Сенсомоторная интеграция в норме и после перенесенного инсульта
Сенсомоторная интеграция в норме и после перенесенного инсульта
Дамулин И.В. Сенсомоторная интеграция в норме и после перенесенного инсульта. Consilium Medicum. 2018; 20 (2): 63–68. DOI: 10.26442/2075-1753_2018.2.63-68
________________________________________________
Damulin I.V. Sensorimotor integration in health and
after stroke. Consilium Medicum. 2018; 20 (2): 63–68. DOI:
10.26442/2075-1753_2018.2.63-68
Сенсомоторная интеграция в норме и после перенесенного инсульта
Дамулин И.В. Сенсомоторная интеграция в норме и после перенесенного инсульта. Consilium Medicum. 2018; 20 (2): 63–68. DOI: 10.26442/2075-1753_2018.2.63-68
________________________________________________
Damulin I.V. Sensorimotor integration in health and
after stroke. Consilium Medicum. 2018; 20 (2): 63–68. DOI:
10.26442/2075-1753_2018.2.63-68
В статье рассматриваются современные представления о структурной и функциональной организации соматосенсорной системы. Подчеркивается, что обязательным условием для выполнения тонких движений является не только наличие обратной связи, обеспечиваемой сенсорной импульсацией, но также сохранность возможности сенсомоторной интеграции. При этом сами по себе процессы сенсомоторной интеграции основаны на феномене предугадывания/предвосхищения последствий той или иной двигательной программы. В свою очередь существующая двигательная система предвосхищения/предугадывания событий модулирует сенсорную систему, афферентация которой влияет на точность исполнения движений. Неврологический дефицит, связанный с инсультом, обусловлен поврежденной зоной и проводящими путями, проходящими поблизости от нее, а также нарушением нейронных сетей за пределами очага ишемии. Остро возникший ишемический инсульт приводит не только к нарушению функциональных и эффективных связей, составляющих коннектом, но и существенно меняет динамические характеристики (силу, частоту) связанных нейронной сетью зон корковых осцилляций, что приводит к их десинхронизации. В основе восстановления после инсульта лежат нормализация церебральной перфузии, активация путей, располагающихся как около ишемического очага, так и на расстоянии от него, а также изменение возбудимости корковых структур. Восстановление после перенесенного инсульта в значительной мере определяется возможностями центральной нервной системы к мультимодальной интеграции, а не ограничивается только сенсомоторной интеграцией. Понимание структурно-функциональной основы сенсомоторной интеграции, ее динамичности открывает новые возможности воздействия, в частности, с целью лучшего восстановления после перенесенного инсульта.
Ключевые слова: соматосенсорная система, сенсомоторная интеграция, активность головного мозга в состоянии покоя после инсульта, восстановление после инсульта.
________________________________________________
In the article a modern view on structural and functional somatosensory system organization is discussed. It is outlined that not only a feedback mechanism based on sensory impulsation is an essential condition for fine motor movements, but also sensorimotor integration is involved. The processes of sensorimotor integration are based on lookahead/forestalling phenomena of the movement results. Whereas an existing movement program of lookahead/forestalling modulates the sensory system, afferent activity of which influences movement accuracy. The neurological deficit associated with stroke is determined by the involved area and adjacent conduction tracts and also by neural networks damage outside the ischemic area. Acute ischemic stroke not only results in functional and effective connections of connectome damage, but also changes dynamical characteristics (amplitude and frequency) of cortical oscillations that results in desynchronization. Cerebral perfusion normalization, activation of tracts close to the ischemic area and distant from it, and cortical excitability change are the basis for recovery after stroke. Stroke recovery is considerably determined by central nervous system multimodal integration and is not limited only by sensorimotor integration. Understanding of structural and functional basis for sensorimotor integration and its dynamic properties opens up new possibilities of interventions that will result in better recovery after stroke.
Key words: somatosensory system, sensorimotor integration, brain activity at rest after stroke, stroke recovery.
1. Glencross DJ. Motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. DJ Gleneross, JP Piek (eds.). Ch.1. New York: Elsevier Science, 1995; p. 3–7.
2. Lappe M. Information transfer between sensory and motor networks. In: Handbook of Biological Physics. F Moss, S Gielen (eds.). Vol. 4. Ch. 23. Amsterdam etc.: Elsevier Science, 2001; p. 1001–41.
