Отек головного мозга: от истоков описания к современному пониманию процесса
Отек головного мозга: от истоков описания к современному пониманию процесса
Гудкова В.В., Кимельфельд Е.И., Белов С.Е., Кольцова Е.А., Стаховская Л.В. Отек головного мозга: от истоков описания к современному пониманию процесса. Consilium Medicum. 2021; 23 (2): 131–135. DOI: 10.26442/20751753.2021.2.200604
________________________________________________
Gudkova VV, Kimelfeld EI, Belov SE, Koltsova EA, Stakhovskaya LV. Cerebral edema: from the origins of the description to the modern understanding of the process. Consilium Medicum. 2021; 23 (2): 131–135. DOI: 10.26442/20751753.2021.2.200604
Отек головного мозга: от истоков описания к современному пониманию процесса
Гудкова В.В., Кимельфельд Е.И., Белов С.Е., Кольцова Е.А., Стаховская Л.В. Отек головного мозга: от истоков описания к современному пониманию процесса. Consilium Medicum. 2021; 23 (2): 131–135. DOI: 10.26442/20751753.2021.2.200604
________________________________________________
Gudkova VV, Kimelfeld EI, Belov SE, Koltsova EA, Stakhovskaya LV. Cerebral edema: from the origins of the description to the modern understanding of the process. Consilium Medicum. 2021; 23 (2): 131–135. DOI: 10.26442/20751753.2021.2.200604
В статье, представляющей собой обзор-лекцию, отражены исторические вехи описания и изучения отека головного мозга (ОГМ) с древних времен до настоящего времени. Большое внимание уделено доктрине Монро–Келли, без которой невозможно понять механизм развития витально значимого осложнения ОГМ – внутричерепной гипертензии. Подчеркнуто значение доктрины Монро–Келли в обосновании симптоматического лечения повышенного внутричерепного давления. Обсуждается возможное участие глимфатической системы как в снижении, так и повышении внутричерепного давления. Проанализированы современные представления о гематоэнцефалическом барьере (ГЭБ), его роли в развитии ОГМ и увеличении внутричерепного объема. С изучением молекулярных механизмов повреждения ГЭБ и разработкой таргетной терапии исследователи связывают будущие успехи в области лечения ОГМ. Отражен большой интерес современных авторов к состоянию ГЭБ при различных заболеваниях, а также к нарушению его целостности при COVID-19. Отмечено, что основным и единственным на сегодняшний день методом диагностики ОГМ является нейровизуализация. Начаты разработки по выделению из крови потенциальных биохимических маркеров ОГМ.
Ключевые слова: исторические вехи изучения отека головного мозга, доктрина Монро–Келли, внутричерепная гипертензия, глимфатическая система, гематоэнцефалический барьер, изменение проницаемости гематоэнцефалического барьера при COVID-19, параклинические методы оценки отека головного мозга
________________________________________________
The article, which is a review-lecture, reflects the historical milestones in the description and study of cerebral edema (CE) from ancient times to the present. Great attention is paid to the Monroe–Kellie doctrine, without which it is impossible to understand the mechanism of development of a vitally significant complication of CE – intracranial hypertension. The importance of the Monroe–Kellie doctrine in substantiating the symptomatic treatment of increased intracranial pressure is emphasized. The possible involvement of the glymphatic system in both the decrease and the increase in increased intracranial pressure is discussed. The modern ideas about the blood-brain barrier (BBB), its role in the development of CE and an increase in intracranial volume are analyzed. With the study of the molecular mechanisms of BBB damage and the development of targeted therapy, the researchers associate future advances in the treatment of CE. The great interest of modern authors in the state of the BBB in various diseases, as well as in the violation of its integrity in COVID-19 is reflected. It is noted that the main and only, today, method for diagnosing CE is neuroimaging. Development has begun on the isolation of potential biochemical markers of CE from blood.
Keywords: historical milestones in the study of cerebral edema, Monroe–Kellie doctrine, intracranial hypertension, glymphatic system, blood-brain barrier, changes in blood-brain barrier permeability in COVID-19, paraclinical methods for assessing cerebral edema
1. Лихтерман Л.Б. Классификация черепно-мозговой травмы. Ч. I. Предпосылки и история. Судебная медицина. 2015; 1 (1): 42–6 [Likhterman LB. Klassifikatsiia cherepno-mozgovoi travmy. Chast' I. Predposylki i istoriia. Sudebnaya meditsina. 2015; 1 (1): 42–6 (in Russian)].
