Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro
Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro
Кручинина М.В., Громов А.А., Кручинина Э.В., Шишакина Ю.А. Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro. Consilium Medicum. 2023;25(11):767–774.
DOI: 10.26442/20751753.2023.11.202528
Kruchinina MV, Gromov AA, Kruchinina EV, Shishakina YuA. Changes in the electrical and viscoelastic parameters of erythrocytes in patients with manifestations of metabolic syndrome, COVID-19 convalescents, when exposed to citicoline in an in vitro experiment. Consilium Medicum. 2023;25(11):768–775.
DOI: 10.26442/20751753.2023.11.202528
Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro
Кручинина М.В., Громов А.А., Кручинина Э.В., Шишакина Ю.А. Изменения электрических и вязкоупругих параметров эритроцитов у пациентов с проявлениями метаболического синдрома, реконвалесцентов COVID-19, при воздействии цитиколина в эксперименте in vitro. Consilium Medicum. 2023;25(11):767–774.
DOI: 10.26442/20751753.2023.11.202528
Kruchinina MV, Gromov AA, Kruchinina EV, Shishakina YuA. Changes in the electrical and viscoelastic parameters of erythrocytes in patients with manifestations of metabolic syndrome, COVID-19 convalescents, when exposed to citicoline in an in vitro experiment. Consilium Medicum. 2023;25(11):768–775.
DOI: 10.26442/20751753.2023.11.202528
Цель. Изучить изменения электрических и вязкоупругих параметров эритроцитов с помощью метода диэлектрофореза у пациентов с проявлениями метаболического синдрома, перенесших COVID-19, при воздействии препарата цитиколин в эксперименте in vitro для снижения выраженности микроциркуляторных нарушений. Материалы и методы. Обследован 31 мужчина с проявлениями метаболического синдрома (50,6±9,9 года), реконвалесценты COVID-19, в сроки от 8 до 12 мес после перенесенного заболевания, диагноз подтвержден методами полимеразной цепной реакции и иммуноферментного анализа. Электрические и вязкоупругие параметры эритроцитов исследованы методом диэлектрофореза дважды: определены начальные уровни показателей и через 30 мин экспозиции с препаратом Роноцит (раствор для внутривенного введения с активным веществом – цитиколин натрия) в концентрации 0,01 мкл на 0,3 мкл взвеси эритроцитов в 0,3М растворе сахарозы (рН 7,36). Результаты. Экспозиция взвеси эритроцитов пациентов с раствором препарата Роноцит привела к изменению уровней параметров: увеличению среднего диаметра клеток (p=0,0003), доли дискоцитов (p=0,0004), амплитуды деформации клеток на высоких частотах электрического поля (p=0,000002), емкости (p=0,000007), скорости движения эритроцитов к электродам (p=0,003), дипольного момента (p=0,002), поляризуемости на 106 и 0,5×106 Гц (p=0,000019 и p=0,0015 соответственно), относительной поляризуемости (p<0,05) и, напротив, к снижению обобщенных жесткости (p=0,000003), вязкости (p=0,000002), электропроводности (p<0,000001), индексов агрегации (p=0,00003), деструкции на частотах 106 Гц (p=0,003), 0,5×106 Гц (p=0,00002), 0,1×106 Гц (p<0,00001), поляризуемости на низких частотах электрического поля (p=0,02). Под воздействием препарата произошло смещение равновесной частоты эритроцитов в низкочастотный диапазон по сравнению с начальными величинами (p<0,0000001). Выявленные изменения свидетельствуют о повышении поверхностного заряда эритроцитов, их способности к деформации, резистентности клеток под действием цитиколина. Заключение. Впервые обнаружен эффект препарата с активным веществом цитиколином, улучшающий реологические свойства эритроцитов. Препараты цитиколина следует считать перспективными для проведения полноценного клинического исследования по изучению снижения нарушений кровообращения на микроциркуляторном уровне у пациентов с проявлениями метаболического синдрома, перенесших COVID-19.
