Сипинг как вид нутритивно-метаболической поддержки в клинической медицине
Сипинг как вид нутритивно-метаболической поддержки в клинической медицине
Шестопалов А.Е., Дмитриев А.В. Сипинг как вид нутритивно-метаболической поддержки в клинической медицине. Гастроэнтерология. Хирургия. Интенсивная терапия. Consilium Medicum. 2019; 3: 52–61. DOI: 10.26442/26583739.2019.3.190702
________________________________________________
Shestopalov A.E., Dmitriev A.V. Sip feeding as a type of nutritional and metabolic support in clinical medicine. Gastroenterology. Surgery. Intensive care. Consilium Medicum. 2019; 3: 52–61. DOI: 10.26442/26583739.2019.3.190702
Сипинг как вид нутритивно-метаболической поддержки в клинической медицине
Шестопалов А.Е., Дмитриев А.В. Сипинг как вид нутритивно-метаболической поддержки в клинической медицине. Гастроэнтерология. Хирургия. Интенсивная терапия. Consilium Medicum. 2019; 3: 52–61. DOI: 10.26442/26583739.2019.3.190702
________________________________________________
Shestopalov A.E., Dmitriev A.V. Sip feeding as a type of nutritional and metabolic support in clinical medicine. Gastroenterology. Surgery. Intensive care. Consilium Medicum. 2019; 3: 52–61. DOI: 10.26442/26583739.2019.3.190702
Выполнен аналитический обзор применения перорального энтерального питания (ПЭП, или сипинг) в качестве адъювантной терапии и нутритивно-метаболической поддержки при различных заболеваниях и патологических состояниях. Сипинговые смеси в жидкой и порошкообразной форме получают в настоящее время все большее распространение за счет своих физиологичности и эффективности в поддержании нутритивного статуса и устранения нутритивной недостаточности у пациентов в самых разных областях медицины: онкологии, заболеваниях опорно-двигательного аппарата, сердечно-сосудистых и легочных заболеваниях (хроническая обструктивная болезнь легких) и ряде других. Эти смеси содержат протеины, жиры, углеводы (макронутриенты), омега-3-полиненасыщенные жирные кислоты, а также витамины и микроэлементы. Сипинг является дополнением к регулярной диете и выполняется в промежутках между приемами пищи. Наиболее распространенная схема сипинга – прием жидких форм в объемах 200–300 мл на прием 2–3 раза в день. Режимы сочетания регулярного рациона питания и ПЭП должны обеспечивать целевые показатели потребления энергии и белка: 25–30 ккал/кг в день и 1,4–1,8 г протеина на 1 кг массы тела в день. В наиболее тяжелых случаях потребление белка может быть увеличено. Соотношение калорий по отдельным нутриентам в общем потреблении энергии: белки/жиры/углеводы – 20/30/50%. Сипинг улучшает клинические и финансовые показатели в клинике и условиях амбулаторного лечения: укорачивает время пребывания в клинике; снижает количество инфекционных и неинфекционных осложнений, частоту повторных госпитализаций; затраты на лечение; улучшает качество жизни. ПЭП прописано в рекомендациях Европейского общества клинического питания и метаболизма и во многих национальных рекомендациях, посвященных энтеральной нутритивной поддержке.
The article provides an analytical review of the use of oral enteral nutrition (OEN, or sip feeding) as an adjuvant therapy and nutritional and metabolic support in various diseases and pathological conditions. Liquid and powdery sip feeds are currently becoming increasingly widespread due to their physiological nature and effectiveness in maintaining a nutritional status and eliminating nutritional deficiency in patients from different fields of medicine: oncology, musculoskeletal disorders, cardiovascular and pulmonary diseases (chronic obstructive pulmonary disease) and others. These sip mixtures contain proteins, fats, carbohydrates (macronutrients), omega-3 polyunsaturated fatty acids, as well as vitamins and minerals. Sip feeding is a supplement to a regular diet and is given between meals. The most prevalent sip feeding scheme is taking liquid forms of sip feeds in volumes of 200–300 ml 2–3 times a day. Regimes which combine a regular diet and OEN should provide target indicators of energy and protein consumption: 25–30 kcal/kg per day and 1.4–1.8 g of protein per 1 kg of body weight per day. In extremely severe cases, protein intake may be increased. Calorie ratio for individual nutrients in total energy consumption: proteins/fats/carbohydrates – 20/30/50%. Sip feeding improves clinical and financial outcomes in inpatient and outpatient practice: shortens the time of staying in the clinic; reduces the number of infectious and non-infectious complications, the rate of repeated hospitalizations; treatment costs; improves the quality of life. OEN is recommended by the European Society for Clinical Nutrition and Metabolism guidelines and by many national guidelines on enteral nutritional support.
