Роль показателя времени нахождения в целевом диапазоне (Time in range) в зависимости от метода оценки гликемического контроля при сахарном диабете
Роль показателя времени нахождения в целевом диапазоне (Time in range) в зависимости от метода оценки гликемического контроля при сахарном диабете
Суплотова Л.А., Судницына А.С., Душина Т.С. Роль показателя времени нахождения в целевом диапазоне (Time in range) в зависимости от метода оценки гликемического контроля при сахарном диабете. Consilium Medicum. 2022;24(4):247–251. DOI: 10.26442/20751753.2022.4.201674
________________________________________________
Suplotova LA, Sudnitsyna AS, Dushina TS. The role Time in range depending on the method of assessing glycemic control in diabetes: A review. Consilium Medicum. 2022;24(4):247–251. DOI: 10.26442/20751753.2022.4.201674
Роль показателя времени нахождения в целевом диапазоне (Time in range) в зависимости от метода оценки гликемического контроля при сахарном диабете
Суплотова Л.А., Судницына А.С., Душина Т.С. Роль показателя времени нахождения в целевом диапазоне (Time in range) в зависимости от метода оценки гликемического контроля при сахарном диабете. Consilium Medicum. 2022;24(4):247–251. DOI: 10.26442/20751753.2022.4.201674
________________________________________________
Suplotova LA, Sudnitsyna AS, Dushina TS. The role Time in range depending on the method of assessing glycemic control in diabetes: A review. Consilium Medicum. 2022;24(4):247–251. DOI: 10.26442/20751753.2022.4.201674
Несмотря на современные достижения в диабетологии, сахарный диабет (СД) представляет собой прогрессирующее неинфекционное заболевание с возможным развитием сосудистых осложнений, что представляет глобальную проблему для здравоохранения. Поэтому поддержание оптимального гликемического контроля важно для управления СД и предотвращения развития острых и хронических осложнений заболевания. Одним из параметров оценки гликемического контроля является показатель времени нахождения в целевом диапазоне (Time in range – TIR), рассчитанный на основании данных непрерывного мониторирования уровня глюкозы, который достаточно прост и удобен в расчете и использовании, а также имеет доказанную связь с развитием микро- и макрососудистых осложнений СД. Однако главным препятствием для широкого применения TIR является ограниченное использование систем непрерывного мониторирования уровня глюкозы. Поэтому особый интерес представляет изучение расчетного показателя времени нахождения в целевом диапазоне гликемии (derived TIR – dTIR), полученного на основании самоконтроля уровня глюкозы крови. В данном литературном обзоре обсуждены вопросы взаимосвязи TIR, dTIR и уровня гликированного гемоглобина, развития микро- и макрососудистых осложнений при СД 1 и 2-го типов, а также проанализирована сопоставимость TIR и dTIR.
Ключевые слова: расчетный показатель времени нахождения в целевом диапазоне гликемии, показатель времени нахождения в целевом диапазоне, сахарный диабет, самоконтроль уровня глюкозы крови, непрерывное мониторирование уровня глюкозы крови
________________________________________________
Despite modern advances in diabetology, diabetes is a progressive non-communicable disease with the possible development of vascular complications, which is a global health problem. Therefore, maintaining optimal glycemic control is important for managing diabetes and preventing the development of acute and chronic complications of the disease. One of the parameters for assessing glycemic control is the indicator of time in the target range (Time in range – TIR), calculated on the basis of data from continuous glucose monitoring (CGM), which is quite simple and convenient to calculate and use, and also has a proven connection with the development of micro- and macrovascular complications of diabetes. However, the main obstacle to the widespread use of TIR is the limited use of CGM systems. Therefore, of particular interest is the study of the derived indicator of the time in range of glycemia (derived TIR – dTIR), obtained on the basis of self-monitoring of blood glucose. In this review, the issues of the relationship of TIR, dTIR with HbA1c levels, the development of micro- and macrovascular complications of diabetes type 1 and 2 are discussed, and the comparability of TIR and dTIR is analyzed.