Aim. To study changes in the electrical and viscoelastic parameters of erythrocytes using the method of dielectrophoresis in patients with manifestations of the metabolic syndrome who underwent COVID-19, when exposed to the drug citicoline in an in vitro experiment to reduce the severity of microcirculatory disorders. Materials and methods. 31 men were examined with manifestations of metabolic syndrome (50.6±9.9 years), COVID-19 convalescences, within 8 to 12 months after the disease, the diagnosis was confirmed by PCR, ELISA. The electrical and viscoelastic parameters of erythrocytes were studied by dielectrophoresis twice: the initial levels of indicators were determined and after 30 minutes of exposure with after 30 minutes of exposure to a solution of the drug Ronocyte (oral solution with the active substance citicoline sodium – 104.50 mg., which is equivalent to 100.00 mg citicoline at a concentration of 0.01 µl per 0.3 µl of red blood cell suspension in 0.3M sucrose solution (pH 7.36). Results. Exposure of erythrocyte suspension of patients with Ronocyte solution led to change in the levels of electrical, viscoelastic parameters: an increase in the average cell diameter (p=0.0003), the proportion of discocytes (p=0.0004), the amplitude of cell deformation at high frequencies of the electric field (p=0.000002), cell capacity (p=0.000007), the velocity of erythrocytes to the electrodes (p=0.003), dipole moment (p=0.002), polarizability at 106 and 0.5×106 Hz (p=0.000019 and p=0.0015, respectively), relative polarizability (p<0.05) and, conversely, to reduce summarized rigidity (p=0.000003), viscosity (p=0.000002), electrical conductivity (p<0.000001), aggregation indices (p=0.00003), destruction at frequencies of 106 Hz (p=0.003), 0.5x106 Hz (p=0.00002), 0.1×106 Hz (p<0.00001), polarizability at low frequencies of the electric field (p=0.02). Under the influence of the drug, the equilibrium frequency of erythrocytes shifted to the low-frequency range compared to the initial values (p<0.0000001). The revealed changes indicate an increase in the surface charge of erythrocytes, their ability to deform, and cell resistance under the action of citicoline. Conclusion. For the first time, the effect of the drug with the active substance citicoline, improving the rheological properties of erythrocytes, was discovered. Preparations with the active substance - citicoline should be considered promising for conducting a full-fledged clinical study to study the reduction of circulatory disorders at the microcirculatory level in patients with manifestations of metabolic syndrome who have undergone COVID-19 coronavirus infection.
1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54. DOI:10.1038/s41579-020-00459-7
2. Abdel-Gawad M, Zaghloul MS, Abd-Elsalam S, et al. Post-COVID-19 Syndrome Clinical Manifestations: A Systematic Review. Antiinflamm Antiallergy Agents Med Chem. 2022;21(2):115-20. DOI:10.2174/1871523021666220328115818
3. Böning D, Kuebler WM, Bloch W. The oxygen dissociation curve of blood in COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;321(2):L349-57. DOI:10.1152/ajplung.00079.2021
4. Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. Preprint. 2020. DOI:10.26434/chemrxiv.11938173
5. Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case. Clin Chim Acta. 2020;508:98-102. DOI:10.1016/j.cca.2020.04.034
6. Gérard D, Brahim SB, Lesesve JF, Perrin J. Are mushroom-shaped erythrocytes an indicator of COVID-19? Br J Haematol. 2021;192(2):230. DOI:10.1111/bjh.17127
7. Gagiannis D, Umathum VG, Bloch W, et al. Antemortem vs Postmortem Histopathologic and Ultrastructural Findings in Paired Transbronchial Biopsy Specimens and Lung Autopsy Samples From Three Patients With Confirmed SARS-CoV-2. Am J Clin Pathol. 2022;157(1):54-63. DOI:10.1093/ajcp/aqab087
8. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021;120(14):2838-47. DOI:10.1016/j.bpj.2021.05.025
9. Renoux C, Fort R, Nader E, et al. Impact of COVID-19 on red blood cell rheology. Br J Haematol. 2021;192(4):e108-11. DOI:10.1111/bjh.17306
10. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J Proteome Res. 2020;19(11):4455-69. DOI:10.1021/acs.jproteome.0c00606
11. McMahon TJ. Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Front Physiol. 2019;10:1417. DOI:10.3389/fphys.2019.01417
12. Barshtein G, Gural A, Arbell D, et al. Red Blood Cell Deformability Is Expressed by a Set of Interrelated Membrane Proteins. Int J Mol Sci. 2023;24(16):12755. DOI:10.3390/ijms241612755
13. D'Alessandro A, Anastasiadi AT, Tzounakas VL, et al. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites. 2023;13(7):793. DOI:10.3390/metabo13070793
14. Kobayashi J, Ohtake K, Murata I, Sonoda K. Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide. 2022;129:25-9. DOI:10.1016/j.niox.2022.09.004
15. Russo A, Tellone E, Barreca D, et al. Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int J Mol Sci. 2022;23(4):2171. DOI:10.3390/ijms23042171
16. Афанасьев В.В. Клиническое применение цитиколина и его роль в гомеостазе клеточных мембран нейронов и органов-эффекторов. Трудный пациент. 2009;7(11):26-32 [Afanasyev VV. Clinical application of citicoline and its role in homeostasis of cell membranes of neurons and effector organs. A Difficult Patient. 2009;7(11):26-32 (in Russian)].
17. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): Временные методические рекомендации. Версия 7 (03.06.2020). Утв. Министерством здравоохранения РФ. М., 2020. Режим доступа: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf. Ссылка активна на 10.12.2022 [Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19): Vremennye metodicheskie rekomendatsii. Versiia 7 (03.06.2020). Utv. Ministerstvom zdravookhraneniia RF. Moscow, 2020. Available at: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf. Accessed: 10.12.2022 (in Russian)].
18. Генералов В.М., Кручинина М.В., Громов А.А., Шувалов Г.В. Диэлектрофорез в биологии и медицине: учебное пособие. Новосибирск: Изд-во НГТУ, 2017. [Generalov VM, Kruchinina MV, Gromov AA, Shuvalov GV. Dielektroforez v biologii i meditsine: uchebnoe posobie. Novosibirsk: Izd-vo NGTU, 2017 (in Russian)].
19. Кручинина М.В., Паруликова М.В., Громов А.А., и др. Острое воздействие этанола на эритроциты in vitro: новый подход к дифференциальной диагностике жировой болезни печени. Экспериментальная и клиническая гастроэнтерология. 2019;(12):122-34 [Kruchinina MV, Parulikova MV, Gromov AA, et al. Acute ethanol effect on erythrocytes in vitro: a new approach to differential diagnostics of fatty liver disease. Experimental and Clinical Gastroenterology. 2019;(12):122-34 (in Russian)]. DOI:10.31146/1682-8658-ecg-172-12-122-134
20. Кручинина М.В., Громов А.А., Генералов В.М., и др. Влияние омега-3 полиненасыщенных жирных кислот на электрические и вязкоупругие параметры эритроцитов в эксперименте in vitro у пациентов с болезнью Крона в стадии обострения. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2021;(12-2):72-84 [Kruchinina MV, Gromov AA, Generalov VM, et al. The effect of omega-3 polyunsaturated fatty acids on the electrical and viscoelastic parameters of erythrocytes in an in vitro experiment in patients with acute Crohn's disease. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2021;(12-2):72-84 (in Russian)]. DOI:10.37882/2223-2966.2021.12-2.06
21. Кручинина М.В., Громов А.А., Генералов В.М., Кручинина Э.В. Действие цитофлавина на эритроциты пациентов, перенесших COVID-19, в условиях in vitro. Экспериментальная и клиническая фармакология. 2022;85(10):14-25 [Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. The effect of cytoflavin on the erythrocytes of patients who underwent COVID-19 in vitro. Experimental and Clinical Pharmacology. 2022;85(10):14-25 (in Russian)]. DOI:10.30906/0869-2092-2022-85-10-14-25
22. Кручинина М.В., Громов А.А., Генералов В.М., Кручинина Э.В. Эритроциты: роль в развитии нарушений микроциркуляции и гемостаза. Новосибирск: Офсет–ТМ, 2022 [Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. Eritrotsity: rol' v razvitii narushenii mikrotsirkuliatsii i gemostaza. Novosibirsk: Ofset–TM, 2022 (in Russian)].