1. Philipson TJ, Snider JT, Lakdawalla DN et al. Impact of Oral Nutritional Supplementation on Hospital Outcomes. Am J Manag Care 2013; 19 (2): 121–8.
2. Mullin GE, Fan L, Sulo S, Partridge J. The Association between Oral Nutritional Supplements and 30-Day Hospital Readmissions of Malnourished Patients at a US Academic Medical Center. J Acad Nutr Diet 2019; 119 (7): 1168–75.
3. Hebuterne X, Lemarie´ E, Michallet M et al. Prevalence of malnutrition and current use of nutrition support in patients with cancer. J Parenter Enteral Nutr 2014; 38 (2): 196–204.
4. Gyan E, Raynard B, Durand JP et al. Malnutrition in patients with cancer. J Parenter Enteral Nutr 2017; 148607116688881
5. Van Cutsem E, Arends J. The causes and consequences of cancerassociated malnutrition. Eur J Oncol Nurs 2005; 9: S51–S63.
6. Arends J, Baracos V, Bertz H et al. ESPEN expert group recommendations for action against cancer-related malnutrition, Clinical Nutrition 2017. http://dx.doi.org/10.1016/j.clnu.2017.06.017
7. Thompson KL, Elliott L, Fuchs-Tarlovsky V et al. Oncology evidence-based nutrition practice guideline for adults. J Acad Nutr Diet 2017; 117 (2): 297–310.
8. Ryan AM, Power DG, Daly L et al. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc 2016; 75 (2): 199–211.
9. Dewys WD, Begg C, Lavin PT et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 1980; 69 (4): 491–7.
10. Wie GA, Cho YA, Kim SY et al. Prevalence and risk factors of malnutrition among cancer patients according to tumor location and stage in the National Cancer Center in Korea. Nutrition 2010; 26 (3): 263–8.
11. Silva FR, de Oliveira MG, Souza AS et al. Factors associated with malnutrition in hospitalized cancer patients: a cross-sectional study. Nutr J 2015; 14: 123.
12. Freijer K, Tan SS, Koopmanschap MA et al. The economic costs of disease related malnutrition. Clin Nutr 2013; 32 (1): 136–41.
13. Aaldriks AA, van der Geest LG, Giltay EJ et al. Frailty and malnutrition predictive of mortality risk in older patients with advanced colorectal cancer receiving chemotherapy. J Geriatr Oncol 2013; 4 (3): 218–26.
14. Attar A, Malka D, Sabate JM et al. Malnutrition is high and underestimated during chemotherapy in gastrointestinal cancer: an AGEO prospective cross-sectional multicenter study. Nutr Cancer 2012; 64 (4): 535–42.
15. Planas M, Alvarez-Hernandez J, Leon-Sanz M et al. Prevalence of hospital malnutrition in cancer patients: a sub-analysis of the PREDyCES study. Support Care Cancer 2016; 24 (1): 429–35.
16. Fukuda Y, Yamamoto K, Hirao M et al. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann Surg Oncol 2015; 22 (Suppl. 3): 778–85.
17. Maasberg S, Knappe-Drzikova B, Vonderbeck D et al. Malnutrition predicts clinical outcome in patients with neuroendocrine neoplasias. Neuroendocrinology 2017; 104 (1): 11–25.
18. Pressoir M, Desne S, Berchery D et al. Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br J Cancer 2010; 102 (6): 966–71.
19. Peterson SJ, Mozer M. Differentiating Sarcopenia and Cachexia Among Patients With Cancer. Nut Clin Pract 2017; 32 (1): 1–10.
20. Gellrich NC, Handschel J, Holtmann H, Kruskemper G. Oral cancer malnutrition impacts weight and quality of life. Nutrients 2015; 7 (4): 2145–60.
21. Martin L, Senesse P, Gioulbasanis I et al. Diagnostic criteria for the classification of cancer associated weight loss. J Clin Oncol 2015; 33 (1): 90–9.
22. Farhangfar A, Makarewicz M, Ghosh S et al. Nutrition impact symptoms in a population cohort of head and neck cancer patients: multivariate regression analysis of symptoms on oral intake, weight loss and survival. Oral Oncol 2014; 50 (9): 877–83. DOI: 10.1016/
j.oraloncology.2014.06.009
23. Lee JL, Leong LP, Lim SL. Nutrition intervention approaches to reduce malnutrition in oncology patients: a systematic review. Supp Care Cancer 2016; 24 (1): 469–80. DOI: 10.1007/s00520-015-2958-4
24. Van der Meij BS, van Bokhorst-de van der Schueren MA, Langius JA et al. n-3 PUFAs in cancer, surgery, and critical care: a systematic review on clinical effects, incorporation, and washout of oral or enteral compared with parenteral supplementation. Am J Clin Nutr 2011; 94 (5): 1248–65.