3. Piek JP, Barrett NC. Perspectives on motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. DJ Gleneross, JP Piek (eds.). Ch.16. New York: Elsevier Science, 1995; p. 411–9.
4. Kaas JH. Functional implications of plasticity and reorganizations in the somatosensory and motor systems of developing and adult primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.14. Boca Raton etc: CRC Press, 2002; p. 375–89.
5. Kaas JH, Jain N, Qi H-X. The organization of the somatosensory system in primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.1. Boca Raton etc.: CRC Press, 2002; p. 18–42.
6. Nunez A, Malmierca E. Corticofugal Modulation of Sensory Information. Berlin, Heidelberg: Springer-Verlag, 2007.
7. Burton H. Cerebral cortical regions devoted to the somatosensory system: results from brain imaging studies in humans. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.2. Boca Raton etc.: CRC Press, 2002; p. 43–88.
8. Wasaka T, Kakigi R. Sensorimotor Integration. In: Magnetoencephalography. From Signals to Dynamic Cortical Networks. S Supek, CJ Aine (eds.). Berlin, Heidelberg: Springer-Verlag, 2014; p. 727–42. https://doi.org/10.1007/978-3-642-33045-2_34
9. Koziol LF, Budding DE, Chidekel D. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. The Cerebellum 2011; 10 (4): 770–92. https://doi.org/10.1007/s12311-011-0288-8
10. Yu X, Koretsky AP. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connectivity 2014; 4 (9): 709–17. https://doi.org/10.1089/brain.2014.0259
11. Jones C, Nelson A. Promoting plasticity in the somatosensory cortex to alter motor physiology. Translat Neurosci 2014; 5 (4): 260–8. https://doi.org/10.2478/s13380-014-0230-x
13. Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plasticity 2011; 2011: 1–9. https://doi.org/10.1155/2011/871296
14. Vahdat S, Darainy M, Ostry DJ. Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci 2014; 34 (7): 2451–63. https://doi.org/10.1523/jneurosci.4291-13.2014
15. Mendelsohn AI, Simon CM, Abbott LF et al. Activity regulates the incidence of heteronymous sensory-motor connections. Neuron 2015; 87 (1): 111–23. https://doi.org/10.1016/j.neuron.2015.05.045
16. Zhou L-J, Wang W, Zhao Y et al. Blood oxygenation level-dependent functional magnetic resonance imaging in early days: correlation between passive activation and motor recovery after unilateral striatocapsular cerebral infarction. J Stroke Cerebrovasc Dis 2017; 26 (11): 2652–61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.036
17. Lamichhane B, Dhamala M. The salience network and its functional architecture in a perceptual decision: an effective connectivity study. Brain Connectivity 2015; 5 (6): 362–70. https://doi.org/10.1089/brain.2014.0282
18. Kann S, Zhang S, Manza P et al. Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connectivity 2016; 6 (9): 724–34. https://doi.org/10.1089/brain.2016.0443
19. Killgore WDS, Schwab ZJ, Kipman M et al. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuro Report 2013; 24 (5): 233–40. https://doi.org/10.1097/wnr.0b013e32835edbdd
20. Koganemaru S, Domen K, Fukuyama H, Mima T. Negative emotion can enhance human motor cortical plasticity. Eur J Neurosci 2012; 35 (10): 1637–45. https://doi.org/10.1111/j.1460-9568.2012.08098.x
21. Nakagawa K, Inui K, Kakigi R. Somatosensory System. Basic Function. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch.3. Tokyo etc.: Springer 2016; p. 55–71.
