Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Маркеры острого повреждения почек. Перспективы их применения в практической деятельности
Маркеры острого повреждения почек. Перспективы их применения в практической деятельности
Щелкановцева Е.С., Миронова О.Ю., Фомин В.В. Маркеры острого повреждения почек. Перспективы их применения в практической деятельности. Consilium Medicum. 2021; 23 (1): 15–19. DOI: 10.26442/20751753.2021.1.200729
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Острое повреждение почек (ОПП) является распространенным клиническим синдромом, многообразие которого объясняет отсутствие единственного в своем роде «почечного тропонина». Наличие большого количества маркеров, поиск и исследование которых продолжаются, затрудняет выбор верного теста и диктует важность как можно более быстрого и точного внедрения биомаркеров ОПП в клиническую практику. Мы уверены, что внедрение их в клиническую практику может быть крайне важно в ситуациях, когда плановые лечебные вмешательства или воздействия подвергают пациентов риску развития ОПП. В настоящее время клиническое определение ОПП в соответствии с определением KDIGO (Kidney Disease: Improving Global Outcomes) базируется на оценке повышения уровня сывороточного креатинина и контроля диуреза, которые обладают рядом существенных ограничений для практического врача, в числе которых – невозможность диагностировать ОПП до повышения уровня сывороточного креатинина. Практикующим врачам необходима систематизированная информация о новейших маркерах ОПП и возможных ситуациях, когда и для каких групп пациентов они могут быть использованы. Именно этому мы решили посвятить наш обзор.
Ключевые слова: острое повреждение почек, биомаркеры, NGAL, TIMP-2, IGFBP7, цистатин С, маркеры, повреждение, почечный стресс
Keywords: acute kidney injury, biomarkers, NGAL, TIMP-2, IGFBP7, cystatin C, markers, injury, kidney stress
Ключевые слова: острое повреждение почек, биомаркеры, NGAL, TIMP-2, IGFBP7, цистатин С, маркеры, повреждение, почечный стресс
________________________________________________
Keywords: acute kidney injury, biomarkers, NGAL, TIMP-2, IGFBP7, cystatin C, markers, injury, kidney stress
Полный текст
Список литературы
1. Srisawat N, Kellum JA. The Role of Biomarkers in Acute Kidney Injury. Crit Care Clin 2020; 36 (1): 125–40. DOI: 10.1016/j.ccc.2019.08.010
2. Bihorac A, Chawla LS, Shaw AD, et al. Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. Am J Respir Crit Care Med 2014; 189 (8): 932–9. DOI: 10.1164/rccm.201401-0077OC
3. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference. A Consensus Statement. JAMA Netw Open 2020; 3 (10): e2019209. DOI: 10.1001/jamanetworkopen.2020.19209
4. Guzzi LM, Bergler T, Binnall B, et al. Clinical use of TIMP-2/IGFBP7 biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care 2019; 23 (1): 225. DOI: 10.1186/s13054-019-2504-8
5. Kellum JA, Lameire N, Aspelin P, et al. Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Sppl 2012; 2 (1): 1–138. DOI: 10.1038/kisup.2012.1
6. Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors. Crit Care 2018; 22 (126): 1–8. DOI: 10.1186/s13054-018-2042-9
7. Noto A, Cortegiani A, David A. NephroCheck: should we consider urine osmolality? Crit Care 2019; 23 (1): 48. DOI: 10.1186/s13054-019-2341-9
8. Di Somma S, Magrini L, De Berardinis B, et al. Additive value of blood neutrophil gelatinaseassociated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care 2013; 17 (1): R29. DOI: 10.1186/cc12510
9. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 2012; 68 (9): 1243–55. DOI: 10.1007/s00228-012-1259-9
10. Hoste E, Bihorac A, Al‑Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 2020; 46: 943–53. DOI: 10.1007/s00134-019-05919-0
11. Gaede L, Liebetrau C, Blumenstein J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant 2016; 31 (5): 760–6. DOI: 10.1093/ndt/gfw007
12. Shah KS, Taub P, Patel M, et al. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol 2015; 83 (1): 29–35. DOI: 10.5414/CN108387
13. Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN – time for reappraisal. Crit Care 2009; 13 (3): 211. DOI: 10.1186/cc7759
14. Oh DJ. A long journey for acute kidney injury biomarkers. Ren Fail 2020; 42 (1): 154–65. DOI: 10.1080/0886022X.2020.1721300
15. Dasta JF, Kane-Gill SL, Durtschi AJ, et al. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 2008; 23 (6): 1970–4. DOI: 10.1093/ndt/gfm908
16. Alshaikh HN, Katz NM, Gani F, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg 2018; 105 (2): 469–75. DOI: 10.1016/j.athoracsur.2017.10.053
17. Магзумова Г.Е., Гайпов А.Э., Толеп К.О., и др. Липокалин, ассоциированный с желатиназой нейтрофилов (NGAL) – ранний маркер острого повреждения почек. Клин. медицина Казахстана. 2014: 104–5 [Magzumova G.E., Gaipov A.E., Tolep K.O., et al. Lipokalin, assotsiirovannyi s zhelatinazoi neitrofilov (NGAL) – rannii marker ostrogo povrezhdeniia pochek. Klin. meditsina Kazakhstana. 2014: 104–5 (in Russian)].
