Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Лечение пациентов с хроническими расстройствами мозгового кровообращения: в фокусе пентоксифиллин
Лечение пациентов с хроническими расстройствами мозгового кровообращения: в фокусе пентоксифиллин
Чугунов А.В., Камчатнов П.Р., Казаков А.Ю. и др. Лечение пациентов с хроническими расстройствами мозгового кровообращения: в фокусе пентоксифиллин. Consilium Medicum. 2018; 20 (2): 50–58. DOI: 10.26442/2075-1753_2018.2.50-58
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Хронические расстройства мозгового кровообращения (ХРМК) – частая причина развития когнитивных нарушений и последующей утраты способности к самообслуживанию. Развитие ХРМК связано с поражением сосудов как малого, так и крупного калибра, расстройствами микроциркуляции, нарушением системной гемодинамики. Обеспечение достаточного уровня церебрального кровотока способно замедлить прогрессирование заболевания. Рассматриваются возможности применения препарата Вазонит (пентоксифиллин) при лечении больных с ХРМК.
Ключевые слова: хроническая ишемия головного мозга, дисциркуляторная энцефалопатия, микроциркуляция, когнитивные нарушения, пентоксифиллин, Вазонит
________________________________________________
Chronic cerebral ischemia (CCI) is a common cause of cognitive impairment and decrease in self-sufficiency. CCI development is associated with small and large vessels damage, microcirculation disorders and systemic hemodynamic disturbances. A sufficient level of cerebral blood flow support may slow down the disease progression. The article considers the possibilities of Vasonit (pentoxifylline) use in patients with CCI treatment.
Key words: chronic cerebral ischemia, discirculatory encephalopathy, microcirculation, cognitive impairment, pentoxifylline, Vasonit.
Полный текст
Список литературы
1. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина, 2001. / Gusev E.I., Skvortsova V.I. Ishemiia golovnogo mozga. M.: Meditsina, 2001. [in Russian]
2. Lammie G, Brannan F, Slattery J, Warlow C. Nonhypertensive cerebral small-vessel disease. An autopsy study. Stroke 1997; 28 (11): 2222–9.
3. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9 (7): 689–701.
4. Zhang M, Chen M, Wang Q et al. Relationship between cerebral microbleeds and cognitive function in lacunar infarct. J Int Med Res 2013; 41 (2): 347–55.
5. Жетишев Р.Р., Михайлова Н.А., Камчатнов П.Р., Иващенко Р.А. Асимптомные инфаркты головного мозга: факторы риска и когнитивные нарушения. Журн. неврологии и психиатрии им. С.С.Корсакова. Инсульт. 2014; 3 (2): 3–7. / Zhetishev R.R., Mikhailova N.A., Kamchatnov P.R., Ivashchenko R.A. Asimptomnye infarkty golovnogo mozga: faktory riska i kognitivnye narusheniia. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. Insul't. 2014; 3 (2): 3–7. [in Russian]
6. De la Torre J. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012; 2012.
7. Palacio S, McClure L, Benavente O et al. Lacunar strokes in patients with diabetes mellitus: risk factors, infarct location, and prognosis: the secondary prevention of small subcortical strokes study. Stroke 2014; 45 (9): 2689–94.
8. Cai Z, Wang C, He W et al. Cerebral small vessel disease and Alzheimer’s disease. Clin Interv Aging 2015; 10: 1695–704.
9. Blinder P, Tsai P, Kaufhold J et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 2013; 16: 889–97.
10. Nishimura N, Rosidi N, Iadecola C, Schaffer C. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab 2010; 30: 1914–27.
11. Sörös P, Whitehead S, Spence J, Hachinski V. Antihypertensive treatment can prevent stroke and cognitive decline. Nat Rev Neurol 2013; 9: 174–8.
12. Riba-Llena I, Nafría C, Mundet X et al. Assessment of enlarged perivascular spaces and their relation to target organ damage and mild cognitive impairment in patients with hypertension. Eur J Neurol 2016; 23: 1044–50.
13. Derosa G, Maffioli Р. A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vasc Health Risk Manag 2016; 12: 415–9.
14. Kampoli A, Tousoulis D, Briasoulis A et al. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 2011; 17 (37): 4147–58.