23. Dávalos A, Secades J. Citicoline preclinical and clinical update 2009–2010. Stroke. 2011;42(1 Suppl.):S36-9. DOI:10.1161/STROKEAHA.110.605568
24. Tran NKS, Trinh TA, Pyo J, et al. Neuroprotective Potential of Pyranocoumarins from Angelica gigas Nakai on Glutamate-Induced Hippocampal Cell Death. Antioxidants (Basel). 2023;12(8):1651. DOI:10.3390/antiox12081651
25. Huang Y, He Q, Zhan L. The effects of CDP-Choline on the improvement of the successful rate of cardiopulmonary resuscitation and post-resuscitation cardiac function. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013;25(2):80-3 [Article in Chinese]. DOI:10.3760/cma.j.issn.2095-4352.2013.02.007
26. Quinn PJ. The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release. 2012;160(2):158-63. DOI:10.1016/j.jconrel.2011.12.029
27. Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. DOI:10.3389/fchem.2023.1158198
28. Roy P, Tomassoni D, Nittari G, et al. Effects of choline containing phospholipids on the neurovascular unit: A review. Front Cell Neurosci. 2022;16:988759. DOI:10.3389/fncel.2022.988759
29. El-Assaad F, Combes V, Grau GE, Jambou R. Potential efficacy of citicoline as adjunct therapy in treatment of cerebral malaria. Antimicrob Agents Chemother. 2014;58(1):602-5. DOI:10.1128/AAC.02591-12
30. Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics. 2020;12(12):1235. DOI:10.3390/pharmaceutics12121235
31. Wahhab IAA, Sarmad NG, Kadhim HA. Assessment of RBCs membrane protective activity of citicoline and eicosapentanoic-decosahexanoic acid in osmotic fragility model. Al-Qadisiya Medical Journal. 2014;10(18):118-21.
32. Pathan AB, Doijad RC, Baraskar SS, et al. Therapeutic Applications of Citicoline and Methylcobalamin Combination. Advance Research in Pharmaceuticals and Biologicals. 2012;2(3):242-9.
33. De Almeida JP, Saldanha C. Nonneuronal cholinergic system in human erythrocytes: biological role and clinical relevance. J Membr Biol. 2010;234(3):227-34. DOI:10.1007/s00232-010-9250-9
34. Trivedi G, Inoue D, Chen C, et al. Muscarinic acetylcholine receptor regulates self-renewal of early erythroid progenitors. Sci Transl Med. 2019;11(511):eaaw3781. DOI:10.1126/scitranslmed.aaw3781
35. Gupta S, Belle VS, Kumbarakeri Rajashekhar R, et al. Correlation of Red Blood Cell Acetylcholinesterase Enzyme Activity with Various RBC Indices. Indian J Clin Biochem. 2018;33(4):445-9. DOI:10.1007/s12291-017-0691-0
36. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27. DOI:10.1002/jat.993
37. Teixeira P, Duro N, Napoleão P, Saldanha C. Acetylcholinesterase conformational states influence nitric oxide mobilization in the erythrocyte. J Membr Biol. 2015;248(2):349-54. DOI:10.1007/s00232-015-9776-y
38. Курьянова Е.В., Трясучев А.В., Теплый Д.Л. Адрено-, холинореактивность эритроцитов и оценка их сопряженности с показателями свободнорадикального баланса крови у нелинейных крыс. Сибирский научный медицинский журнал. 2019;39(4):37-45 [Kuryanova EV, Tryasuchev AV, Teply DL. Adreno- and cholinoreactivity of erythrocytes and estimation of their conjugation with parameters of free radical balance of blood in non-linear rats. Siberian Scientific Medical Journal. 2019;39(4):37-45 (in Russian)]. DOI:10.15372/SSMJ20190405
39. Стрельникова А.И., Циркин ВИ, Крысова АВ, и др. М-холинореактивность эритроцитов небеременных и беременных женщин, определяемая по изменению скорости агглютинации эритроцитов под влиянием ацетилхолина. Бюллетень экспериментальной биологии и медицины. 2012;154(8):140-3 [Strelnikova AI, Tsikin VI, Krysova AB, et al. M-holinoreactivity of erythrocytes of non-pregnant and pregnant women, determined by the change in the rate of agglutination of erythrocytes under the influence of acetylcholine. Bulletin of Experimental Biology and Medicine. 2012;154(8):140-3 (in Russian)].