25. Baldwin C, Spiro A, Ahern R, Emery PW. Oral nutritional interventions in malnourished patients with cancer: a systematic review and meta-analysis. J Natl Cancer Inst 2012; 104 (5): 371–85.
26. Ries A, Trottenberg P, Elsner F et al. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med 2012; 26 (4): 294–304.
27. De Aguiar PSJ, Emilia de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: a systematic review. Clin Nutr 2015; 34 (3): 359–66.
28. De van der Schueren MAE, Laviano A, Blanchard H et al. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo(radio)therapy: current evidence and guidance for design of future trials. Ann Oncol 2018; 29: 1141–53. DOI: 10.1093/annonc/mdy114
29. Di Fiore A, Lecleire S, Gangloff A et al. Impact of nutritional parameter variations during definitive chemoradiotherapy in locally advanced oesophageal cancer. Dig Liver Dis 2014; 46 (3): 270–5.
30. Clavier JB, Antoni D, Atlani D et al. Baseline nutritional status is prognostic factor after definitive radiochemotherapy for esophageal cancer. Dis Esophagus 2014; 27 (6): 560–7.
31. Caillet P, Liuu E, Raynaud Simon A et al. Association between cachexia, chemotherapy and outcomes in older cancer patients: a systematic review. Clin Nutr 2017; 36 (6): 1473–82.
32. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. J Nutr Biochem 2003; 14: 251–8.
33. Camargo C de Q, Mocellin MC, Pastore Silva J de A et al. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr Cancer 2016; 68 (1): 70–6.
34. Van der Meij BS, Langius JA, Spreeuwenberg MD et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr 2012; 66 (3): 399–404.
35. Sanchez-Lara K, Turcott JG, Juarez-Hernandez E et al. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trial. Clin Nutr 2014; 33 (6): 1017–23.
36. Rheem DS, Baylink DJ, Olafsson S et al. Prevention of colorectal cancer with vitamin D Scand J Gastroenterol 2010; 45: 775–84.
37. Frenkel M, Abrams DI, Lada EJ et al. Integrating Dietary Supplements Into Cancer Car. Integr Cancer Ther 2013; p. 1–16.
38. Galvard H, Elmståhl S, Elmståhl B et al. Differences in body composition between female geriatric hip fracture patients and healthy controls: body fat is more important as explanatory factor for the fracture than body weight and lean body mass. Aging (Milano) 1996; 4: 282–6.
39. Koval KJ, Maurer SG, Su ET et al. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma 1999; 13: 164–9.
40. Bourdel-Marchasson I, Barateau M, Rondeau V et al. A multi-center trial of the effects of oral nutritional supplementation in critically ill older inpatients. GAGE Group. Groupe Aquitain Geriatrique d’Evaluation. Nutrition 2000; 16: 1–5.
41. Houwing RH, Rozendaal M, Wouters-Wesseling W et al. A randomised, double-blind assessment of the effect of nutritional supplementation on the prevention of pressure ulcers in hip-fracture patients. Clin Nutr 2003; 22: 401–5.
42. Eneroth M, Olsson UB, Thorngren KG. Nutritional Supplementation Decreases Hip Fracture-related Complications. Clin Orthopaed Rel Res 2006; 451: 212–7.
43. Cummings SR. Treatable and untreatable risk factors for hip fracture. Bone 1996; 18 (Suppl. 3): 165S–167S.
44. Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 2013; 68: 1236–42.
45. Constans T, Bacq Y, Brechot JF et al. Protein-energy malnutrition in elderly medical patients. J Am Geriatr Soc 1992; 40 (3): 263–8.
46. Compan B, di Castri A, Plaze JM, Arnaud-Battandier F. Epidemiological study of malnutrition in elderly patients in acute, sub-acute and long-term care using the MNA. J Nutr Health Aging 1999; 3 (3): 146–51.
47. Maffulli N, Dougall TW, Brown MT, Golden MH. Nutritional differences in patients with proximal femoral fractures. Age Ageing 1999; 28 (5): 458–62.
48. Murphy MC, Brooks CN, New SA, Lumbers ML. The use of the Mini-Nutritional Assessment (MNA) tool in elderly orthopaedic patients. Eur J Clin Nutr 2000; 54 (7): 555–62.