15. Zwanenburg J, van Osch M. Targeting Cerebral Small Vessel Disease With MRI. Stroke 2017; 48: 3175–82.
16. Ding J, Sigurðsson S, Jónsson P et al. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia. The Age, Gene/Environment Susceptibility–Reykjavik Study. JAMA Neurol 2017; 74 (9): 1105–12.
17. McLauchlan D, Malik G, Robertson N. Cerebral amyloid angiopathy: subtypes, treatment and role in cognitive impairment. J Neurol 2017; 264: 2184–6.
18. Hilal S, Mok V, Youn Y et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatr 2017; 88 (8): 45–9.
19. Iadecola C. The pathobiology of vascular dementia. Neuron 2013; 80 (4): 844–66.
20. Cooper L, Woodard T, Sigurdsson S et al. Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory. Hypertension 2016; 67: 176–82.
21. Nichols W, O’Rourke M. McDonalds’s blood flow in arteries: theoretical, experimental and clinical principles, 5th edn. Hodder Arnold Publishing, London. 2005.
22. Kollias A, Lagou S, Zeniodi M et al. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension 2016; 67 (1): 183–90.
23. Barnes J, Harvey R, Zuk S et al. Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women. J Neurol 2017; 264: 938.
24. Townsend R, Black H, Chirinos J et al. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American artery. J Clin Hypertens (Greenwich) 2015; 17 (7): 503–13.
25. Webb A, Simoni M, Mazzucco S et al. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke 2012; 43 (10): 2631–6.
26. Pase M, Himali J, Mitchell G et al. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham third generation cohort study. Hypertension 2016; 67 (3): 513–9.
27. Davis K, Pearson H, Moat S et al. Acute hyperhomocysteinaemia affects pulse pressure but not microvascular vasodilator function. Br J Clin Pharmacol 2001; 52 (3): 327–32.
28. Plotnikov MF, Aliev OI, Nosarev AV et al. Relationship between arterial blood pressure and blood viscosity in spontaneously hypertensive rats treated with pentoxifylline. Biorheology 2016; 53 (2): 93–107.
29. Plotnikov MB, Aliev OI, Shamanaev AY et al. Effects of pentoxifylline on hemodynamic, hemorheological, and microcirculatory parameters in young SHRs during arterial hypertension development. Clin Exp Hypertens 2017; 39 (6): 570–8.
30. Brie D, Sahebkar A, Penson P et al. Effects of pentoxifylline on inflammatory markers and blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2016; 34 (12): 2318–29.
31. Banihani SA, Abu-Alhayjaa R, Amarin Z, Alzoubi K. Pentoxifylline increases the level of nitric oxide produced by human spermatozoa. Andrologia 2018; 50 (2). DOI: 10.1111/and.12859
32. Laurat E, Poirier B, Tupin E et al. In vivo dowregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001; 104: 197–202.
33. Samardzic T, Jankovic V, Stosic-Grujicic S et al. Pentoxifylline inhibits the synthesis and IFN-gamma-inducing activity of IL-18. Clin Exp Immunol 2001; 124: 274–81.
34. Dolatabadi H, Zarrindast M, Reisi P, Nasehi M. The Effects of Pentoxifylline on Serum Levels of Interleukin 10 and Interferon Gamma and Memory Function in Lipopolysaccharide-induced Inflammation in Rats. Adv Biomed Res 2017; 6: 110–5.
35. Savas S, Delibas N, Savas C et al. Pentoxifylline reduces biochemical markers of ischemia-reperfusion induced spinal cord injury in rabbits. Spinal Cord 2002; 40: 224–9.
36. Bruno R, Marques T, Batista T et al. Pentoxifylline treatment improves neurological and neurochemical deficits in rats subjected to transient brain ischemia. Brain Res 2009 13; 1260: 55–64.
37. Movassaghi S, Nadia Sharifi Z, Soleimani M et al. Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat. Iran J Basic Med Sci 2012; 15 (5): 1083–90.
38. Sari S, Hashemi M, Mahdian R et al. The Effect of Pentoxifylline on bcl-2 Gene Expression Changes in Hippocampus after Ischemia-Reperfusion in Wistar Rats by a Quatitative RT-PCR Method. Iran J Pharm Res 2013; 12 (3): 495–501.
