В основе клинических проявлений легкой черепно-мозговой травмы (ЛЧМТ) лежит асинапсия, возникающая вследствие воздействия инерционного и ударного ускорений на нейросети. Прогноз функционального восстановления (в течение 1–2 нед) у подавляющего большинства пациентов достаточно благоприятный, однако у части пострадавших могут отмечаться более длительные нарушения, которые относят к постконтузионному синдрому (ПКС).
Цель настоящего открытого наблюдательного исследования – оценка эффективности применения препарата ипидакрина (Ипигрикс®) для профилактики ПКС у пациентов с ЛЧМТ.
Материалы и методы. Пациенты (n=108) с ЛЧМТ были разделены на 2 группы. Терапия основной группы (n=60) включала базовую схему (покой, дегидратационная терапия, а также ряд препаратов по требованию: нестероидные противовоспалительные средства, антиэметические препараты, анксиолитики) и антихолинэстеразный препарат Ипигрикс®. Терапия контрольной группы (n=48) ограничивалась базовой схемой. Общая длительность периода наблюдения составила 30 дней. Оценка эффективности терапии проводилась с учетом анализа шкалы оценки ПКС (Post-Concussion Symptom Scale, PCSS), числа больных с верифицированным диагнозом ПКС.
Результаты. Через 1 мес от начала наблюдения и лечения общий балл шкалы PCSS (среднее ± s) составил 6,5±3,5 в основной и 11,2±5,2 – в контрольной группе (p<0,05). У 7 (15,9%) пострадавших контрольной группы верифицировали диагноз ПКС, что достоверно выше (p<0,05) по сравнению с основной группой – 2 (3,6%) пациента. Было установлено, что достоверно более высокий риск развития ПКС существует у пострадавших женского пола (скорректированное отношение шансов – ОШ 2,92, 95% доверительный интервал – ДИ 1,26–8,22), перенесших в анамнезе ЛЧМТ (скорректированное ОШ 2,52, 95% ДИ 1,66–5,32), которым в состав комплекса фармакологического лечения не включали ипидакрин (скорректированное ОШ 1,50, 95% ДИ 0,96–2,30).
Выводы. Использование ипидакрина оказывает достоверное положительное влияние на частоту и риск развития ПКС у пациентов с ЛЧМТ, однако необходимы дальнейшие исследования для подтверждения полученных данных и создания клинических рекомендаций по рациональному ведению пациентов этого профиля.
Ключевые слова: легкая черепно-мозговая травма, постконтузионный синдром, предикторы, ипидакрин, Ипигрикс.
________________________________________________
Synapse damage that develops due to linear and impact acceleration is the basis for clinical signs of mild traumatic brain injury (MTBI) development. The prognosis for functional recovery (in 1–2 weeks) is favorable in most patients, though in some of them more prolonged deficit can occur that is referred to post-concussion syndrome (PCS).
The aim of this open-label observational study was to estimate the effectiveness of ipidacrine (Ipigrix®) use for PCS prophylaxis in patients with MTBI.
Materials and methods. Patients with MTBI (n=108) were divided in two groups. The therapy in treatment group (n=60) included basic treatment program (rest, dehydration therapy as well as some medications required such as non-steroid anti-inflammatory drugs, antiemetic drugs, and anxiolytics) combined with anticholinesterase medication ipidacrine (Ipigrix®). The patients of control group (n=48) received only basic treatment program. The patients were followed up for 30 days. The treatment effectiveness was estimated using Post-Concussion Symptom Scale (PCSS) results analysis and overall number of patients diagnosed with PCS.
Results. After 1 month of follow-up and treatment the PCSS score (mean ± s) was 6.5±3.5 in treatment group and 11.2±5.2 in control group (p<0.05). PCS was diagnosed in 7 (15.9%) patients of control group that is significantly more compared with treatment group where this diagnosis was established in 2 (3.6%) patients. It was found that female patients (adjusted odds ratio – OR 2.92, 95% confidence interval – CI 1.26–8.22), patients with a history of MTBI (adjusted OR 2.52, 95% CI 1.66–5.32), and patients who did not receive ipidacrine treatment (adjusted OR 1.50, 95% CI 0.96–2.30) have significantly higher risk of PCS development.
Conclusions. Ipidacrine usage results in significant positive effect on frequency and risk of PCS development in patients with MTBI. Still, to confirm acquired data and develop clinical guidelines on rational management of these patients further research is needed.