2. Гиппократ. Избранные книги. Пер. с греч. Руднева В.И., ред. Карпов В.П. М.– Л.: Биомедгиз, 1936; с. 493–515 [Hippocrates. Selected books. Transl. from Greek. Rudnev VI, Ed. by Karpov VP. Moscow–Leningrad: Biomedgiz, 1936; p. 493–51 (in Russian)].
3. Torack RM. Historical Aspects of Normal and Abnormal Brain Fluids 3. Cerebral Edema. Arch Neurol. 1982; 39 (6): 355–7.
4. Месхели М.К., Гегешидзе М.М. Отек головного мозга – история вопроса и современные представления. Georgian Medical News. 2007; 142 (1): 83–5 [Meskheli MK, Gegeshidze MM. Otek golovnogo mozga – istoriia voprosa i sovremennye predstavleniia. Georgian Medical News. 2007; 142 (1): 83–5 (in Russian)].
5. Whytt R. Observations on the Dropsy in the Brain. Edinburgh, 1768.
6. Козлов А.В., Коновалов А.Н. Гидроцефалия. В кн.: Неврология: нац. руководство. Под ред. Е.И. Гусева, А.Н. Коновалова, В.И. Скворцовой. М.: ГЭОТАР-Медиа, 2018. Т. 1; с. 549–54 [Kozlov AB, Konovalov AN. Hydrocephalus. In: Neurology: national leadership. Ed. by EI Gusev, AN Konovalov, BI Skvortsova. Moscow: GEOTAR-Media, 2018. Vol. 1; p. 549–54 (in Russian)].
7. Leinonen V, Vanninen R, Rauramaa T. Raised intracranial pressure and brain edema. Chapter 4. Handb Clin Neurol. 2018; 145: 25–37.
8. Bell BA. A History of the Study of Cerebral Edema. Neurosurgery. 1983; 13: 724–8.
9. Горбачев В.И., Лихолетова Н.В., Горбачев С.В. Мониторинг внутричерепного давления: настоящее и перспективы (сообщение 1). Политравма. 2013; 4: 69–78 [Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 1). Politravma. 2013; 4: 69–78 (in Russian)].
10. Остапенко Б.В., Войтенков В.Б., Марченко Н.В., и др. Современные методики мониторинга внутричерепного давления. Медицина экстремальных ситуаций. 2019; 21 (4): 472–85 [Ostapenko BV, Voitenkov VB, Marchenko NV, et al. Modern techniques for intracranial pressure monitoring. Meditsina ekstremal'nykh situatsiy. 2019; 21 (4): 472–85 (in Russian)].
11. Hirzallah MI, Choi HA. The Monitoring of Brain Edema and Intracranial Hypertension. J Neurocrit Care. 2016; 9 (2): 92–104.
12. Павленко А.Ю. Отек мозга: концептуальные подходы к диагностике и лечению. Медицина неотложных состояний. 2007; 9 (2): 11–5 [Pavlenko AYu. Otek mozga: kontseptual'nye podkhody k diagnostike i lecheniiu. Meditsina neotlozhnykh sostoyaniy. 2007; 9 (2): 11–5 (in Russian)].
13. Ошоров А.В., Полупан А.А., Бусанкин А.С., Тарасова Н.Ю. Особенности настройки уровня ПДКВ у пациентов с ОРДС и внутричерепной гипертензией. Вестн. анестезиологии и реаниматологии. 2017; 14 (5): 82–90 [Oshorov АV, Polupan АА, Busankin АS, Tarasova NYu. Specific features of PEEP adjustment in the patients with acute respiratory distress syndrome and intracranial hypertension. Messenger of Anesthesiology and Resuscitation. 2017; 14 (5): 82–90 (in Russian)].
14. Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019; 145: 230–46.
15. Квитницкий-Рыжов Ю.Н. Отек и набухание головного мозга. Киев: Здоров’я, 1978 [Kvitnitskiy-Ryzhov YuN. Swelling and swelling of the brain. Kiev: Health, 1978 (in Russian)].