22. Smith M-C, Stinear C. Plasticity and motor recovery after stroke: Implications for physiotherapy. N Z J Physiother 2016; 44 (3): 166–73. https://doi.org/10.15619/nzjp/44.3.06
24. Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 2014; 27 (6): 637–43. https://doi.org/10.1097/wco.0000000000000150
25. Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134 (5): 1264–76. https://doi.org/10.1093/brain/awr033
26. Pineiro R, Pendlebury ST, Smith S et al. Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 2000; 31 (3): 672–9. https://doi.org/10.1161/01.str.31.3.672
27. Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke 2014; 46 (1): 296–301. https://doi.org/10.1161/strokeaha.114.006307
28. Van Meer MPA, van der Marel K, Otte WM et al. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J Cereb Blood Flow Metab 2010; 30 (10): 1707–11. https://doi.org/10.1038/jcbfm.2010.124
29. Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 2013; 591 (1): 17–31. https://doi.org/10.1113/jphysiol.2012.243469
30. Kroll H, Zaharchuk G, Christen T et al. Resting-state BOLD MRI for perfusion and ischemia. Top Magn Reson Imaging 2017; 26 (2): 91–6. https://doi.org/10.1097/rmr.0000000000000119
31. Zhang Y, Li K-S, Ning Y-Z et al. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke. A multimodal magnetic resonance imaging study. Medicine 2016; 95 (31): e4534. https://doi.org/10.1097/md.0000000000004534
32. Staines WR, Bolton DAE, McIlroy WE. Sensorimotor control after stroke. In: The Behavioral Consequences of Stroke. TA Schweizer, RL Macdonald (eds.). Ch.3. New York: Springer Science, 2014; p. 37–49.
33. Seitz RJ. Cerebral reorganization after sensorimotor stroke. In: Recovery after Stroke. MP Barnes, BH Dobkin, J Bogousslavsky (eds.). Ch.4. Cambridge etc.: Cambridge University Press, 2005; p. 8–123.
34. Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimulation 2015; 8 (6): 1183–90. https://doi.org/10.1016/j.brs.2015.06.015
35. Zemke AC, Heagerty PJ, Lee C, Cramer SC. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003; 34 (5): e23-e26. https://doi.org/10.1161/01.str.0000065827.35634.5e
36. Jiang L, Xu H, Yu C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plasticity 2013; 2013: 1–11. https://doi.org/10.1155/2013/924192
37. Onishi H, Kameyama S. Somatosensory System. Clinical Applications. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch. 4. Tokyo etc.: Springer, 2016; p. 73–93.
38. La C, Nair VA, Mossahebi P et al. Implication of the slow-5 oscillations in the disruption of the default-mode network in healthy aging and stroke. Brain Connectivity 2016; 6 (6): 482–95. https://doi.org/10.1089/brain.2015.0375
39. Toschi N, Duggento A, Passamonti L. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project. Eur J Neurosci 2017; 45 (9): 1224–29. https://doi.org/10.1111/ejn.13544
40. Rossiter HE, Boudrias M-H, Ward NS. Do movement-related beta oscillations change after stroke? J Neurophysiol 2014; 112 (9): 2053–8. https://doi.org/10.1152/jn.00345.2014
41. Matsuura A, Karita T, Nakada N et al. Correlation between changes of contralesional cortical activity and motor function recovery in patients with hemiparetic stroke. Physical Ther Res 2017; 20 (2): 28–35. https://doi.org/10.1298/ptr.e9911
42. Veldema J, Bosl K, Nowak DA. Motor recovery of the affected hand in subacute stroke correlates with changes of contralesional cortical hand motor representation. Neural Plastic 2017; 2017: 1–13. https://doi.org/10.1155/2017/6171903
43. Ludemann-Podubecka J, Bosl K, Nowak DA. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur J Neurol 2016; 23 (4): 823–30. https://doi.org/10.1111/ene.12949
44. Madhavan S, Rogers LM, Stinear JW. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. Eur J Neurosci 2010; 32 (6): 1032–9. https://doi.org/10.1111/j.1460-9568.2010.07364.x
45. Dubovik S, Pignat J-M, Ptak R et al. The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 2012; 61 (1): 249–57. https://doi.org/10.1016/j.neuroimage.2012.03.024
46. Shi Z, Rogers BP, Chen LM et al. Realistic models of apparent dynamic changes in resting-state connectivity in somatosensory cortex. Human Brain Mapping 2016; 37 (11): 3897–910. https://doi.org/10.1002/hbm.23284
47. Smitha KA, Raja KA, Arun KM et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 2017; 30 (4): 305–17. https://doi.org/10.1177/1971400917697342
48. Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2014; 270 (2): 548–55. https://doi.org/10.1148/radiology.13130982
