabetes Melitus. Diabetes Obes Metab 2014. doi: 10.1111/dom.12377
20. White WB et al. Examination of Cardiovascular Outcomes With Alogliptin Versus Standart of Care. N Engl J Med 2013; 369: 1327–35.
21. Schauer PR, Kashyap SR, Wolski K et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567–76.
22. Korner J, Bessler M, Inabnet W et al. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 2007; 3: 597–601.
23. Chronaiou A, Tsoli M, Kehagias I et al. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial. Obes Surg 2012; 22: 1761–70.
24. Xu G, Kaneto H, Laybutt DR et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin eff ects in diabetes. Diabetes 2007; 56: 1551–8.
25. Finan B, Yang B, Ottaway N et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 2015; 21: 27–36.
26. Fang S, Suh JM, Reilly SM et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015; 21: 159–65.
27. Brighton CA, Rievaj J, Kuhre RE et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 2015; 156: 3961–70.
28. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord 2014; 15: 189–96.
29. Hwang I, Park YJ, Kim YR et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 2015; 29: 2397–411.
30. Van Genugten RE, van Raalte DH. Diamant Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence. Diabetes Obes Metab 2012; 14: 101–11.
31. Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and b-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab 2011; 13: 337–47.
32. White WB, Pratley R, Fleck P et al. Cardiovascular safety of the dipeptidyl peptidase-4 inhibitor alogliptin in type 2 diabetes mellitus. Diabetes Obes Metab 2013; 15: 668–73.
33. Hur KY, Lee MS. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 2015; 6 (6): 600–9.
34. DeFronzo RA et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 2008; 31: 2315–7.
35. Pratley RE et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabetes Obes Metab 2009; 11: 167–76.
36. Nauck MA et al. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract 2009; 63: 46–55.
37. Pratley RE et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin added to pioglitazone in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Curr Med Res Opin 2009; 25: 2361–71.
38. Rosenstock J et al. Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA(1C) without causing weight gain or increased hypoglycaemia. Diabetes Obes Metab 2009; 11: 1145–52.
39. Инструкция по медицинскому применению препарата Випидия.
Авторы
Т.Ю.Демидова*, С.Г.Куленок, П.А.Гасанзаде
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1
*t.y.demidova@gmail.com
________________________________________________
T.Yu.Demidova*, S.G.Kulenok, P.A.Gasanzade
Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1
*t.y.demidova@gmail.com