49. Patterson BM, Cornell CN, Carbone B et al. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip. J Bone Joint Surg Am 1992; 74: 251–60.
50. Bachrach-Lindstrom M, Johansson T, Unosson M et al. Nutritional status and functional capacity after femoral neck fractures: a prospective randomized one-year follow-up study. Aging (Milano) 2000; 12 (5): 366–74.
51. Lumbers M, New SA, Gibson S, Murphy MC. Nutritional status in elderly female hip fracture patients: comparison with an age-matched home living group attending day centres. Br J Nutr 2001; 85: 733–40.
52. De Bustamante MD, Alarcon T, Menéndez-Colino R et al. Prevalence of malnutrition in a cohort of 509 patients with acute hip fracture: the importance of a comprehensive assessment. Eur J Clin Nutr 2017. DOI: 10.1038/ejcn.2017.72
53. Singh FMA, Singh NA, Hansen RD et al. Methodology and baseline characteristics for the sarcopenia and Hip fracture study: a 5-year prospective study. J Gerontol A Biol Sci Med Sci 2009; 64: 568–74.
54. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 2011; 52: 71–4.
55. Di Monaco M, Castiglioni C, Vallero F et al. Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr 2012; 55 (2): e48–52. DOI: 10.1016/j.archger.2012.05.002
56. Hida T, Ishiguro N, Shimokata H et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int 2013; 13: 413–20.
57. Gunnarsson AK. Patients with hip fracture. Various aspects of patient safety. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1035, Uppsala Universitet, 2014.
58. Hoekstra JC, Goosen JH, de Wolf GS, Verheyen CC. Effectiveness of multidisciplinary nutritional care on nutritional intake, nutritional status and quality of life in patients with hip fractures: a controlled prospective cohort study. Clin Nutr 2011; 30: 455–61.
59. Anbar R, Beloosesky Y, Cohen J et al. Tight calorie control in geriatric patients following hip fracture decreases complications: a randomized, controlled study. Clin Nutr 2014; 33: 23–8.
60. Malafarina V, Uriz-Otano F, Gil-Guerrero L et al. Study protocol: high-protein nutritional intervention based on b-hydroxy-b-methylbutirate, vitamin D3 and calcium on obese and lean aged patients with hip fractures and sarcopenia. The HIPERPROT-GER study. Maturitas 2013; 76: 123–8.
61. Morley JE, Argiles JM, Evans WJ et al. Nutritional Recommendations for the Management of Sarcopenia. J Am Med Dir Assoc 2010; 11 (6): 391–6.
62. Dangin M, Boirie Y, Garcia-Rodenas C et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab 2001; 280: E340–E348.
63. Dangin M, Guillet C, Garcia-Rodenas C et al. The rate of protein digestion affects protein gain differently during aging in humans. J Physiol 2003; 549: 635–44.
64. Pennings B, Boirie Y, Senden JM et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men.
Am J Clin Nutr 2011; 93: 997–1005.
65. Tang JE, Phillips SM. Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 2009; 12: 66–71.
66. Anthony JC, Yoshizawa F, Anthony TG et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 2000; 130: 2413–9.
67. Katsanos CS, Kobayashi H, Sheffield-Moore M et al. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 2005; 82: 1065–73.
68. Katsanos CS, Kobayashi H, Sheffield-Moore M et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 2006; 291: E381–E387.
69. Wyers CE, Reijven PLM, Evers MAA et al. Cost-effectiveness of nutritional intervention in elderly subjects after hip fracture. A randomized controlled trial. Osteoporos Int 2013; 24: 151–62.
70. Volkert D, Berner YN, Berry E et al. ESPEN guidelines on enteral nutrition: Geriatrics Clin Nutr 2006; 25 (2): 330–60.
71. Volkert D, Beck AM, Cederholm T et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2018; p. 1–38. doi.org/10.1016/j.clnu.2018.05.024
72. Wyers CE, Breedveld-Peters JJL, Reijven PLM et al. Efficacy and cost-effectiveness of nutritional intervention in elderly after hip fracture: design of a randomized controlled trial. BMC Public Health 2010; 10: 212. http://www.biomedcentral.com/1471-2458/10/212
73. Breedveld-Peters JJL, Reijven PLM, Wyers CE et al. Integrated nutritional intervention in the elderly after hip fracture. A process evaluation. European Society for Clinical Nutrition and Metabolism. Clin Nutrition 2012; 31: 199–205.
74. Nocioka K, Sakata Y, Takahashi J et al. Prognostic impact of nutritional status in asymptomatic patients with cardiac diseases: A report from the CHART-2 Study. Circulat J 2013, 77 (9): 2318–26.