16. Отек головного мозга. Рассмотрение патофизиологических механизмов на основе системного подхода на 5-м Тбилисском симпозиуме по мозговому кровообращению. 20–23 апреля 1983 г. Сост. и ред. Г.И. Мчедлишвили. Тбилиси: МЕЦНИЕРЕБА, 1986 [Cerebral edema. Review of pathophysiological mechanisms based on a systematic approach at the 5th Tbilisi Symposium on Cerebral Circulation. April 20–23, 1983. Ed. by GI Mchedlishvili. Tbilisi: METSNIEREBA, 1986 (in Russian)].
17. Белкин А.А. Патогенетическое понимание системы церебральной защиты при внутричерепной гипертензии и пути ее клинической реализации у больных с острой церебральной недостаточностью. Журн. интенсив. терапии. 2005; 1: 9–13 [Belkin AA. Patogeneticheskoe ponimanie sistemy tserebral'noi zashchity pri vnutricherepnoi gipertenzii i puti ee klinicheskoi realizatsii u bol'nykh s ostroi tserebral'noi nedostatochnost'iu. Zhurn. intensiv. terapii. 2005; 1: 9–13 (in Russian)].
18. Плам Ф., Познер Дж.Б. Диагностика ступора и комы. Пер. с англ. М.: Медицина, 1986; с. 148–57 [Plam F, Pozner JB. Diagnostics of the stupor and coma. Moscow: Medicine, 1986; p. 148–57 (in Russian)].
19. Ошоров А.В., Лубнин А.Ю. Внутричерепное давление, мониторинг ВЧД. Анестезиология и реаниматология. 2010; 4: 4–10 [Oshorov AV, Lubnin AYu. Vnutricherepnoe davlenie, monitoring VChD. Anesteziologiya i reanimatologiya. 2010; 4: 4–10 (in Russian)].
20. Горбачев В.И., Лихолетова Н.В., Горбачев С.В. Мониторинг внутричерепного давления: настоящее и перспективы (сообщение 2). Политравма. 2014; 1: 61–75 [Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 2). Politravma. 2014; 1: 61–75 (in Russian)].
21. Горбачев В.И., Лихолетова Н.В., Горбачев С.В. Мониторинг внутричерепного давления: настоящее и перспективы (сообщение 3). Политравма. 2014; 2: 77–86 [Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 3). Politravma. 2014; 2: 77–86 (in Russian)].
22. Canac N, Jalaleddini K, Thorpe SG, et al. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids and Barriers of the CNS. 2020; 17: 40.
23. Cook AM, Morgan JG, Hawryluk GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care. 2020; 32: 647–66.
24. Ишемический инсульт и транзиторная ишемическая атака у взрослых. Клинические рекомендации. М., 2015 [Ischemic stroke and transient ischemic attack in adults. Clinical guidelines. Moscow, 2015 (in Russian)].
25. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019; 50 (12): 344–418.
26. Hawryluk GWJ, Rubiano AM, Totten AM, et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery. 2020; 87 (3): 427–34.
27. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012; 4: 147.
28. Николенко В.Н., Оганесян М.В., Яхно Н.Н., и др. Глимфатическая система головного мозга: функциональная анатомия и клинические перспективы. Неврология, нейропсихиатрия, психосоматика. 2018; 10 (4): 94–100 [Nikolenko VN, Oganesyan MV, Yakhno NN, et al. The brains’glymphatic system: physiological anatomy and clinical perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2018; 10 (4): 94–100 (in Russian)].
29. Кондратьев А.Н., Ценципер Л.М. Глимфатическая система мозга: строение и практическая значимость. Анестезиология и реаниматология. 2019; 6: 72–80 [Kondrat'ev AN, Tsentsiper LM. Glimfaticheskaia sistema mozga: stroenie i prakticheskaia znachimost'. Anesteziologiia i reanimatologiia. 2019; 6: 72–80 (in Russian)].
30. Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA. Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res. 2016; 1644: 161–75.
31. Бредбери М. Концепция гематоэнцефалического барьера. Пер. с англ. М.: Медицина, 1983 [Bredberi M. Blood-brain barrier concept. Moscow: Medicine, 1983 (in Russian)].