39. Vakili A, Mojarrad S, Akhavan M, Rashidy-Pour A. Pentoxifylline attenuates TNF-a protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 2011; 1377: 119–25.
40. Vakili A, Khorasani Z. Post-ischemic treatment of pentoxifylline reduces cortical not striatal infarct volume in transient model of focal cerebral ischemia in rat. Brain Res 2007; 1144: 186–91.
41. Park JH, Kim SE, Jin JJ et al. Pentoxifylline Alleviates Perinatal Hypoxic-Ischemia-Induced Short-term Memory Impairment by Suppressing Apoptosis in the Hippocampus of Rat Pups. Int Neurourol J 2016; 20 (2): 107–13.
42. Xia DY, Zhang HS, Wu LY et al. Pentoxifylline Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats: Possibly via Inhibiting TLR 4/NF-kB Signaling Pathway. Neurochem Res 2017; 42 (4): 963–74.
43. Dong J, Yuan X, Xie W. Pentoxifylline exerts anti-inflammatory effects on cerebral ischemia reperfusion induced injury in a rat model via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep 2018; 17 (1): 1141–7.
44. Bath PM, Bath-Hextall FJ. Pentoxifylline, propentofylline and pentifylline for acute ischaemic stroke. Cochrane Database Syst Rev 2004; 3: CD000162.
45. Sha MC, Callahan CM. The efficacy of pentoxifylline in the treatment of vascular dementia: a systematic review. Alzheimer Dis Assoc Disord 2003; 17 (1): 46–54.
46. Бойко А.Н., Камчатнов П.Р., Чугунов А.В. и др. Патогенетический подход к лечению больных с вертебрально-базилярной недостаточностью. Врач. 2005; 11: 7–13. / Boiko A.N., Kamchatnov P.R., Chugunov A.V. i dr. Patogeneticheskii podkhod k lecheniiu bol'nykh s vertebral'no-baziliarnoi nedostatochnost'iu. Vrach. 2005; 11: 7–13. [in Russian]
47. Roman G. Perspectives in the treatment of vascular dementia. Drugs Today (Barc) 2000; 36 (9): 641–53.
48. McCarty M, O'Keefe J, Di Nicolantonio J. Pentoxifylline for vascular health: a brief review of the literature. Open Heart 2016; 3 (1): e000365.
49. Teruya R, Fagundes D, Oshima C et al. effects of pentoxifylline into the kidneys of rats in a model of unilateral hindlimb ischemia/reperfusion injury. Acta Cir Bras 2008; 23 (1): 29–35.
50. Inal M, Kanbak G. Prevention of ischemia-reperfusion-induced oxidative injury in liver by allopurinol and pentoxifylline. Transplantationsmedizin 2006; 18: 29–32.
51. Banfi C, Sironi L, De Simoni G et al. Pentoxifylline prevents spontaneous brain ischemia in stroke-prone rats. J Pharmacol Exp Ther 2004; 310 (3): 890–5.
52. Rodriguez-Moran M, Guerrero-Romero F. Pentoxifylline is as effective as captopril in the reduction of microalbuminuria in non-hypertensive type 2 diabetic patients – a randomized, equivalent trial. Clin Nephrol 2005; 64 (2): 91–7.
53. Liu D, Wang L, Li H et al. Pentoxifylline plus ACEIs/ARBs for proteinuria and kidney function in chronic kidney disease: a meta-analysis. J Int Med Res 2017; 45 (2): 383–98.
54. Jiang X, Zhou S, Yao J et al. Effect of pentoxifylline in proteinuric chronic kidney disease: a systematic review and meta-analysis. J Nephrol 2016; 29 (5): 653–62.
55. Incandela L, Cesarone MR, Belcaro G et al. Treatment of vascular inner ear disease with pentoxifylline: a 4-week, controlled, randomized trial. Angiology 2002; 53 (Suppl. 1): S19–22.
56. Kiris M, Cankaya H, Icli M, Kutluhan A. Retrospective analysis of our cases with sudden hearing loss. J Otolaryngol 2003; 32 (6): 384–7.
57. Gouveris H, Mewes T, Maurer J, Mann W. Steroid and vasoactive treatment for acute deafness after attempted hearing preservation acoustic neuroma surgery. ORL J Otorhinolaryngol Relat Spec 2005; 67 (1): 30–3.