75. Lomivorotov VV, Efemov SM et al. Prognostic value of nutritional screening tools for patients scheduled for cardiac surgery. Int Cardiovasc Thor Surg 2013; 16 (5): 612–8.
76. Van Venrooij LM, van Leeuwen PA, Hopmans W et al. Accuracy of quick and easy undernutrition screening tools – Short Nutritional Assessment Questionnaire, Malnutrition Universal Screening Tool, and modified Malnutrition Universal Screening Tool – in patients undergoing cardiac surgery. J Am Dietic Assoc 2011; 111 (12): 1924–30.
77. Grossniklaus DA, O’Brien MC, Clark PC, Dunbar SB. Nutrient Intake in Heart Failure Patients. J Cardiovasc Nurs 2008; 23 (4): 357–63.
78. Menezes AR, Lamb MC, Lavie CJ, DiNicolantonio JJ. Vitamin D and atherosclerosis. Curr Opin Cardiol 2014; 29: 571–7.
79. Namba T, Kimura T, Horii S et al. Significance of Branched-Chain Amino Acids in Lean Patients With Heart Failure. J Cardiac Failure 2016; 22 (9, Suppl.): S218.
80. Anschutz M, Weinmeister S, Donath F et al. Gastrointestinal tolerance of a high-energy oral nutritional supplement (ONS) in healthy elderly and dialysis patients. Abstract 29th ESPEN Congress on Clinical Nutrition and Metabolism, Prague, September 8–11, 2007.
81. Lakdawalla DN, Snider JT, Linthicum MT et al. "Can Oral Nutritional Supplements Improve Medicare Patient Outcomes in the Hospital?" Forum for Health Economics & Policy, De Gruyter 2014; 17 (2): 1–21.
82. Sinder JT, Jena AB, Linthicum MT et al. Effect of Hospital Use of Oral Nutritional Supplementation on Length of Stay, Hospital Cost, and 30-Day Readmissions Among Medicare Patients With COPD. Chest 2015; 147 (6): 1477–84. DOI: 10.1378/chest.14-1368
________________________________________________
1. Philipson TJ, Snider JT, Lakdawalla DN et al. Impact of Oral Nutritional Supplementation on Hospital Outcomes. Am J Manag Care 2013; 19 (2): 121–8.
2. Mullin GE, Fan L, Sulo S, Partridge J. The Association between Oral Nutritional Supplements and 30-Day Hospital Readmissions of Malnourished Patients at a US Academic Medical Center. J Acad Nutr Diet 2019; 119 (7): 1168–75.
3. Hebuterne X, Lemarie´ E, Michallet M et al. Prevalence of malnutrition and current use of nutrition support in patients with cancer. J Parenter Enteral Nutr 2014; 38 (2): 196–204.
4. Gyan E, Raynard B, Durand JP et al. Malnutrition in patients with cancer. J Parenter Enteral Nutr 2017; 148607116688881
5. Van Cutsem E, Arends J. The causes and consequences of cancerassociated malnutrition. Eur J Oncol Nurs 2005; 9: S51–S63.
6. Arends J, Baracos V, Bertz H et al. ESPEN expert group recommendations for action against cancer-related malnutrition, Clinical Nutrition 2017. http://dx.doi.org/10.1016/j.clnu.2017.06.017
7. Thompson KL, Elliott L, Fuchs-Tarlovsky V et al. Oncology evidence-based nutrition practice guideline for adults. J Acad Nutr Diet 2017; 117 (2): 297–310.
8. Ryan AM, Power DG, Daly L et al. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc 2016; 75 (2): 199–211.
9. Dewys WD, Begg C, Lavin PT et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 1980; 69 (4): 491–7.
10. Wie GA, Cho YA, Kim SY et al. Prevalence and risk factors of malnutrition among cancer patients according to tumor location and stage in the National Cancer Center in Korea. Nutrition 2010; 26 (3): 263–8.
11. Silva FR, de Oliveira MG, Souza AS et al. Factors associated with malnutrition in hospitalized cancer patients: a cross-sectional study. Nutr J 2015; 14: 123.
12. Freijer K, Tan SS, Koopmanschap MA et al. The economic costs of disease related malnutrition. Clin Nutr 2013; 32 (1): 136–41.
13. Aaldriks AA, van der Geest LG, Giltay EJ et al. Frailty and malnutrition predictive of mortality risk in older patients with advanced colorectal cancer receiving chemotherapy. J Geriatr Oncol 2013; 4 (3): 218–26.
14. Attar A, Malka D, Sabate JM et al. Malnutrition is high and underestimated during chemotherapy in gastrointestinal cancer: an AGEO prospective cross-sectional multicenter study. Nutr Cancer 2012; 64 (4): 535–42.