50. Winder AT, Echagarruga C, Zhang Q, Drew PJ. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state. Nature Neuroscience 2017; 20 (12): 1761–9. https://doi.org/10.1038/s41593-017-0007-y
51. Baxter BS, Edelman B, Zhang X et al. Simultaneous high-definition transcranial direct current stimulation of the motor cortex and motor imagery. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago 2014; 454-6. https://doi.org/10.1109/embc.2014.6943626
52. Baxter BS, He B. Simultaneous high-definition transcranial direct current stimulation and motor imagery acutely modulates activity in the motor cortex. Brain Stimulation 2017; 10 (1): e9. https://doi.org/10.1016/j.brs.2016.11.046
53. Chen JL, Schlaug G. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Scientific Reports 2016; 6 (1): 1–7. https://doi.org/10.1038/srep23271
54. Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 2012; 62 (4): 2232–43. https://doi.org/10.1016/j.neuroimage.2012.03.035
55. Gbadeyan O, McMahon K, Steinhauser M, Meinzer M. Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. J Neurosci 2016; 36 (50): 12530–6. https://doi.org/10.1523/jneurosci.2450-16.2016
56. Keeser D. The effect of prefrontal transcranial direct current stimulation on resting state functional connectivity. Eur Psychiatry 2017; 41: S33–S34. https://doi.org/10.1016/j.eurpsy.2017.01.159
57. Martin AK, Dzafic I, Ramdave S, Meinzer M. High definition transcranial direct current stimulation over the dorsomedial prefrontal cortex increases the salience of others. Brain Stimulation 2017; 10(2): 422. https://doi.org/10.1016/j.brs.2017.01.252
58. McLaughlin NCR, Conelea C, Blanchette B et al. Modulation of prefrontal function through transcranial direct current stimulation (tDCS). Brain Stimulation 2017; 10 (4): e37. https://doi.org/10.1016/j.brs.2017.04.062
59. Nikolin S, Boonstra TW, Loo CK, Martin D. Prefrontal cortex transcranial direct current stimulation increases parasympathetic nerve activity. Brain Stimulation 2017; 10 (2): 432. https://doi.org/10.1016/j.brs.2017.01.286
60. Pixa NH, Steinberg F, Doppelmayr M. Influence of high-definition anodal transcranial direct current stimulation (HD-atDCS) on motor learning of a high-speed bimanual task. Brain Stimulation 2017; 10 (2): 398–99. https://doi.org/10.1016/j.brs.2017.01.182
61. Worsching J, Padberg F, Helbich K et al. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. NeuroImage 2017; 155: 187–201. https://doi.org/10.1016/j.neuroimage.2017.04.052
62. Besson P, Vergotte G, Muthalib M, Perrey S. Test-retest reliability of transcranial direct current stimulation-induced modulation of resting-state sensorimotor cortex oxygenation time course. Brain Stimulation 2017; 10 (2): 400. https://doi.org/10.1016/j.brs.2017.01.186
63. Bachinger M, Moisa M, Polania R et al. Changing resting state connectivity measured by functional magnetic resonance imaging with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (1): e5. https://doi.org/10.1016/j.brs.2016.11.033
64. Lafleur L-P, Klees-Themens G, Lefebvre G et al. Connectivity and interhemispheric inhibition between motor cortices: a study with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (2): 405. https://doi.org/10.1016/j.brs.2017.01.200
65. Pixa NH, Steinberg F, Doppelmayr M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters 2017; 643: 84–8. https://doi.org/10.1016/j.neulet.2017.02.033
66. Saiote C, Tacchino A, Brichetto G et al. Resting-state functional connectivity and motor imagery brain activation. Human Brain Mapping 2016; 37 (11): 3847–57. https://doi.org/10.1002/hbm.23280
67. Bonassi G, Biggio M, Bisio A et al. Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Scientific Reports 2017; 7 (1): 1–10. https://doi.org/10.1038/s41598-017-09597-0
68. Carrasco DG, Cantalapiedra JA. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurología (English Edition). 2016; 31 (1): 43–52. https://doi.org/10.1016/j.nrleng.2013.02.008
69. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017; 341: 61–78. https://doi.org/10.1016/j.neuroscience.2016.11.023
70. Wang L, Zhang J, Zhang Y et al. Motor cortex activation during motor imagery of the upper limbs in stroke patients. Digital Medicine 2016; 2 (2): 72–9. https://doi.org/10.4103/2226-8561.189523
________________________________________________
1. Glencross DJ. Motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. DJ Gleneross, JP Piek (eds.). Ch.1. New York: Elsevier Science, 1995; p. 3–7.