Keywords: derived time in range, time in range, diabetes, self-monitoring blood glucose, continuous glucose monitoring
1. IDF Diabetes Atlas, 10th edition. Brussels: International Diabetes Federation; 2021. Available at: https://www.diabetesatlas.org/data/en/world/. Accessed: 15.02.2022.
2. Дедов И.И., Шестакова М.В., Викулова О.К., и др. Атлас регистра сахарного диабета Российской Федерации. Статус 2018 г. Сахарный диабет. 2019;22(2S):4-61 [Dedov II, Shestakova MV, Vikulova OK, et al. Atlas of Diabetes Register in Russian Federation, status 2018. Saharnyj diabet. 2019;22(2S):4-61 (in Russian)]. DOI:10.14341/DM12208
3. Дедов И.И., Шестакова М.В., Викулова О.К., и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204-21 [Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Saharnyj diabet. 2021;24(3):204-21 (in Russian)]. DOI:10.14341/DM12759
4. Сахарный диабет 1 типа у взрослых: клинические рекомендации. Утв. Минздравом России. Российская ассоциация эндокринологов. Судебные и нормативные акты РФ. 2019. Режим доступа: https://sudact.ru/law/klinicheskie-rekomendatsii-sakharnyi-diabet-1-tipa-u_1/klinicheskie-rekomendat.... Ссылка активна на 20.02.2022 [Type 1 diabetes mellitus in adults: clinical guidelines. Approved Ministry of Health of Russia. Russian Association of Endocrinologists. Judicial and normative acts of the Russian Federation. 2019. Available at: https://sudact.ru/law/klinicheskie-rekomendatsii-sakharnyi-diabet-1-tipa-u_1/klinicheskie-rekomendat.... Accessed: 20.02.2022 (in Russian)].
5. Holt RIG, DeVries JH, Hess-Fischl A, et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2021;44:2589-625. DOI:10.1007/s00125-021-05568-3
6. Dattatreya A, Sarangi T. A Review on Diabetes Mellitus: Complications, Management and Treatment Modalities. Research & Reviews: Journal of Medical and Health Sciences. 2015. Available at: https://www.rroij.com/open-access/diabetic-complications-their-treatment.php?aid=52788. Accessed: 20.02.2022.
7. Тарасов Ю.В., Филиппов Ю.И., Борисова Е.К., и др. Технологии непрерывного мониторирования глюкозы: успехи и перспективы. Проблемы эндокринологии. 2015;61(4):54‑72 [Tarasov YuV, Filippov IuI, Borisova EK, et al. Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas. Problemy Endokrinologii. 2015;61(4):54‑72 (in Russian)]. DOI:10.14341/probl201561454-72
8. Демидова Т.Ю. Современные технологии непрерывного мониторинга гликемии : развивающиеся возможности контроля и управления. Российский медицинский журнал. 2018;11:86-90 [Demidova TJu. Modern technologies of continuous glucose monitoring: developing possibilities of control and management. Rossijskij medicinskij zhurnal. 2018;11:86-90 (in Russian)].
9. Kovatchev BP. Metrics for glycaemic control-from HbA1c to continuous glucose monitoring. Nat Rev Endocrinol. 2017;7(13):425-36. DOI:10.1038/nrendo.2017.3
10. Шестакова М.В., Майоров А.Ю., Филиппов Ю.И., и др. Федеральные клинические рекомендации по помповой инсулинотерапии и непрерывному мониторированию гликемии у больных сахарным диабетом: утв. на VII Всероссийском диабетологическом конгрессе 28.02.2015. Режим доступа: https://minzdrav.gov-murman.ru/documents/poryadki-okazaniya-meditsinskoy-pomoshchi/pompa. Ссылка активна на 20.02.2022 [Shestakova MV, Mayorov AYu, Filippov YuI, et al. Federal clinical guidelines for insulin pump therapy and continuous monitoring of glycemia in patients with diabetes mellitus: approved. at the VII All-Russian Diabetology Congress on February 28, 2015. Available at: https://minzdrav.gov-murman.ru/documents/poryadki-okazaniya-meditsinskoy-pomoshchi/pompa. Accessed: 20.02.2022 (in Russian)].