32. Sweeney MD, Zhao Z, Montagne A, et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev. 2019; 99: 21–78.
33. Brown LS, Catherine G, Foster CG, et al. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosi. 2019; 13: 282.
34. Горбачев В.И., Брагина Н.В. Гематоэнцефалический барьер с позиции анестезиолога-реаниматолога. Обзор литературы. Ч. 1. Вестн. интенсив. терапии им. А.И. Салтанова. 2020; 3: 35–45 [Gorbachev VI, Bragina NV. Gematoentsefalicheskiy bar'er s pozitsii anesteziologa-reanimatologa. Obzor literatury. Chast' 1. Vestnik intensiv. terapii im. A.I. Saltanova. 2020; 3: 35–45 (in Russian)].
35. Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980; 192: 17–28.
36. Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005; 2: 27–43.
37. Tait MJ, Saadoun S, Bell BA, et al. Water movements in the brain: Role of aquaporins. Trends Neurosci. 2008; 31: 37–43.
38. Klatzo I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967; 26 (1): 1–14.
39. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016; 36 (3): 513–38.
40. Задворнов А.А., Голомидов А.В., Григорьев Е.В. Клиническая патофизиология отека головного мозга (ч. 1). Вестн. анестезиологии и реаниматологии. 2017; 14 (3): 44–50 [Zadvornov AA, Golomidov AV, Grigoriev EV. Clinical pathophysiology of cerebral edema (part 1). Messenger of Anesthesiology and Resuscitation. 2017; 14 (3): 44–50 (in Russian)].
41. Michinaga S, Koyama Y. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs. Int J Mol Sci. 2015; 16: 9949–75.
42. Задворнов А.А., Голомидов А.В., Григорьев Е.В. Клиническая патофизиология отека головного мозга (ч. 2). Вестн. анестезиологии и реаниматологии. 2017; 14 (4): 52–60 [Zadvornov AA, Golomidov AV, Grigoriev EV. Clinical pathophysiology of cerebral edema (part 2). Messenger of Anesthesiology and Resuscitation. 2017; 14 (4): 52–60 (in Russian)].
43. Горбачев В.И., Брагина Н.В. Гематоэнцефалический барьер с позиции анестезиолога-реаниматолога. Обзор литературы. Ч. 2. Вестн. интенсив. терапии им. А.И. Салтанова. 2020; 3: 46–55 [Gorbachev VI, Bragina NV. Gematoentsefalicheskii bar'er s pozitsii anesteziologa-reanimatologa. Obzor literatury. Ch. 2. Vestn. intensiv. terapii im. A.I. Saltanova. 2020; 3: 46–55 (in Russian)].
44. Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19. Клиническая практика. 2020; 11 (2): 60–80 [Belopasov VV, Yachou Y, Samoilova EM, Baklaushev VP. The Nervous System Damage in covid-19. Journal of Clinical Practice. 2020; 11 (2): 60–80 (in Russian)].
45. Терновых И.К., Топузова М.П., Чайковская А.Д., и др. Неврологические проявления и осложнения у пациентов с COVID-19. Трансляционная медицина. 2020; 7 (3): 21–9 [Ternovykh IK, Topuzova MP, Chaykovskaya AD, et al. Neurological manifestations and complications in patients with COVID-19. Translyatsionnaya meditsina. 2020; 7 (3): 21–9 (in Russian)].
46. Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the bloodbrain barrier in mice. Nature Neurosci. 2021; 24 (3): 368–78.
47. Alquisiras-Burgos I, Peralta-Arrieta I, Alonso-Palomares LA, et al. Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Mol Neurobiol. 2020: 1–16.
48. Fink KR, Benjert JL, Straiton JA. Imaging of nontraumatic neuroradiology emergencies. Radiol Clin North Am. 2015; 53: 871–90.
49. Currie S, Saleem N, Straiton JA, et al. Imaging assessment of traumatic brain injury. Postgrad Med J. 2016; 92: 41–50.
50. Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017; 59: 545–53.
51. Choi HA, Bajgur SS, Jones WH, et al. Quantification of Cerebral Edema After Subarachnoid Hemorrhage. Neurocrit Care. 2016; 25: 64–70.
52. Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003; 34: 40–6.