2. Bihorac A, Chawla LS, Shaw AD, et al. Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. Am J Respir Crit Care Med 2014; 189 (8): 932–9. DOI: 10.1164/rccm.201401-0077OC
3. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference. A Consensus Statement. JAMA Netw Open 2020; 3 (10): e2019209. DOI: 10.1001/jamanetworkopen.2020.19209
4. Guzzi LM, Bergler T, Binnall B, et al. Clinical use of TIMP-2/IGFBP7 biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care 2019; 23 (1): 225. DOI: 10.1186/s13054-019-2504-8
5. Kellum JA, Lameire N, Aspelin P, et al. Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Sppl 2012; 2 (1): 1–138. DOI: 10.1038/kisup.2012.1
6. Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors. Crit Care 2018; 22 (126): 1–8. DOI: 10.1186/s13054-018-2042-9
7. Noto A, Cortegiani A, David A. NephroCheck: should we consider urine osmolality? Crit Care 2019; 23 (1): 48. DOI: 10.1186/s13054-019-2341-9
8. Di Somma S, Magrini L, De Berardinis B, et al. Additive value of blood neutrophil gelatinaseassociated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care 2013; 17 (1): R29. DOI: 10.1186/cc12510
9. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 2012; 68 (9): 1243–55. DOI: 10.1007/s00228-012-1259-9
10. Hoste E, Bihorac A, Al‑Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 2020; 46: 943–53. DOI: 10.1007/s00134-019-05919-0
11. Gaede L, Liebetrau C, Blumenstein J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant 2016; 31 (5): 760–6. DOI: 10.1093/ndt/gfw007
12. Shah KS, Taub P, Patel M, et al. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol 2015; 83 (1): 29–35. DOI: 10.5414/CN108387
13. Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN – time for reappraisal. Crit Care 2009; 13 (3): 211. DOI: 10.1186/cc7759
14. Oh DJ. A long journey for acute kidney injury biomarkers. Ren Fail 2020; 42 (1): 154–65. DOI: 10.1080/0886022X.2020.1721300
15. Dasta JF, Kane-Gill SL, Durtschi AJ, et al. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 2008; 23 (6): 1970–4. DOI: 10.1093/ndt/gfm908
16. Alshaikh HN, Katz NM, Gani F, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg 2018; 105 (2): 469–75. DOI: 10.1016/j.athoracsur.2017.10.053
17. Magzumova G.E., Gaipov A.E., Tolep K.O., et al. Lipokalin, assotsiirovannyi s zhelatinazoi neitrofilov (NGAL) – rannii marker ostrogo povrezhdeniia pochek. Klin. meditsina Kazakhstana. 2014: 104–5 (in Russian)
2. Bihorac A, Chawla LS, Shaw AD, et al. Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. Am J Respir Crit Care Med 2014; 189 (8): 932–9. DOI: 10.1164/rccm.201401-0077OC
3. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference. A Consensus Statement. JAMA Netw Open 2020; 3 (10): e2019209. DOI: 10.1001/jamanetworkopen.2020.19209
4. Guzzi LM, Bergler T, Binnall B, et al. Clinical use of TIMP-2/IGFBP7 biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care 2019; 23 (1): 225. DOI: 10.1186/s13054-019-2504-8
5. Kellum JA, Lameire N, Aspelin P, et al. Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Sppl 2012; 2 (1): 1–138. DOI: 10.1038/kisup.2012.1
6. Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors. Crit Care 2018; 22 (126): 1–8. DOI: 10.1186/s13054-018-2042-9
7. Noto A, Cortegiani A, David A. NephroCheck: should we consider urine osmolality? Crit Care 2019; 23 (1): 48. DOI: 10.1186/s13054-019-2341-9
8. Di Somma S, Magrini L, De Berardinis B, et al. Additive value of blood neutrophil gelatinaseassociated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care 2013; 17 (1): R29. DOI: 10.1186/cc12510
9. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 2012; 68 (9): 1243–55. DOI: 10.1007/s00228-012-1259-9
10. Hoste E, Bihorac A, Al‑Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 2020; 46: 943–53. DOI: 10.1007/s00134-019-05919-0
11. Gaede L, Liebetrau C, Blumenstein J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant 2016; 31 (5): 760–6. DOI: 10.1093/ndt/gfw007
12. Shah KS, Taub P, Patel M, et al. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol 2015; 83 (1): 29–35. DOI: 10.5414/CN108387
13. Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN – time for reappraisal. Crit Care 2009; 13 (3): 211. DOI: 10.1186/cc7759
14. Oh DJ. A long journey for acute kidney injury biomarkers. Ren Fail 2020; 42 (1): 154–65. DOI: 10.1080/0886022X.2020.1721300
15. Dasta JF, Kane-Gill SL, Durtschi AJ, et al. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 2008; 23 (6): 1970–4. DOI: 10.1093/ndt/gfm908
16. Alshaikh HN, Katz NM, Gani F, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg 2018; 105 (2): 469–75. DOI: 10.1016/j.athoracsur.2017.10.053
17. Магзумова Г.Е., Гайпов А.Э., Толеп К.О., и др. Липокалин, ассоциированный с желатиназой нейтрофилов (NGAL) – ранний маркер острого повреждения почек. Клин. медицина Казахстана. 2014: 104–5 [Magzumova G.E., Gaipov A.E., Tolep K.O., et al. Lipokalin, assotsiirovannyi s zhelatinazoi neitrofilov (NGAL) – rannii marker ostrogo povrezhdeniia pochek. Klin. meditsina Kazakhstana. 2014: 104–5 (in Russian)].