11. Beers CAJ, DeVries JH, Kleijer SJ, et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL):
a randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016;11(4):893-902. DOI:10.1016/S2213-8587(16)30193-0
12. Li F, Liu B, Zhu H, et al. Continuous Glucose Monitoring in Newly Diagnosed Type 2 Diabetes Patients Reveals a Potential Risk of Hypoglycemia in Older Men. J Diabetes Res. 2017;2017:2740372. DOI:10.1155/2017/2740372
13. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й выпуск. Сахарный диабет. 2019;22(1S1):1-144 [Dedov II, Shestakova MV, Majorov AJu, et al. Standards of specialized diabetes care. 9th edition. Saharnyj diabet. 2019;22(1S1):1-144 (in Russian)]. DOI:10.14341/DM221S1
14. Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care. 2019;8(42):1593-603.
15. Ajjan RA. How can we realize the clinical benefits of continuous glucose monitoring? Diabetes Technol Ther. 2017;S2(19):S27-36. DOI:10.1089/dia.2017.0021
16. Rodbard D. Metrics to Evaluate Quality of Glycemic Control: Comparison of Time in Target, Hypoglycemic, and Hyperglycemic Ranges with «risk Indices». Diabetes Technol Ther. 2018;5(20):325-34. DOI:10.1089/dia.2017.0416
17. Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;12(40):1631-40. DOI:10.2337/dc17-1600
18. American Diabetes Association. 6 Glycemic targets: Standards of medical care in diabetes–2019. Diabetes Care. 2019;42(1):61-70. DOI:10.2337/dc19-S006
19. Петунина Н.А., Гончарова Е.В., Панасенко О.И. Основные аспекты регулярного самоконтроля уровня гликемии у пациентов с сахарным диабетом. Кардиосоматика. 2018;1(9):61-6 [Petunina NA, Goncharova EV, Panasenko OI. The main aspects of regular self-monitoring of the level of glycemia in patients with diabetes mellitus. Kardiosomatika. 2018;1(9):61-6 (in Russian)].
20. Бирюкова Е.В., Платонова Н.М. Самоконтроль гликемии в лечении сахарного диабета: все ли мы знаем о современных возможностях? Справочник поликлинического врача. 2019;3:20-3 [Birjukova EV, Platonova NM. Self-control of glycemia in the treatment of diabetes mellitus: do we know everything about modern possibilities? Spravochnik poliklinicheskogo vracha. 2019;3:20-3 (in Russian)].
21. Blevins T. Value and utility of self-monitoring of blood glucose in non-insulin-treated patients with type 2 diabetes mellitus. Postgrad Med. 2013;125(3):191-204. DOI:10.3810/pgm.2013.05.2668
22. Parkin CG, Buskirk A, Hinnen DA, et al. Results that matter: structured vs. unstructured self-monitoring of blood glucose in type 2 diabetes. Diabetes Res Clin Pract. 2012;97(1):6-15. DOI:10.1016/j.diabres.2012.03.002
23. Mannucci E, Antenore A, Giorgino F, et al. Effects of Structured Versus Unstructured Self-Monitoring of Blood Glucose on Glucose Control in Patients With Non-insulin-treated Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. J Diabetes Sci Technol. 2018;12(1):183-9. DOI:10.1177/1932296817719290
24. Garg SK, Hirsch IB. Self-Monitoring of Blood Glucose. Diabetes Technol Ther. 2019;21(S1):S4-S12. DOI:10.1089/dia.2019.2501
25. Nathan DM, Genuth S, Lachin J, et al; Diabetes Control and Complications Trial Research Group.The Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications. New Engl J Med. 1993;329(14):977-86.