58. De Barros F, Penido N, Ramos H et al. Audiological evaluation of twenty patients receiving pentoxifylline and prednisone after sudden deafness: prospective study. Int Tinnitus J 2003; 9 (1): 17–22.
59. Echarri RM, Rivera T, Mate MA, Cobeta I. Sudden deafness: efficacy of a therapeutic protocol. Acta Otorrinolaringol Esp 2000; 51 (6): 490–4.
60. Ueno M, Ferreiro J, Tomasello S et al. Impact of pentoxifylline on platelet function profiles in patients with type 2 diabetes mellitus and coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. JACC Cardiovasc Int 2011; 4 (8): 905–12.
________________________________________________
1. Gusev E.I., Skvortsova V.I. Ishemiia golovnogo mozga. M.: Meditsina, 2001. [in Russian]
2. Lammie G, Brannan F, Slattery J, Warlow C. Nonhypertensive cerebral small-vessel disease. An autopsy study. Stroke 1997; 28 (11): 2222–9.
3. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9 (7): 689–701.
4. Zhang M, Chen M, Wang Q et al. Relationship between cerebral microbleeds and cognitive function in lacunar infarct. J Int Med Res 2013; 41 (2): 347–55.
5. Zhetishev R.R., Mikhailova N.A., Kamchatnov P.R., Ivashchenko R.A. Asimptomnye infarkty golovnogo mozga: faktory riska i kognitivnye narusheniia. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. Insul't. 2014; 3 (2): 3–7. [in Russian]
6. De la Torre J. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012; 2012.
7. Palacio S, McClure L, Benavente O et al. Lacunar strokes in patients with diabetes mellitus: risk factors, infarct location, and prognosis: the secondary prevention of small subcortical strokes study. Stroke 2014; 45 (9): 2689–94.
8. Cai Z, Wang C, He W et al. Cerebral small vessel disease and Alzheimer’s disease. Clin Interv Aging 2015; 10: 1695–704.
9. Blinder P, Tsai P, Kaufhold J et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 2013; 16: 889–97.
10. Nishimura N, Rosidi N, Iadecola C, Schaffer C. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab 2010; 30: 1914–27.
11. Sörös P, Whitehead S, Spence J, Hachinski V. Antihypertensive treatment can prevent stroke and cognitive decline. Nat Rev Neurol 2013; 9: 174–8.
12. Riba-Llena I, Nafría C, Mundet X et al. Assessment of enlarged perivascular spaces and their relation to target organ damage and mild cognitive impairment in patients with hypertension. Eur J Neurol 2016; 23: 1044–50.
13. Derosa G, Maffioli Р. A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vasc Health Risk Manag 2016; 12: 415–9.
14. Kampoli A, Tousoulis D, Briasoulis A et al. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 2011; 17 (37): 4147–58.
15. Zwanenburg J, van Osch M. Targeting Cerebral Small Vessel Disease With MRI. Stroke 2017; 48: 3175–82.
16. Ding J, Sigurðsson S, Jónsson P et al. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia. The Age, Gene/Environment Susceptibility–Reykjavik Study. JAMA Neurol 2017; 74 (9): 1105–12.
17. McLauchlan D, Malik G, Robertson N. Cerebral amyloid angiopathy: subtypes, treatment and role in cognitive impairment. J Neurol 2017; 264: 2184–6.
18. Hilal S, Mok V, Youn Y et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatr 2017; 88 (8): 45–9.
19. Iadecola C. The pathobiology of vascular dementia. Neuron 2013; 80 (4): 844–66.
20. Cooper L, Woodard T, Sigurdsson S et al. Cerebrovascular Damage Mediates Relations Between Aortic Stiffness and Memory. Hypertension 2016; 67: 176–82.
21. Nichols W, O’Rourke M. McDonalds’s blood flow in arteries: theoretical, experimental and clinical principles, 5th edn. Hodder Arnold Publishing, London. 2005.
22. Kollias A, Lagou S, Zeniodi M et al. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension 2016; 67 (1): 183–90.
23. Barnes J, Harvey R, Zuk S et al. Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women. J Neurol 2017; 264: 938.
24. Townsend R, Black H, Chirinos J et al. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American artery. J Clin Hypertens (Greenwich) 2015; 17 (7): 503–13.