________________________________________________
2. Bihorac A, Chawla LS, Shaw AD, et al. Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. Am J Respir Crit Care Med 2014; 189 (8): 932–9. DOI: 10.1164/rccm.201401-0077OC
3. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference. A Consensus Statement. JAMA Netw Open 2020; 3 (10): e2019209. DOI: 10.1001/jamanetworkopen.2020.19209
4. Guzzi LM, Bergler T, Binnall B, et al. Clinical use of TIMP-2/IGFBP7 biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care 2019; 23 (1): 225. DOI: 10.1186/s13054-019-2504-8
5. Kellum JA, Lameire N, Aspelin P, et al. Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Sppl 2012; 2 (1): 1–138. DOI: 10.1038/kisup.2012.1
6. Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors. Crit Care 2018; 22 (126): 1–8. DOI: 10.1186/s13054-018-2042-9
7. Noto A, Cortegiani A, David A. NephroCheck: should we consider urine osmolality? Crit Care 2019; 23 (1): 48. DOI: 10.1186/s13054-019-2341-9
8. Di Somma S, Magrini L, De Berardinis B, et al. Additive value of blood neutrophil gelatinaseassociated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care 2013; 17 (1): R29. DOI: 10.1186/cc12510
9. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 2012; 68 (9): 1243–55. DOI: 10.1007/s00228-012-1259-9
10. Hoste E, Bihorac A, Al‑Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 2020; 46: 943–53. DOI: 10.1007/s00134-019-05919-0
11. Gaede L, Liebetrau C, Blumenstein J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant 2016; 31 (5): 760–6. DOI: 10.1093/ndt/gfw007
12. Shah KS, Taub P, Patel M, et al. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin Nephrol 2015; 83 (1): 29–35. DOI: 10.5414/CN108387
13. Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN – time for reappraisal. Crit Care 2009; 13 (3): 211. DOI: 10.1186/cc7759
14. Oh DJ. A long journey for acute kidney injury biomarkers. Ren Fail 2020; 42 (1): 154–65. DOI: 10.1080/0886022X.2020.1721300
15. Dasta JF, Kane-Gill SL, Durtschi AJ, et al. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 2008; 23 (6): 1970–4. DOI: 10.1093/ndt/gfm908
16. Alshaikh HN, Katz NM, Gani F, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg 2018; 105 (2): 469–75. DOI: 10.1016/j.athoracsur.2017.10.053
17. Magzumova G.E., Gaipov A.E., Tolep K.O., et al. Lipokalin, assotsiirovannyi s zhelatinazoi neitrofilov (NGAL) – rannii marker ostrogo povrezhdeniia pochek. Klin. meditsina Kazakhstana. 2014: 104–5 (in Russian)
Авторы
Е.С. Щелкановцева*1,2, О.Ю. Миронова1, В.В. Фомин1
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ГБУЗ «Городская поликлиника №67» Департамента здравоохранения г. Москвы, Москва, Россия
*mar-shhelkanovceva@yandex.ru
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 City Polyclinic №67, Moscow, Russia
*mar-shhelkanovceva@yandex.ru
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ГБУЗ «Городская поликлиника №67» Департамента здравоохранения г. Москвы, Москва, Россия
*mar-shhelkanovceva@yandex.ru
________________________________________________
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 City Polyclinic №67, Moscow, Russia
*mar-shhelkanovceva@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