26. Polonsky WH, Fisher L, Schikman CH, et al. Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: Results from the structured testing program study. Diabetes Care. 2011;2(34):262-7. DOI:10.2337/dc10-1732
27. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400-5.
DOI:10.2337/dc18-1444
28. Bergenstal RM. Presented at the American Diabetes Association, 80th Scientific Sessions. June 12–16, 2020. Poster 21-LB.
29. Бирюкова Е.В. Роль гликированного гемоглобина в диагностике и улучшении прогноза сахарного диабета. Медицинский совет. 2017;3:55-7 [Birjukova EV. The role of glycated hemoglobin in the diagnosis and improvement of the prognosis of diabetes mellitus. Medicinskij sovet. 2017;3:55-7 (in Russian)].
30. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care. 2014;37(1):9-16. DOI:10.2337/dc13-2112
31. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation / WHO Guidelines Approved by the Guidelines Review Committee. Geneva: World Health Organization, 2011. Available at: https://pubmed.ncbi.nlm.nih.gov/26158184/ Accessed: 18.11.2021.
32. Hashimoto K, Osugi T, Noguchi S, et al. A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care. 2010;33(3):509-11. DOI:10.2337/dc09-1954
33. Inaba M, Okuno S, Kumeda Y, et al. Osaka CKD Expert Research Group. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18(3):896-903. DOI:10.1681/ASN.2006070772
34. Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clin Chem. 2001;47(2):153-63.
35. Ford ES, Cowie CC, Li C, et al. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J Diabetes. 2011;3(1):67-73.
DOI:10.1111/j.1753-0407.2010.00100.x
36. Lu J, Ma X, Zhou J, et al. Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care. 2018;41(11):2370-6. DOI:10.2337/dc18-1131
37. Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res Care. 2020;8(1):e000991. DOI:10.1136/bmjdrc-2019-000991
38. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019;2(21):81-5. DOI:10.1089/dia.2018.0310
39. Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol. 2019;13(4):614-26. DOI:10.1177/1932296818822496
40. Ohigashi M, Osugi K, Kusunoki Y, et al. Association of time in range with hemoglobin A1c, glycated albumin and 1,5-anhydro-d-glucitol. J Diabetes Investig. 2021;12(6):940-9. DOI:10.1111/jdi.13437
41. Yoo JH, Choi MS, Ahn J, et al. Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes. Diabetes Technol Ther. 2020;22(10):768-76. DOI:10.1089/dia.2019
42. Kim MY, Kim G, Park JY, et al. The Association Between Continuous Glucose Monitoring-Derived Metrics and Cardiovascular Autonomic Neuropathy in Outpatients with Type 2 Diabetes. Diabetes Technol Ther. 2021;23(6):434-42. DOI:10.1089/dia.2020.0599
43. Lu J, Ma X, Shen Y, et al. Time in Range Is Associated with Carotid Intima-Media Thickness in Type 2 Diabetes. Diabetes Technol Ther. 2020;22(2):72-8. DOI:10.1089/dia.2019.0251
44. Sheng X, Xiong G-H, Yu P-F, et al. The Correlation between Time in Range and Diabetic Microvascular Complications Utilizing Information Management Platform. Int J Endocrinol. 2020;2020:8879085. DOI:10.1155/2020/8879085
45. Avari P, Uduku C, George D, et al. Differences for Percentage Times in Glycemic Range between Continuous Glucose Monitoring and Capillary Blood Glucose Monitoring in Adults with Type 1 Diabetes: Analysis of the REPLACE-BG Dataset. Diabetes Technol Ther. 2020;3(22):222-7. DOI:10.1089/dia.2019.0276
46. Beck RW, Calhoun P, Kollman C. Use of continuous glucose monitoring as an outcome measure in clinical trials. Diabetes Technol Ther. 2012;10(14):877-82. DOI:10.1089/dia.2012.0079
47. Суплотова Л.А., Судницына А.С., Романова Н.В., и др. Анализ времени нахождения в целевом диапазоне в зависимости от метода оценки уровня глюкозы. Медицинский Совет. 2021;7:46-55 [Suplotova LA, Sudnicyna AS, Romanova NV. Analysis of time in range depending on the method of assessing the glucose level. Medicinskij Sovet. 2021;7:46-55 (in Russian)]. DOI:10.21518/2079-701X-2021-7-46-55
48. Fiallo-Scharer R. Eight-point glucose testing Versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes. J Clin Endocrinol Metab. 2005;90(6):3387-91. DOI:10.1210/jc.2004-2510
________________________________________________
1. IDF Diabetes Atlas, 10th edition. Brussels: International Diabetes Federation; 2021. Available at: https://www.diabetesatlas.org/data/en/world/. Accessed: 15.02.2022.