15. Planas M, Alvarez-Hernandez J, Leon-Sanz M et al. Prevalence of hospital malnutrition in cancer patients: a sub-analysis of the PREDyCES study. Support Care Cancer 2016; 24 (1): 429–35.
16. Fukuda Y, Yamamoto K, Hirao M et al. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann Surg Oncol 2015; 22 (Suppl. 3): 778–85.
17. Maasberg S, Knappe-Drzikova B, Vonderbeck D et al. Malnutrition predicts clinical outcome in patients with neuroendocrine neoplasias. Neuroendocrinology 2017; 104 (1): 11–25.
18. Pressoir M, Desne S, Berchery D et al. Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br J Cancer 2010; 102 (6): 966–71.
19. Peterson SJ, Mozer M. Differentiating Sarcopenia and Cachexia Among Patients With Cancer. Nut Clin Pract 2017; 32 (1): 1–10.
20. Gellrich NC, Handschel J, Holtmann H, Kruskemper G. Oral cancer malnutrition impacts weight and quality of life. Nutrients 2015; 7 (4): 2145–60.
21. Martin L, Senesse P, Gioulbasanis I et al. Diagnostic criteria for the classification of cancer associated weight loss. J Clin Oncol 2015; 33 (1): 90–9.
22. Farhangfar A, Makarewicz M, Ghosh S et al. Nutrition impact symptoms in a population cohort of head and neck cancer patients: multivariate regression analysis of symptoms on oral intake, weight loss and survival. Oral Oncol 2014; 50 (9): 877–83. DOI: 10.1016/
j.oraloncology.2014.06.009
23. Lee JL, Leong LP, Lim SL. Nutrition intervention approaches to reduce malnutrition in oncology patients: a systematic review. Supp Care Cancer 2016; 24 (1): 469–80. DOI: 10.1007/s00520-015-2958-4
24. Van der Meij BS, van Bokhorst-de van der Schueren MA, Langius JA et al. n-3 PUFAs in cancer, surgery, and critical care: a systematic review on clinical effects, incorporation, and washout of oral or enteral compared with parenteral supplementation. Am J Clin Nutr 2011; 94 (5): 1248–65.
25. Baldwin C, Spiro A, Ahern R, Emery PW. Oral nutritional interventions in malnourished patients with cancer: a systematic review and meta-analysis. J Natl Cancer Inst 2012; 104 (5): 371–85.
26. Ries A, Trottenberg P, Elsner F et al. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med 2012; 26 (4): 294–304.
27. De Aguiar PSJ, Emilia de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: a systematic review. Clin Nutr 2015; 34 (3): 359–66.
28. De van der Schueren MAE, Laviano A, Blanchard H et al. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo(radio)therapy: current evidence and guidance for design of future trials. Ann Oncol 2018; 29: 1141–53. DOI: 10.1093/annonc/mdy114
29. Di Fiore A, Lecleire S, Gangloff A et al. Impact of nutritional parameter variations during definitive chemoradiotherapy in locally advanced oesophageal cancer. Dig Liver Dis 2014; 46 (3): 270–5.
30. Clavier JB, Antoni D, Atlani D et al. Baseline nutritional status is prognostic factor after definitive radiochemotherapy for esophageal cancer. Dis Esophagus 2014; 27 (6): 560–7.
31. Caillet P, Liuu E, Raynaud Simon A et al. Association between cachexia, chemotherapy and outcomes in older cancer patients: a systematic review. Clin Nutr 2017; 36 (6): 1473–82.
32. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. J Nutr Biochem 2003; 14: 251–8.
33. Camargo C de Q, Mocellin MC, Pastore Silva J de A et al. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr Cancer 2016; 68 (1): 70–6.
34. Van der Meij BS, Langius JA, Spreeuwenberg MD et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr 2012; 66 (3): 399–404.
35. Sanchez-Lara K, Turcott JG, Juarez-Hernandez E et al. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trial. Clin Nutr 2014; 33 (6): 1017–23.
36. Rheem DS, Baylink DJ, Olafsson S et al. Prevention of colorectal cancer with vitamin D Scand J Gastroenterol 2010; 45: 775–84.
37. Frenkel M, Abrams DI, Lada EJ et al. Integrating Dietary Supplements Into Cancer Car. Integr Cancer Ther 2013; p. 1–16.
38. Galvard H, Elmståhl S, Elmståhl B et al. Differences in body composition between female geriatric hip fracture patients and healthy controls: body fat is more important as explanatory factor for the fracture than body weight and lean body mass. Aging (Milano) 1996; 4: 282–6.