53. Serena J, Blanco M, Castellanos M, et al. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke. 2005; 36: 1921–6.
________________________________________________
1. Likhterman LB. Klassifikatsiia cherepno-mozgovoi travmy. Chast' I. Predposylki i istoriia. Sudebnaya meditsina. 2015; 1 (1): 42–6 (in Russian).
2. Hippocrates. Selected books. Transl. from Greek. Rudnev VI, Ed. by Karpov VP. Moscow–Leningrad: Biomedgiz, 1936; p. 493–51 (in Russian).
3. Torack RM. Historical Aspects of Normal and Abnormal Brain Fluids 3. Cerebral Edema. Arch Neurol. 1982; 39 (6): 355–7.
4. Meskheli MK, Gegeshidze MM. Otek golovnogo mozga – istoriia voprosa i sovremennye predstavleniia. Georgian Medical News. 2007; 142 (1): 83–5 (in Russian).
5. Whytt R. Observations on the Dropsy in the Brain. Edinburgh, 1768.
6. Kozlov AB, Konovalov AN. Hydrocephalus. In: Neurology: national leadership. Ed. by EI Gusev, AN Konovalov, BI Skvortsova. Moscow: GEOTAR-Media, 2018. Vol. 1; p. 549–54 (in Russian).
7. Leinonen V, Vanninen R, Rauramaa T. Raised intracranial pressure and brain edema. Chapter 4. Handb Clin Neurol. 2018; 145: 25–37.
8. Bell BA. A History of the Study of Cerebral Edema. Neurosurgery. 1983; 13: 724–8.
9. Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 1). Politravma. 2013; 4: 69–78 (in Russian).
10. Ostapenko BV, Voitenkov VB, Marchenko NV, et al. Modern techniques for intracranial pressure monitoring. Meditsina ekstremal'nykh situatsiy. 2019; 21 (4): 472–85 (in Russian).
11. Hirzallah MI, Choi HA. The Monitoring of Brain Edema and Intracranial Hypertension. J Neurocrit Care. 2016; 9 (2): 92–104.
12. Pavlenko AYu. Otek mozga: kontseptual'nye podkhody k diagnostike i lecheniiu. Meditsina neotlozhnykh sostoyaniy. 2007; 9 (2): 11–5 (in Russian).
13. Oshorov АV, Polupan АА, Busankin АS, Tarasova NYu. Specific features of PEEP adjustment in the patients with acute respiratory distress syndrome and intracranial hypertension. Messenger of Anesthesiology and Resuscitation. 2017; 14 (5): 82–90 (in Russian).
14. Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019; 145: 230–46.
15. Kvitnitskiy-Ryzhov YuN. Swelling and swelling of the brain. Kiev: Health, 1978 (in Russian).
16. Cerebral edema. Review of pathophysiological mechanisms based on a systematic approach at the 5th Tbilisi Symposium on Cerebral Circulation. April 20–23, 1983. Ed. by GI Mchedlishvili. Tbilisi: METSNIEREBA, 1986 (in Russian).
17. Belkin AA. Patogeneticheskoe ponimanie sistemy tserebral'noi zashchity pri vnutricherepnoi gipertenzii i puti ee klinicheskoi realizatsii u bol'nykh s ostroi tserebral'noi nedostatochnost'iu. Zhurn. intensiv. terapii. 2005; 1: 9–13 (in Russian).
18. Plam F, Pozner JB. Diagnostics of the stupor and coma. Moscow: Medicine, 1986; p. 148–57 (in Russian).
19. Oshorov AV, Lubnin AYu. Vnutricherepnoe davlenie, monitoring VChD. Anesteziologiya i reanimatologiya. 2010; 4: 4–10 (in Russian).
20. Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 2). Politravma. 2014; 1: 61–75 (in Russian).
21. Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 3). Politravma. 2014; 2: 77–86 (in Russian).
22. Canac N, Jalaleddini K, Thorpe SG, et al. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids and Barriers of the CNS. 2020; 17: 40.
23. Cook AM, Morgan JG, Hawryluk GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care. 2020; 32: 647–66.
24. Ischemic stroke and transient ischemic attack in adults. Clinical guidelines. Moscow, 2015 (in Russian).
25. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019; 50 (12): 344–418.
26. Hawryluk GWJ, Rubiano AM, Totten AM, et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery. 2020; 87 (3): 427–34.
27. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012; 4: 147.
28. Nikolenko VN, Oganesyan MV, Yakhno NN, et al. The brains’glymphatic system: physiological anatomy and clinical perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2018; 10 (4): 94–100 (in Russian).
29. Kondrat'ev AN, Tsentsiper LM. Glimfaticheskaia sistema mozga: stroenie i prakticheskaia znachimost'. Anesteziologiia i reanimatologiia. 2019; 6: 72–80 (in Russian).
30. Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA. Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Res. 2016; 1644: 161–75.
31. Bredberi M. Blood-brain barrier concept. Moscow: Medicine, 1983 (in Russian).
32. Sweeney MD, Zhao Z, Montagne A, et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev. 2019; 99: 21–78.
33. Brown LS, Catherine G, Foster CG, et al. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosi. 2019; 13: 282.
34. Gorbachev VI, Bragina NV. Gematoentsefalicheskiy bar'er s pozitsii anesteziologa-reanimatologa. Obzor literatury. Chast' 1. Vestnik intensiv. terapii im. A.I. Saltanova. 2020; 3: 35–45 (in Russian).
35. Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980; 192: 17–28.
36. Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005; 2: 27–43.
37. Tait MJ, Saadoun S, Bell BA, et al. Water movements in the brain: Role of aquaporins. Trends Neurosci. 2008; 31: 37–43.
38. Klatzo I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967; 26 (1): 1–14.
39. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016; 36 (3): 513–38.
40. Zadvornov AA, Golomidov AV, Grigoriev EV. Clinical pathophysiology of cerebral edema (part 1). Messenger of Anesthesiology and Resuscitation. 2017; 14 (3): 44–50 (in Russian).
41. Michinaga S, Koyama Y. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs. Int J Mol Sci. 2015; 16: 9949–75.
42. Zadvornov AA, Golomidov AV, Grigoriev EV. Clinical pathophysiology of cerebral edema (part 2). Messenger of Anesthesiology and Resuscitation. 2017; 14 (4): 52–60 (in Russian).
43. Gorbachev VI, Bragina NV. Gematoentsefalicheskii bar'er s pozitsii anesteziologa-reanimatologa. Obzor literatury. Ch. 2. Vestn. intensiv. terapii im. A.I. Saltanova. 2020; 3: 46–55 (in Russian).
44. Belopasov VV, Yachou Y, Samoilova EM, Baklaushev VP. The Nervous System Damage in covid-19. Journal of Clinical Practice. 2020; 11 (2): 60–80 (in Russian).
45. Ternovykh IK, Topuzova MP, Chaykovskaya AD, et al. Neurological manifestations and complications in patients with COVID-19. Translyatsionnaya meditsina. 2020; 7 (3): 21–9 (in Russian).
46. Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the bloodbrain barrier in mice. Nature Neurosci. 2021; 24 (3): 368–78.
47. Alquisiras-Burgos I, Peralta-Arrieta I, Alonso-Palomares LA, et al. Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Mol Neurobiol. 2020: 1–16.
48. Fink KR, Benjert JL, Straiton JA. Imaging of nontraumatic neuroradiology emergencies. Radiol Clin North Am. 2015; 53: 871–90.
49. Currie S, Saleem N, Straiton JA, et al. Imaging assessment of traumatic brain injury. Postgrad Med J. 2016; 92: 41–50.
50. Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017; 59: 545–53.
51. Choi HA, Bajgur SS, Jones WH, et al. Quantification of Cerebral Edema After Subarachnoid Hemorrhage. Neurocrit Care. 2016; 25: 64–70.
52. Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003; 34: 40–6.
53. Serena J, Blanco M, Castellanos M, et al. The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke. 2005; 36: 1921–6.
1 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
2 ГБУЗ «Госпиталь для ветеранов войн №3» Департамента здравоохранения г. Москвы, Москва, Россия
*gudkova.valentina@gmail.com
________________________________________________
Valentina V. Gudkova1, Ekaterina I. Kimelfeld1, Stanislav E. Belov2, Evgeniia A. Koltsova1, Ludmila V. Stakhovskaya1
1 Pirogov Russian National Research Medical University, Moscow, Russia;
2 Hospital for War Veterans №3, Moscow, Russia
*gudkova.valentina@gmail.com