2. Dedov II, Shestakova MV, Vikulova OK, et al. Atlas of Diabetes Register in Russian Federation, status 2018. Saharnyj diabet. 2019;22(2S):4-61 (in Russian). DOI:10.14341/DM12208
3. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Saharnyj diabet. 2021;24(3):204-21 (in Russian). DOI:10.14341/DM12759
4. Type 1 diabetes mellitus in adults: clinical guidelines. Approved Ministry of Health of Russia. Russian Association of Endocrinologists. Judicial and normative acts of the Russian Federation. 2019. Available at: https://sudact.ru/law/klinicheskie-rekomendatsii-sakharnyi-diabet-1-tipa-u_1/klinicheskie-rekomendat.... Accessed: 20.02.2022 (in Russian).
5. Holt RIG, DeVries JH, Hess-Fischl A, et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2021;44:2589-625. DOI:10.1007/s00125-021-05568-3
6. Dattatreya A, Sarangi T. A Review on Diabetes Mellitus: Complications, Management and Treatment Modalities. Research & Reviews: Journal of Medical and Health Sciences. 2015. Available at: https://www.rroij.com/open-access/diabetic-complications-their-treatment.php?aid=52788. Accessed: 20.02.2022.
7. Tarasov YuV, Filippov IuI, Borisova EK, et al. Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas. Problemy Endokrinologii. 2015;61(4):54‑72 (in Russian). DOI:10.14341/probl201561454-72
8. Demidova TJu. Modern technologies of continuous glucose monitoring: developing possibilities of control and management. Rossijskij medicinskij zhurnal. 2018;11:86-90 (in Russian).
9. Kovatchev BP. Metrics for glycaemic control-from HbA1c to continuous glucose monitoring. Nat Rev Endocrinol. 2017;7(13):425-36. DOI:10.1038/nrendo.2017.3
10. Shestakova MV, Mayorov AYu, Filippov YuI, et al. Federal clinical guidelines for insulin pump therapy and continuous monitoring of glycemia in patients with diabetes mellitus: approved. at the VII All-Russian Diabetology Congress on February 28, 2015. Available at: https://minzdrav.gov-murman.ru/documents/poryadki-okazaniya-meditsinskoy-pomoshchi/pompa. Accessed: 20.02.2022 (in Russian).
11. Beers CAJ, DeVries JH, Kleijer SJ, et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL):
a randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016;11(4):893-902. DOI:10.1016/S2213-8587(16)30193-0
12. Li F, Liu B, Zhu H, et al. Continuous Glucose Monitoring in Newly Diagnosed Type 2 Diabetes Patients Reveals a Potential Risk of Hypoglycemia in Older Men. J Diabetes Res. 2017;2017:2740372. DOI:10.1155/2017/2740372
13. Dedov II, Shestakova MV, Majorov AJu, et al. Standards of specialized diabetes care. 9th edition. Saharnyj diabet. 2019;22(1S1):1-144 (in Russian). DOI:10.14341/DM221S1
14. Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care. 2019;8(42):1593-603.