2. Lappe M. Information transfer between sensory and motor networks. In: Handbook of Biological Physics. F Moss, S Gielen (eds.). Vol. 4. Ch. 23. Amsterdam etc.: Elsevier Science, 2001; p. 1001–41.
3. Piek JP, Barrett NC. Perspectives on motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. DJ Gleneross, JP Piek (eds.). Ch.16. New York: Elsevier Science, 1995; p. 411–9.
4. Kaas JH. Functional implications of plasticity and reorganizations in the somatosensory and motor systems of developing and adult primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.14. Boca Raton etc: CRC Press, 2002; p. 375–89.
5. Kaas JH, Jain N, Qi H-X. The organization of the somatosensory system in primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.1. Boca Raton etc.: CRC Press, 2002; p. 18–42.
6. Nunez A, Malmierca E. Corticofugal Modulation of Sensory Information. Berlin, Heidelberg: Springer-Verlag, 2007.
7. Burton H. Cerebral cortical regions devoted to the somatosensory system: results from brain imaging studies in humans. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.2. Boca Raton etc.: CRC Press, 2002; p. 43–88.
8. Wasaka T, Kakigi R. Sensorimotor Integration. In: Magnetoencephalography. From Signals to Dynamic Cortical Networks. S Supek, CJ Aine (eds.). Berlin, Heidelberg: Springer-Verlag, 2014; p. 727–42. https://doi.org/10.1007/978-3-642-33045-2_34
9. Koziol LF, Budding DE, Chidekel D. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. The Cerebellum 2011; 10 (4): 770–92. https://doi.org/10.1007/s12311-011-0288-8
10. Yu X, Koretsky AP. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connectivity 2014; 4 (9): 709–17. https://doi.org/10.1089/brain.2014.0259
11. Jones C, Nelson A. Promoting plasticity in the somatosensory cortex to alter motor physiology. Translat Neurosci 2014; 5 (4): 260–8. https://doi.org/10.2478/s13380-014-0230-x
13. Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plasticity 2011; 2011: 1–9. https://doi.org/10.1155/2011/871296
14. Vahdat S, Darainy M, Ostry DJ. Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci 2014; 34 (7): 2451–63. https://doi.org/10.1523/jneurosci.4291-13.2014
15. Mendelsohn AI, Simon CM, Abbott LF et al. Activity regulates the incidence of heteronymous sensory-motor connections. Neuron 2015; 87 (1): 111–23. https://doi.org/10.1016/j.neuron.2015.05.045
16. Zhou L-J, Wang W, Zhao Y et al. Blood oxygenation level-dependent functional magnetic resonance imaging in early days: correlation between passive activation and motor recovery after unilateral striatocapsular cerebral infarction. J Stroke Cerebrovasc Dis 2017; 26 (11): 2652–61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.036
17. Lamichhane B, Dhamala M. The salience network and its functional architecture in a perceptual decision: an effective connectivity study. Brain Connectivity 2015; 5 (6): 362–70. https://doi.org/10.1089/brain.2014.0282
18. Kann S, Zhang S, Manza P et al. Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connectivity 2016; 6 (9): 724–34. https://doi.org/10.1089/brain.2016.0443
19. Killgore WDS, Schwab ZJ, Kipman M et al. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuro Report 2013; 24 (5): 233–40. https://doi.org/10.1097/wnr.0b013e32835edbdd
20. Koganemaru S, Domen K, Fukuyama H, Mima T. Negative emotion can enhance human motor cortical plasticity. Eur J Neurosci 2012; 35 (10): 1637–45. https://doi.org/10.1111/j.1460-9568.2012.08098.x
21. Nakagawa K, Inui K, Kakigi R. Somatosensory System. Basic Function. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch.3. Tokyo etc.: Springer 2016; p. 55–71.