39. Koval KJ, Maurer SG, Su ET et al. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma 1999; 13: 164–9.
40. Bourdel-Marchasson I, Barateau M, Rondeau V et al. A multi-center trial of the effects of oral nutritional supplementation in critically ill older inpatients. GAGE Group. Groupe Aquitain Geriatrique d’Evaluation. Nutrition 2000; 16: 1–5.
41. Houwing RH, Rozendaal M, Wouters-Wesseling W et al. A randomised, double-blind assessment of the effect of nutritional supplementation on the prevention of pressure ulcers in hip-fracture patients. Clin Nutr 2003; 22: 401–5.
42. Eneroth M, Olsson UB, Thorngren KG. Nutritional Supplementation Decreases Hip Fracture-related Complications. Clin Orthopaed Rel Res 2006; 451: 212–7.
43. Cummings SR. Treatable and untreatable risk factors for hip fracture. Bone 1996; 18 (Suppl. 3): 165S–167S.
44. Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 2013; 68: 1236–42.
45. Constans T, Bacq Y, Brechot JF et al. Protein-energy malnutrition in elderly medical patients. J Am Geriatr Soc 1992; 40 (3): 263–8.
46. Compan B, di Castri A, Plaze JM, Arnaud-Battandier F. Epidemiological study of malnutrition in elderly patients in acute, sub-acute and long-term care using the MNA. J Nutr Health Aging 1999; 3 (3): 146–51.
47. Maffulli N, Dougall TW, Brown MT, Golden MH. Nutritional differences in patients with proximal femoral fractures. Age Ageing 1999; 28 (5): 458–62.
48. Murphy MC, Brooks CN, New SA, Lumbers ML. The use of the Mini-Nutritional Assessment (MNA) tool in elderly orthopaedic patients. Eur J Clin Nutr 2000; 54 (7): 555–62.
49. Patterson BM, Cornell CN, Carbone B et al. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip. J Bone Joint Surg Am 1992; 74: 251–60.
50. Bachrach-Lindstrom M, Johansson T, Unosson M et al. Nutritional status and functional capacity after femoral neck fractures: a prospective randomized one-year follow-up study. Aging (Milano) 2000; 12 (5): 366–74.
51. Lumbers M, New SA, Gibson S, Murphy MC. Nutritional status in elderly female hip fracture patients: comparison with an age-matched home living group attending day centres. Br J Nutr 2001; 85: 733–40.
52. De Bustamante MD, Alarcon T, Menéndez-Colino R et al. Prevalence of malnutrition in a cohort of 509 patients with acute hip fracture: the importance of a comprehensive assessment. Eur J Clin Nutr 2017. DOI: 10.1038/ejcn.2017.72
53. Singh FMA, Singh NA, Hansen RD et al. Methodology and baseline characteristics for the sarcopenia and Hip fracture study: a 5-year prospective study. J Gerontol A Biol Sci Med Sci 2009; 64: 568–74.
54. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 2011; 52: 71–4.
55. Di Monaco M, Castiglioni C, Vallero F et al. Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr 2012; 55 (2): e48–52. DOI: 10.1016/j.archger.2012.05.002
56. Hida T, Ishiguro N, Shimokata H et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int 2013; 13: 413–20.
57. Gunnarsson AK. Patients with hip fracture. Various aspects of patient safety. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1035, Uppsala Universitet, 2014.
58. Hoekstra JC, Goosen JH, de Wolf GS, Verheyen CC. Effectiveness of multidisciplinary nutritional care on nutritional intake, nutritional status and quality of life in patients with hip fractures: a controlled prospective cohort study. Clin Nutr 2011; 30: 455–61.
59. Anbar R, Beloosesky Y, Cohen J et al. Tight calorie control in geriatric patients following hip fracture decreases complications: a randomized, controlled study. Clin Nutr 2014; 33: 23–8.
60. Malafarina V, Uriz-Otano F, Gil-Guerrero L et al. Study protocol: high-protein nutritional intervention based on b-hydroxy-b-methylbutirate, vitamin D3 and calcium on obese and lean aged patients with hip fractures and sarcopenia. The HIPERPROT-GER study. Maturitas 2013; 76: 123–8.
61. Morley JE, Argiles JM, Evans WJ et al. Nutritional Recommendations for the Management of Sarcopenia. J Am Med Dir Assoc 2010; 11 (6): 391–6.
62. Dangin M, Boirie Y, Garcia-Rodenas C et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab 2001; 280: E340–E348.
63. Dangin M, Guillet C, Garcia-Rodenas C et al. The rate of protein digestion affects protein gain differently during aging in humans. J Physiol 2003; 549: 635–44.