15. Ajjan RA. How can we realize the clinical benefits of continuous glucose monitoring? Diabetes Technol Ther. 2017;S2(19):S27-36. DOI:10.1089/dia.2017.0021
16. Rodbard D. Metrics to Evaluate Quality of Glycemic Control: Comparison of Time in Target, Hypoglycemic, and Hyperglycemic Ranges with «risk Indices». Diabetes Technol Ther. 2018;5(20):325-34. DOI:10.1089/dia.2017.0416
17. Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;12(40):1631-40. DOI:10.2337/dc17-1600
18. American Diabetes Association. 6 Glycemic targets: Standards of medical care in diabetes–2019. Diabetes Care. 2019;42(1):61-70. DOI:10.2337/dc19-S006
19. Petunina NA, Goncharova EV, Panasenko OI. The main aspects of regular self-monitoring of the level of glycemia in patients with diabetes mellitus. Kardiosomatika. 2018;1(9):61-6 (in Russian).
20. Birjukova EV, Platonova NM. Self-control of glycemia in the treatment of diabetes mellitus: do we know everything about modern possibilities? Spravochnik poliklinicheskogo vracha. 2019;3:20-3 (in Russian).
21. Blevins T. Value and utility of self-monitoring of blood glucose in non-insulin-treated patients with type 2 diabetes mellitus. Postgrad Med. 2013;125(3):191-204. DOI:10.3810/pgm.2013.05.2668
22. Parkin CG, Buskirk A, Hinnen DA, et al. Results that matter: structured vs. unstructured self-monitoring of blood glucose in type 2 diabetes. Diabetes Res Clin Pract. 2012;97(1):6-15. DOI:10.1016/j.diabres.2012.03.002
23. Mannucci E, Antenore A, Giorgino F, et al. Effects of Structured Versus Unstructured Self-Monitoring of Blood Glucose on Glucose Control in Patients With Non-insulin-treated Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. J Diabetes Sci Technol. 2018;12(1):183-9. DOI:10.1177/1932296817719290
24. Garg SK, Hirsch IB. Self-Monitoring of Blood Glucose. Diabetes Technol Ther. 2019;21(S1):S4-S12. DOI:10.1089/dia.2019.2501
25. Nathan DM, Genuth S, Lachin J, et al; Diabetes Control and Complications Trial Research Group.The Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications. New Engl J Med. 1993;329(14):977-86.
26. Polonsky WH, Fisher L, Schikman CH, et al. Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: Results from the structured testing program study. Diabetes Care. 2011;2(34):262-7. DOI:10.2337/dc10-1732
27. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400-5.
DOI:10.2337/dc18-1444
28. Bergenstal RM. Presented at the American Diabetes Association, 80th Scientific Sessions. June 12–16, 2020. Poster 21-LB.
29. Birjukova EV. The role of glycated hemoglobin in the diagnosis and improvement of the prognosis of diabetes mellitus. Medicinskij sovet. 2017;3:55-7 (in Russian).
30. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care. 2014;37(1):9-16. DOI:10.2337/dc13-2112
31. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation / WHO Guidelines Approved by the Guidelines Review Committee. Geneva: World Health Organization, 2011. Available at: https://pubmed.ncbi.nlm.nih.gov/26158184/ Accessed: 18.11.2021.
32. Hashimoto K, Osugi T, Noguchi S, et al. A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care. 2010;33(3):509-11. DOI:10.2337/dc09-1954
33. Inaba M, Okuno S, Kumeda Y, et al. Osaka CKD Expert Research Group. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18(3):896-903. DOI:10.1681/ASN.2006070772
34. Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clin Chem. 2001;47(2):153-63.