25. Webb A, Simoni M, Mazzucco S et al. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke 2012; 43 (10): 2631–6.
26. Pase M, Himali J, Mitchell G et al. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham third generation cohort study. Hypertension 2016; 67 (3): 513–9.
27. Davis K, Pearson H, Moat S et al. Acute hyperhomocysteinaemia affects pulse pressure but not microvascular vasodilator function. Br J Clin Pharmacol 2001; 52 (3): 327–32.
28. Plotnikov MF, Aliev OI, Nosarev AV et al. Relationship between arterial blood pressure and blood viscosity in spontaneously hypertensive rats treated with pentoxifylline. Biorheology 2016; 53 (2): 93–107.
29. Plotnikov MB, Aliev OI, Shamanaev AY et al. Effects of pentoxifylline on hemodynamic, hemorheological, and microcirculatory parameters in young SHRs during arterial hypertension development. Clin Exp Hypertens 2017; 39 (6): 570–8.
30. Brie D, Sahebkar A, Penson P et al. Effects of pentoxifylline on inflammatory markers and blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2016; 34 (12): 2318–29.
31. Banihani SA, Abu-Alhayjaa R, Amarin Z, Alzoubi K. Pentoxifylline increases the level of nitric oxide produced by human spermatozoa. Andrologia 2018; 50 (2). DOI: 10.1111/and.12859
32. Laurat E, Poirier B, Tupin E et al. In vivo dowregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001; 104: 197–202.
33. Samardzic T, Jankovic V, Stosic-Grujicic S et al. Pentoxifylline inhibits the synthesis and IFN-gamma-inducing activity of IL-18. Clin Exp Immunol 2001; 124: 274–81.
34. Dolatabadi H, Zarrindast M, Reisi P, Nasehi M. The Effects of Pentoxifylline on Serum Levels of Interleukin 10 and Interferon Gamma and Memory Function in Lipopolysaccharide-induced Inflammation in Rats. Adv Biomed Res 2017; 6: 110–5.
35. Savas S, Delibas N, Savas C et al. Pentoxifylline reduces biochemical markers of ischemia-reperfusion induced spinal cord injury in rabbits. Spinal Cord 2002; 40: 224–9.
36. Bruno R, Marques T, Batista T et al. Pentoxifylline treatment improves neurological and neurochemical deficits in rats subjected to transient brain ischemia. Brain Res 2009 13; 1260: 55–64.
37. Movassaghi S, Nadia Sharifi Z, Soleimani M et al. Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat. Iran J Basic Med Sci 2012; 15 (5): 1083–90.
38. Sari S, Hashemi M, Mahdian R et al. The Effect of Pentoxifylline on bcl-2 Gene Expression Changes in Hippocampus after Ischemia-Reperfusion in Wistar Rats by a Quatitative RT-PCR Method. Iran J Pharm Res 2013; 12 (3): 495–501.
39. Vakili A, Mojarrad S, Akhavan M, Rashidy-Pour A. Pentoxifylline attenuates TNF-a protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 2011; 1377: 119–25.
40. Vakili A, Khorasani Z. Post-ischemic treatment of pentoxifylline reduces cortical not striatal infarct volume in transient model of focal cerebral ischemia in rat. Brain Res 2007; 1144: 186–91.
41. Park JH, Kim SE, Jin JJ et al. Pentoxifylline Alleviates Perinatal Hypoxic-Ischemia-Induced Short-term Memory Impairment by Suppressing Apoptosis in the Hippocampus of Rat Pups. Int Neurourol J 2016; 20 (2): 107–13.
42. Xia DY, Zhang HS, Wu LY et al. Pentoxifylline Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats: Possibly via Inhibiting TLR 4/NF-kB Signaling Pathway. Neurochem Res 2017; 42 (4): 963–74.
43. Dong J, Yuan X, Xie W. Pentoxifylline exerts anti-inflammatory effects on cerebral ischemia reperfusion induced injury in a rat model via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep 2018; 17 (1): 1141–7.
44. Bath PM, Bath-Hextall FJ. Pentoxifylline, propentofylline and pentifylline for acute ischaemic stroke. Cochrane Database Syst Rev 2004; 3: CD000162.