1. Гайдар Б.В. Сочетанные черепно-мозговые повреждения. В кн.: Сборник учебных пособий по актуальным вопросам нейрохирургии. М., 2002; с. 105–33. / Gaidar B.V. Sochetannye cherepno-mozgovye povrezhdeniia. V kn.: Sbornik uchebnykh posobii po aktual'nym voprosam neirokhirurgii. M., 2002; s. 105–33. [in Russian]
4. Потапов А.А., Лихтерман Л.Б., Кравчук А.Д. и др. Легкая черепно-мозговая травма. Клинические рекомендации Ассоциации нейрохирургов России. М., 2016. / Potapov A.A., Likhterman L.B., Kravchuk A.D. i dr. Legkaia cherepno-mozgovaia travma. Klinicheskie rekomendatsii Assotsiatsii neirokhirurgov Rossii. M., 2016. [in Russian]
5. Кондаков Е.Н. Черепно-мозговая травма: рук-во для врачей. СПб.: СпецЛит, 2002; с. 158–64. / Kondakov E.N. Cherepno-mozgovaia travma: ruk-vo dlia vrachei. SPb.: SpetsLit, 2002; s. 158–64. [in Russian]
6. Коновалов А.Н., Лихтерман Л.Б., Потапов А.А. Клиническое руководство по черепно-мозговой травме. М.: Антидор, 1998; с. 14–7. / Konovalov A.N., Likhterman L.B., Potapov A.A. Klinicheskoe rukovodstvo po cherepno-mozgovoi travme. M.: Antidor, 1998; s. 14–7. [in Russian]
7. Одинак М.М. Структура боевой травмы мозга и организация оказания неврологической помощи на этапах медицинской эвакуации в вооруженных конфликтах. Военно-медицинский журн. 1997; 1: 56–62. / Odinak M.M. Struktura boevoi travmy mozga i organizatsiia okazaniia nevrologicheskoi pomoshchi na etapakh meditsinskoi evakuatsii v vooruzhennykh konfliktakh. Voenno-meditsinskii zhurn. 1997; 1: 56–62. [in Russian]
8. Приказ Минздрава России от 07.11.2012 №635н «Об утверждении стандарта специализированной медицинской помощи при внутричерепной травме». / Prikaz Minzdrava Rossii ot 07.11.2012 №635n “Ob utverzhdenii standarta spetsializirovannoi meditsinskoi pomoshchi pri vnutricherepnoi travme”. [in Russian]
9. Al Sayegh A, Sandford D, Carson AJ. Psychological approaches to treatment of postconcussion syndrome: a systematic review. J Neurol Neurosurg Psychiatry 2010; 81 (10): 1128–34.
10. Amenta PS, Jallo JI, Tuma RF, Elliott MB. A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 2012; 90: 2293–305.
11. Bazarian JJ, Atabaki S. Predicting postconcussion syndrome after minor traumatic brain injury. Acad Emerg Med 2001; 8 (8): 788–95.
12. Colovic MB et al. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology 2013; 11 (3): 315–35.
13. Dimeo F, Bauer M, Varahram I et al. Benefits from aerobic exercise in patients with major depression: a pilot study. Br J Sports Med 2001; 35 (2): 114–7.
14. Fenton G, McClelland R, Montgomery A et al. The postconcussional syndrome: Social antecedents and psychological sequelae. Br J Psychiatry 1993; 162: 493–7.
15. Gennarelli TA et al. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12: 564–74.
16. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train 2001; 36 (3): 228–35.
17. Guskiewicz KM, Marshall SW, Bailes J et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc 2007; 39 (6): 903–9.
18. Guskiewicz KM, McCrea M, Marshall SW et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003; 290 (19): 2549–55.
19. Herkenham M, Lynn AB, Johnson MR et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991; 11 (2): 563–83.
20. Iverson GL, Gaetz M, Lovell MR, Collins MW. Cumulative effects of concussion in amateur athletes. Brain Inj 2004; 18 (5): 433–43.
21. Johnston KM, McCrory P, Mohtadi NG, Meeuwisse W. Evidence-based review of sport-related concussion: clinical science. Clin J Sport Med 2001; 11(3): 150–9.
22. Kojima J et al. Ipidacrine (NIK-247): a review of multiple mechanisms as an antidementia agent. CNS Drug Reviews 2006; 4 (3): 247–59.
23. Kuo MF et al. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 2007; 27 (52): 14442–7.
24. Leddy JJ, Kozlowski K, Donnelly JP et al. Apreliminary study of subsymptom threshold exercise training for refractorypost-concussion syndrome. Clin J Sport Med 2010; 20 (1): 21–7.
25. Lovell MR, Iverson GL, Collins MW et al. Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology 2006; 13 (3): 166–74.
26. McCrory P, Johnston K, Meeuwisse W et al. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Clin J Sport Med 2005; 15 (2): 48–55.
27. Mittenberg W, Canyock EM, Condit D, Patton C. Treatment of postconcussion syndrome following mild head injury. J Clin Exp Neuropsychol 2001; 23 (6): 829–36.
28. Olff M, Langeland W, Draijer N et al. Gender differences in posttraumatic stress disorder. Psychol Bull 2007; 133: 183–204.
29. Ponsford J, Willmott C, Rothwell A et al. Factors influencing outcome following mild traumatic brain injury in adults. J Int Neuropsychol Soc 2000; 6 (5): 568–79.
30. Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013; 234: 53–68.