35. Ford ES, Cowie CC, Li C, et al. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J Diabetes. 2011;3(1):67-73.
DOI:10.1111/j.1753-0407.2010.00100.x
36. Lu J, Ma X, Zhou J, et al. Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care. 2018;41(11):2370-6. DOI:10.2337/dc18-1131
37. Mayeda L, Katz R, Ahmad I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res Care. 2020;8(1):e000991. DOI:10.1136/bmjdrc-2019-000991
38. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019;2(21):81-5. DOI:10.1089/dia.2018.0310
39. Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol. 2019;13(4):614-26. DOI:10.1177/1932296818822496
40. Ohigashi M, Osugi K, Kusunoki Y, et al. Association of time in range with hemoglobin A1c, glycated albumin and 1,5-anhydro-d-glucitol. J Diabetes Investig. 2021;12(6):940-9. DOI:10.1111/jdi.13437
41. Yoo JH, Choi MS, Ahn J, et al. Association Between Continuous Glucose Monitoring-Derived Time in Range, Other Core Metrics, and Albuminuria in Type 2 Diabetes. Diabetes Technol Ther. 2020;22(10):768-76. DOI:10.1089/dia.2019
42. Kim MY, Kim G, Park JY, et al. The Association Between Continuous Glucose Monitoring-Derived Metrics and Cardiovascular Autonomic Neuropathy in Outpatients with Type 2 Diabetes. Diabetes Technol Ther. 2021;23(6):434-42. DOI:10.1089/dia.2020.0599
43. Lu J, Ma X, Shen Y, et al. Time in Range Is Associated with Carotid Intima-Media Thickness in Type 2 Diabetes. Diabetes Technol Ther. 2020;22(2):72-8. DOI:10.1089/dia.2019.0251
44. Sheng X, Xiong G-H, Yu P-F, et al. The Correlation between Time in Range and Diabetic Microvascular Complications Utilizing Information Management Platform. Int J Endocrinol. 2020;2020:8879085. DOI:10.1155/2020/8879085
45. Avari P, Uduku C, George D, et al. Differences for Percentage Times in Glycemic Range between Continuous Glucose Monitoring and Capillary Blood Glucose Monitoring in Adults with Type 1 Diabetes: Analysis of the REPLACE-BG Dataset. Diabetes Technol Ther. 2020;3(22):222-7. DOI:10.1089/dia.2019.0276
46. Beck RW, Calhoun P, Kollman C. Use of continuous glucose monitoring as an outcome measure in clinical trials. Diabetes Technol Ther. 2012;10(14):877-82. DOI:10.1089/dia.2012.0079
47. Суплотова Л.А., Судницына А.С., Романова Н.В., и др. Анализ времени нахождения в целевом диапазоне в зависимости от метода оценки уровня глюкозы. Медицинский Совет. 2021;7:46-55 [Suplotova LA, Sudnicyna AS, Romanova NV. Analysis of time in range depending on the method of assessing the glucose level. Medicinskij Sovet. 2021;7:46-55 (in Russian)]. DOI:10.21518/2079-701X-2021-7-46-55
48. Fiallo-Scharer R. Eight-point glucose testing Versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes. J Clin Endocrinol Metab. 2005;90(6):3387-91. DOI:10.1210/jc.2004-2510
Авторы
Л.А. Суплотова*1, А.С. Судницына2, Т.С. Душина1
1 ФГБОУ ВО «Тюменский государственный медицинский университет» Минздрава России, Тюмень, Россия;
2 ГБУЗ ТО «Областная клиническая больница №1», Тюмень, Россия
*suplotovala@mail.ru
________________________________________________
Lyudmila A. Suplotova*1, Anna S. Sudnitsyna2, Tatyana S. Dushina1
1 Tyumen State Medical University, Tyumen, Russia;
2 Regional Clinical Hospital №1, Tyumen, Russia
*suplotovala@mail.ru