22. Smith M-C, Stinear C. Plasticity and motor recovery after stroke: Implications for physiotherapy. N Z J Physiother 2016; 44 (3): 166–73. https://doi.org/10.15619/nzjp/44.3.06
24. Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 2014; 27 (6): 637–43. https://doi.org/10.1097/wco.0000000000000150
25. Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134 (5): 1264–76. https://doi.org/10.1093/brain/awr033
26. Pineiro R, Pendlebury ST, Smith S et al. Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 2000; 31 (3): 672–9. https://doi.org/10.1161/01.str.31.3.672
27. Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke 2014; 46 (1): 296–301. https://doi.org/10.1161/strokeaha.114.006307
28. Van Meer MPA, van der Marel K, Otte WM et al. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J Cereb Blood Flow Metab 2010; 30 (10): 1707–11. https://doi.org/10.1038/jcbfm.2010.124
29. Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 2013; 591 (1): 17–31. https://doi.org/10.1113/jphysiol.2012.243469
30. Kroll H, Zaharchuk G, Christen T et al. Resting-state BOLD MRI for perfusion and ischemia. Top Magn Reson Imaging 2017; 26 (2): 91–6. https://doi.org/10.1097/rmr.0000000000000119
31. Zhang Y, Li K-S, Ning Y-Z et al. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke. A multimodal magnetic resonance imaging study. Medicine 2016; 95 (31): e4534. https://doi.org/10.1097/md.0000000000004534
32. Staines WR, Bolton DAE, McIlroy WE. Sensorimotor control after stroke. In: The Behavioral Consequences of Stroke. TA Schweizer, RL Macdonald (eds.). Ch.3. New York: Springer Science, 2014; p. 37–49.
33. Seitz RJ. Cerebral reorganization after sensorimotor stroke. In: Recovery after Stroke. MP Barnes, BH Dobkin, J Bogousslavsky (eds.). Ch.4. Cambridge etc.: Cambridge University Press, 2005; p. 8–123.
34. Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimulation 2015; 8 (6): 1183–90. https://doi.org/10.1016/j.brs.2015.06.015
35. Zemke AC, Heagerty PJ, Lee C, Cramer SC. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003; 34 (5): e23-e26. https://doi.org/10.1161/01.str.0000065827.35634.5e
36. Jiang L, Xu H, Yu C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plasticity 2013; 2013: 1–11. https://doi.org/10.1155/2013/924192
37. Onishi H, Kameyama S. Somatosensory System. Clinical Applications. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch. 4. Tokyo etc.: Springer, 2016; p. 73–93.
38. La C, Nair VA, Mossahebi P et al. Implication of the slow-5 oscillations in the disruption of the default-mode network in healthy aging and stroke. Brain Connectivity 2016; 6 (6): 482–95. https://doi.org/10.1089/brain.2015.0375
39. Toschi N, Duggento A, Passamonti L. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project. Eur J Neurosci 2017; 45 (9): 1224–29. https://doi.org/10.1111/ejn.13544
40. Rossiter HE, Boudrias M-H, Ward NS. Do movement-related beta oscillations change after stroke? J Neurophysiol 2014; 112 (9): 2053–8. https://doi.org/10.1152/jn.00345.2014
41. Matsuura A, Karita T, Nakada N et al. Correlation between changes of contralesional cortical activity and motor function recovery in patients with hemiparetic stroke. Physical Ther Res 2017; 20 (2): 28–35. https://doi.org/10.1298/ptr.e9911
42. Veldema J, Bosl K, Nowak DA. Motor recovery of the affected hand in subacute stroke correlates with changes of contralesional cortical hand motor representation. Neural Plastic 2017; 2017: 1–13. https://doi.org/10.1155/2017/6171903
43. Ludemann-Podubecka J, Bosl K, Nowak DA. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur J Neurol 2016; 23 (4): 823–30. https://doi.org/10.1111/ene.12949
44. Madhavan S, Rogers LM, Stinear JW. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. Eur J Neurosci 2010; 32 (6): 1032–9. https://doi.org/10.1111/j.1460-9568.2010.07364.x
45. Dubovik S, Pignat J-M, Ptak R et al. The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 2012; 61 (1): 249–57. https://doi.org/10.1016/j.neuroimage.2012.03.024
46. Shi Z, Rogers BP, Chen LM et al. Realistic models of apparent dynamic changes in resting-state connectivity in somatosensory cortex. Human Brain Mapping 2016; 37 (11): 3897–910. https://doi.org/10.1002/hbm.23284
47. Smitha KA, Raja KA, Arun KM et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 2017; 30 (4): 305–17. https://doi.org/10.1177/1971400917697342
48. Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2014; 270 (2): 548–55. https://doi.org/10.1148/radiology.13130982