31. Schurman LD, Lichtman AH. Endocannabinoids: A Promising Impact for Traumatic Brain Injury. Front Pharm 2017; 8: 69.
32. Shitaka Y, Tran HT, Bennett RE et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 2011; 70 (7): 551–67.
________________________________________________
1. Gaidar B.V. Sochetannye cherepno-mozgovye povrezhdeniia. V kn.: Sbornik uchebnykh posobii po aktual'nym voprosam neirokhirurgii. M., 2002; s. 105–33. [in Russian]
6. Konovalov A.N., Likhterman L.B., Potapov A.A. Klinicheskoe rukovodstvo po cherepno-mozgovoi travme. M.: Antidor, 1998; s. 14–7. [in Russian]
7. Odinak M.M. Struktura boevoi travmy mozga i organizatsiia okazaniia nevrologicheskoi pomoshchi na etapakh meditsinskoi evakuatsii v vooruzhennykh konfliktakh. Voenno-meditsinskii zhurn. 1997; 1: 56–62. [in Russian]
8. Prikaz Minzdrava Rossii ot 07.11.2012 №635n “Ob utverzhdenii standarta spetsializirovannoi meditsinskoi pomoshchi pri vnutricherepnoi travme”. [in Russian]
9. Al Sayegh A, Sandford D, Carson AJ. Psychological approaches to treatment of postconcussion syndrome: a systematic review. J Neurol Neurosurg Psychiatry 2010; 81 (10): 1128–34.
10. Amenta PS, Jallo JI, Tuma RF, Elliott MB. A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J Neurosci Res 2012; 90: 2293–305.
11. Bazarian JJ, Atabaki S. Predicting postconcussion syndrome after minor traumatic brain injury. Acad Emerg Med 2001; 8 (8): 788–95.
12. Colovic MB et al. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology 2013; 11 (3): 315–35.
13. Dimeo F, Bauer M, Varahram I et al. Benefits from aerobic exercise in patients with major depression: a pilot study. Br J Sports Med 2001; 35 (2): 114–7.
14. Fenton G, McClelland R, Montgomery A et al. The postconcussional syndrome: Social antecedents and psychological sequelae. Br J Psychiatry 1993; 162: 493–7.
15. Gennarelli TA et al. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12: 564–74.
16. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train 2001; 36 (3): 228–35.
17. Guskiewicz KM, Marshall SW, Bailes J et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc 2007; 39 (6): 903–9.
18. Guskiewicz KM, McCrea M, Marshall SW et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003; 290 (19): 2549–55.
19. Herkenham M, Lynn AB, Johnson MR et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991; 11 (2): 563–83.
20. Iverson GL, Gaetz M, Lovell MR, Collins MW. Cumulative effects of concussion in amateur athletes. Brain Inj 2004; 18 (5): 433–43.
21. Johnston KM, McCrory P, Mohtadi NG, Meeuwisse W. Evidence-based review of sport-related concussion: clinical science. Clin J Sport Med 2001; 11(3): 150–9.
22. Kojima J et al. Ipidacrine (NIK-247): a review of multiple mechanisms as an antidementia agent. CNS Drug Reviews 2006; 4 (3): 247–59.
23. Kuo MF et al. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 2007; 27 (52): 14442–7.
24. Leddy JJ, Kozlowski K, Donnelly JP et al. Apreliminary study of subsymptom threshold exercise training for refractorypost-concussion syndrome. Clin J Sport Med 2010; 20 (1): 21–7.
25. Lovell MR, Iverson GL, Collins MW et al. Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology 2006; 13 (3): 166–74.
26. McCrory P, Johnston K, Meeuwisse W et al. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Clin J Sport Med 2005; 15 (2): 48–55.
27. Mittenberg W, Canyock EM, Condit D, Patton C. Treatment of postconcussion syndrome following mild head injury. J Clin Exp Neuropsychol 2001; 23 (6): 829–36.
28. Olff M, Langeland W, Draijer N et al. Gender differences in posttraumatic stress disorder. Psychol Bull 2007; 133: 183–204.
29. Ponsford J, Willmott C, Rothwell A et al. Factors influencing outcome following mild traumatic brain injury in adults. J Int Neuropsychol Soc 2000; 6 (5): 568–79.
30. Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013; 234: 53–68.
31. Schurman LD, Lichtman AH. Endocannabinoids: A Promising Impact for Traumatic Brain Injury. Front Pharm 2017; 8: 69.
32. Shitaka Y, Tran HT, Bennett RE et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 2011; 70 (7): 551–67.
1 S.M.Kirov Medical Military Academy of the Ministry of Defence of the Russian Federation. 194044, Russian Federation, Saint Petersburg, ul. Akademika Lebedeva, d. 6;
2 Medical Center "Admiralteyskie Verfi". 190121, Russian Federation, Saint Petersburg, ul. Sadovaya, d. 126;
3 Clinical Hospital №26. 196247, Russian Federation, Saint Petersburg, ul. Kostyushko, d. 2