64. Pennings B, Boirie Y, Senden JM et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men.
Am J Clin Nutr 2011; 93: 997–1005.
65. Tang JE, Phillips SM. Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 2009; 12: 66–71.
66. Anthony JC, Yoshizawa F, Anthony TG et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 2000; 130: 2413–9.
67. Katsanos CS, Kobayashi H, Sheffield-Moore M et al. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 2005; 82: 1065–73.
68. Katsanos CS, Kobayashi H, Sheffield-Moore M et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 2006; 291: E381–E387.
69. Wyers CE, Reijven PLM, Evers MAA et al. Cost-effectiveness of nutritional intervention in elderly subjects after hip fracture. A randomized controlled trial. Osteoporos Int 2013; 24: 151–62.
70. Volkert D, Berner YN, Berry E et al. ESPEN guidelines on enteral nutrition: Geriatrics Clin Nutr 2006; 25 (2): 330–60.
71. Volkert D, Beck AM, Cederholm T et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2018; p. 1–38. doi.org/10.1016/j.clnu.2018.05.024
72. Wyers CE, Breedveld-Peters JJL, Reijven PLM et al. Efficacy and cost-effectiveness of nutritional intervention in elderly after hip fracture: design of a randomized controlled trial. BMC Public Health 2010; 10: 212. http://www.biomedcentral.com/1471-2458/10/212
73. Breedveld-Peters JJL, Reijven PLM, Wyers CE et al. Integrated nutritional intervention in the elderly after hip fracture. A process evaluation. European Society for Clinical Nutrition and Metabolism. Clin Nutrition 2012; 31: 199–205.
74. Nocioka K, Sakata Y, Takahashi J et al. Prognostic impact of nutritional status in asymptomatic patients with cardiac diseases: A report from the CHART-2 Study. Circulat J 2013, 77 (9): 2318–26.
75. Lomivorotov VV, Efemov SM et al. Prognostic value of nutritional screening tools for patients scheduled for cardiac surgery. Int Cardiovasc Thor Surg 2013; 16 (5): 612–8.
76. Van Venrooij LM, van Leeuwen PA, Hopmans W et al. Accuracy of quick and easy undernutrition screening tools – Short Nutritional Assessment Questionnaire, Malnutrition Universal Screening Tool, and modified Malnutrition Universal Screening Tool – in patients undergoing cardiac surgery. J Am Dietic Assoc 2011; 111 (12): 1924–30.
77. Grossniklaus DA, O’Brien MC, Clark PC, Dunbar SB. Nutrient Intake in Heart Failure Patients. J Cardiovasc Nurs 2008; 23 (4): 357–63.
78. Menezes AR, Lamb MC, Lavie CJ, DiNicolantonio JJ. Vitamin D and atherosclerosis. Curr Opin Cardiol 2014; 29: 571–7.
79. Namba T, Kimura T, Horii S et al. Significance of Branched-Chain Amino Acids in Lean Patients With Heart Failure. J Cardiac Failure 2016; 22 (9, Suppl.): S218.
80. Anschutz M, Weinmeister S, Donath F et al. Gastrointestinal tolerance of a high-energy oral nutritional supplement (ONS) in healthy elderly and dialysis patients. Abstract 29th ESPEN Congress on Clinical Nutrition and Metabolism, Prague, September 8–11, 2007.
81. Lakdawalla DN, Snider JT, Linthicum MT et al. "Can Oral Nutritional Supplements Improve Medicare Patient Outcomes in the Hospital?" Forum for Health Economics & Policy, De Gruyter 2014; 17 (2): 1–21.
82. Sinder JT, Jena AB, Linthicum MT et al. Effect of Hospital Use of Oral Nutritional Supplementation on Length of Stay, Hospital Cost, and 30-Day Readmissions Among Medicare Patients With COPD. Chest 2015; 147 (6): 1477–84. DOI: 10.1378/chest.14-1368
Авторы
А.Е. Шестопалов*1–3, А.В. Дмитриев4
1. ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»
Минздрава России, Москва, Россия;
2. ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии», Москва, Россия;
3. Национальная ассоциация клинического питания и метаболизма, Москва, Россия;
4. Региональная Северо-Западная ассоциация парентерального и энтерального питания, Санкт-Петербург, Россия
Alexandr E. Shestopalov*1–3, Alexandr V. Dmitriev4
1. Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2. Federal Scientific and Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia;
3. Russian Society of Clinical Nutrition and Metabolizm, Moscow, Russia;
4. Regional Northwest Parenteral and Enteral Nutrition Association, Saint Petersburg, Russia