45. Sha MC, Callahan CM. The efficacy of pentoxifylline in the treatment of vascular dementia: a systematic review. Alzheimer Dis Assoc Disord 2003; 17 (1): 46–54.
46. Boiko A.N., Kamchatnov P.R., Chugunov A.V. i dr. Patogeneticheskii podkhod k lecheniiu bol'nykh s vertebral'no-baziliarnoi nedostatochnost'iu. Vrach. 2005; 11: 7–13. [in Russian]
47. Roman G. Perspectives in the treatment of vascular dementia. Drugs Today (Barc) 2000; 36 (9): 641–53.
48. McCarty M, O'Keefe J, Di Nicolantonio J. Pentoxifylline for vascular health: a brief review of the literature. Open Heart 2016; 3 (1): e000365.
49. Teruya R, Fagundes D, Oshima C et al. effects of pentoxifylline into the kidneys of rats in a model of unilateral hindlimb ischemia/reperfusion injury. Acta Cir Bras 2008; 23 (1): 29–35.
50. Inal M, Kanbak G. Prevention of ischemia-reperfusion-induced oxidative injury in liver by allopurinol and pentoxifylline. Transplantationsmedizin 2006; 18: 29–32.
51. Banfi C, Sironi L, De Simoni G et al. Pentoxifylline prevents spontaneous brain ischemia in stroke-prone rats. J Pharmacol Exp Ther 2004; 310 (3): 890–5.
52. Rodriguez-Moran M, Guerrero-Romero F. Pentoxifylline is as effective as captopril in the reduction of microalbuminuria in non-hypertensive type 2 diabetic patients – a randomized, equivalent trial. Clin Nephrol 2005; 64 (2): 91–7.
53. Liu D, Wang L, Li H et al. Pentoxifylline plus ACEIs/ARBs for proteinuria and kidney function in chronic kidney disease: a meta-analysis. J Int Med Res 2017; 45 (2): 383–98.
54. Jiang X, Zhou S, Yao J et al. Effect of pentoxifylline in proteinuric chronic kidney disease: a systematic review and meta-analysis. J Nephrol 2016; 29 (5): 653–62.
55. Incandela L, Cesarone MR, Belcaro G et al. Treatment of vascular inner ear disease with pentoxifylline: a 4-week, controlled, randomized trial. Angiology 2002; 53 (Suppl. 1): S19–22.
56. Kiris M, Cankaya H, Icli M, Kutluhan A. Retrospective analysis of our cases with sudden hearing loss. J Otolaryngol 2003; 32 (6): 384–7.
57. Gouveris H, Mewes T, Maurer J, Mann W. Steroid and vasoactive treatment for acute deafness after attempted hearing preservation acoustic neuroma surgery. ORL J Otorhinolaryngol Relat Spec 2005; 67 (1): 30–3.
58. De Barros F, Penido N, Ramos H et al. Audiological evaluation of twenty patients receiving pentoxifylline and prednisone after sudden deafness: prospective study. Int Tinnitus J 2003; 9 (1): 17–22.
59. Echarri RM, Rivera T, Mate MA, Cobeta I. Sudden deafness: efficacy of a therapeutic protocol. Acta Otorrinolaringol Esp 2000; 51 (6): 490–4.
60. Ueno M, Ferreiro J, Tomasello S et al. Impact of pentoxifylline on platelet function profiles in patients with type 2 diabetes mellitus and coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. JACC Cardiovasc Int 2011; 4 (8): 905–12.
Авторы
А.В.Чугунов1, П.Р.Камчатнов*1, А.Ю.Казаков1, Х.Я.Умарова2, А.Р.Абиева1
1 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И.Пирогова». 117997, Россия, Москва, ул. Островитянова, д. 1;
2 ООО «Научно-медицинский центр профессора Умаровой Х.Я.». 364001, Россия, Грозный, ул. Авторханова, д. 40/60
________________________________________________
A.V.Chugunov1, P.R.Kamchatnov*1, A.Yu.Kazakov1, Kh.Ya.Umarova2, A.R.Abieva1
1 N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1;
2 The Scientific Medical Center of Professor Umarova Kh.Ya. 364001, Russian Federation, Grozny, ul. Avtorkhanova, d. 40/60
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