50. Winder AT, Echagarruga C, Zhang Q, Drew PJ. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state. Nature Neuroscience 2017; 20 (12): 1761–9. https://doi.org/10.1038/s41593-017-0007-y
51. Baxter BS, Edelman B, Zhang X et al. Simultaneous high-definition transcranial direct current stimulation of the motor cortex and motor imagery. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago 2014; 454-6. https://doi.org/10.1109/embc.2014.6943626
52. Baxter BS, He B. Simultaneous high-definition transcranial direct current stimulation and motor imagery acutely modulates activity in the motor cortex. Brain Stimulation 2017; 10 (1): e9. https://doi.org/10.1016/j.brs.2016.11.046
53. Chen JL, Schlaug G. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Scientific Reports 2016; 6 (1): 1–7. https://doi.org/10.1038/srep23271
54. Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 2012; 62 (4): 2232–43. https://doi.org/10.1016/j.neuroimage.2012.03.035
55. Gbadeyan O, McMahon K, Steinhauser M, Meinzer M. Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. J Neurosci 2016; 36 (50): 12530–6. https://doi.org/10.1523/jneurosci.2450-16.2016
56. Keeser D. The effect of prefrontal transcranial direct current stimulation on resting state functional connectivity. Eur Psychiatry 2017; 41: S33–S34. https://doi.org/10.1016/j.eurpsy.2017.01.159
57. Martin AK, Dzafic I, Ramdave S, Meinzer M. High definition transcranial direct current stimulation over the dorsomedial prefrontal cortex increases the salience of others. Brain Stimulation 2017; 10(2): 422. https://doi.org/10.1016/j.brs.2017.01.252
58. McLaughlin NCR, Conelea C, Blanchette B et al. Modulation of prefrontal function through transcranial direct current stimulation (tDCS). Brain Stimulation 2017; 10 (4): e37. https://doi.org/10.1016/j.brs.2017.04.062
59. Nikolin S, Boonstra TW, Loo CK, Martin D. Prefrontal cortex transcranial direct current stimulation increases parasympathetic nerve activity. Brain Stimulation 2017; 10 (2): 432. https://doi.org/10.1016/j.brs.2017.01.286
60. Pixa NH, Steinberg F, Doppelmayr M. Influence of high-definition anodal transcranial direct current stimulation (HD-atDCS) on motor learning of a high-speed bimanual task. Brain Stimulation 2017; 10 (2): 398–99. https://doi.org/10.1016/j.brs.2017.01.182
61. Worsching J, Padberg F, Helbich K et al. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. NeuroImage 2017; 155: 187–201. https://doi.org/10.1016/j.neuroimage.2017.04.052
62. Besson P, Vergotte G, Muthalib M, Perrey S. Test-retest reliability of transcranial direct current stimulation-induced modulation of resting-state sensorimotor cortex oxygenation time course. Brain Stimulation 2017; 10 (2): 400. https://doi.org/10.1016/j.brs.2017.01.186
63. Bachinger M, Moisa M, Polania R et al. Changing resting state connectivity measured by functional magnetic resonance imaging with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (1): e5. https://doi.org/10.1016/j.brs.2016.11.033
64. Lafleur L-P, Klees-Themens G, Lefebvre G et al. Connectivity and interhemispheric inhibition between motor cortices: a study with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (2): 405. https://doi.org/10.1016/j.brs.2017.01.200
65. Pixa NH, Steinberg F, Doppelmayr M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters 2017; 643: 84–8. https://doi.org/10.1016/j.neulet.2017.02.033
66. Saiote C, Tacchino A, Brichetto G et al. Resting-state functional connectivity and motor imagery brain activation. Human Brain Mapping 2016; 37 (11): 3847–57. https://doi.org/10.1002/hbm.23280
67. Bonassi G, Biggio M, Bisio A et al. Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Scientific Reports 2017; 7 (1): 1–10. https://doi.org/10.1038/s41598-017-09597-0
68. Carrasco DG, Cantalapiedra JA. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurología (English Edition). 2016; 31 (1): 43–52. https://doi.org/10.1016/j.nrleng.2013.02.008
69. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017; 341: 61–78. https://doi.org/10.1016/j.neuroscience.2016.11.023
70. Wang L, Zhang J, Zhang Y et al. Motor cortex activation during motor imagery of the upper limbs in stroke patients. Digital Medicine 2016; 2 (2): 72–9. https://doi.org/10.4103/2226-8561.189523
Авторы
И.В.Дамулин
ФГАОУ ВО «Первый Московский государственный университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2