40. Zyubanova IV, Falkovskaya AYu, Mordovin VF, et al. Erythrocyte membranes beta-adrenoreactivity changes after renal denervation in patients with resistant hypertension, relationship with antihypertensive and cardioprotective intervention efficacy. Kardiologiia. 2021;61(8):32-9 [Article in English, English]. DOI:10.18087/cardio.2021.8.n1556
41. Diederich L, Suvorava T, Sansone R, et al. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Front Physiol. 2018;9:332. DOI:10.3389/fphys.2018.00332
42. Peleli M, Bibli SI, Li Z, et al. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol. 2020;176:113833. DOI:10.1016/j.bcp.2020.113833
43. Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312(1):C3-15. DOI:10.1152/ajpcell.00282.2016
44. Secades JJ, Gareri P. Citicoline: pharmacological and clinical review, 2022 update. Rev Neurol. 2022;75(s05):S1-89 [Article in English, Spanish]. DOI:10.33588/rn.75s05.2022311
45. Samadian H, Ehterami A, Sarrafzadeh A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol. 2020;150:380-8. DOI:10.1016/j.ijbiomac.2020.02.102
46. Gudi V, Schäfer N, Gingele S, et al. Regenerative effects of CDP-choline: a dose-dependent study in the toxic cuprizone model of de- and remyelination. Pharmaceuticals (Basel). 2021;14(11):1156. DOI:10.3390/ph14111156
47. Rossi GCM, Rolle T, De Silvestri A, et al. Multicenter, prospective, randomized, single blind, cross-over study on the effect of a fixed combination of citicoline 500 mg plus homotaurine 50 mg on pattern electroretinogram (PERG) in patients with open angle glaucoma on well controlled intraocular pressure. Front Med (Lausanne). 2022;9:882335. DOI:10.3389/fmed.2022.882335
________________________________________________
1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54. DOI:10.1038/s41579-020-00459-7
2. Abdel-Gawad M, Zaghloul MS, Abd-Elsalam S, et al. Post-COVID-19 Syndrome Clinical Manifestations: A Systematic Review. Antiinflamm Antiallergy Agents Med Chem. 2022;21(2):115-20. DOI:10.2174/1871523021666220328115818
3. Böning D, Kuebler WM, Bloch W. The oxygen dissociation curve of blood in COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;321(2):L349-57. DOI:10.1152/ajplung.00079.2021
4. Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. Preprint. 2020. DOI:10.26434/chemrxiv.11938173
5. Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case. Clin Chim Acta. 2020;508:98-102. DOI:10.1016/j.cca.2020.04.034
6. Gérard D, Brahim SB, Lesesve JF, Perrin J. Are mushroom-shaped erythrocytes an indicator of COVID-19? Br J Haematol. 2021;192(2):230. DOI:10.1111/bjh.17127
7. Gagiannis D, Umathum VG, Bloch W, et al. Antemortem vs Postmortem Histopathologic and Ultrastructural Findings in Paired Transbronchial Biopsy Specimens and Lung Autopsy Samples From Three Patients With Confirmed SARS-CoV-2. Am J Clin Pathol. 2022;157(1):54-63. DOI:10.1093/ajcp/aqab087
8. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021;120(14):2838-47. DOI:10.1016/j.bpj.2021.05.025
9. Renoux C, Fort R, Nader E, et al. Impact of COVID-19 on red blood cell rheology. Br J Haematol. 2021;192(4):e108-11. DOI:10.1111/bjh.17306
10. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J Proteome Res. 2020;19(11):4455-69. DOI:10.1021/acs.jproteome.0c00606
11. McMahon TJ. Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Front Physiol. 2019;10:1417. DOI:10.3389/fphys.2019.01417
12. Barshtein G, Gural A, Arbell D, et al. Red Blood Cell Deformability Is Expressed by a Set of Interrelated Membrane Proteins. Int J Mol Sci. 2023;24(16):12755. DOI:10.3390/ijms241612755
13. D'Alessandro A, Anastasiadi AT, Tzounakas VL, et al. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites. 2023;13(7):793. DOI:10.3390/metabo13070793
14. Kobayashi J, Ohtake K, Murata I, Sonoda K. Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide. 2022;129:25-9. DOI:10.1016/j.niox.2022.09.004
15. Russo A, Tellone E, Barreca D, et al. Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int J Mol Sci. 2022;23(4):2171. DOI:10.3390/ijms23042171
16. Afanasyev VV. Clinical application of citicoline and its role in homeostasis of cell membranes of neurons and effector organs. A Difficult Patient. 2009;7(11):26-32 (in Russian).
17. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19): Vremennye metodicheskie rekomendatsii. Versiia 7 (03.06.2020). Utv. Ministerstvom zdravookhraneniia RF. Moscow, 2020. Available at: https://medprint.ru/documents/user/МR_COVID-19_v7.pdf. Accessed: 10.12.2022 (in Russian).
18. Generalov VM, Kruchinina MV, Gromov AA, Shuvalov GV. Dielektroforez v biologii i meditsine: uchebnoe posobie. Novosibirsk: Izd-vo NGTU, 2017 (in Russian).
19. Kruchinina MV, Parulikova MV, Gromov AA, et al. Acute ethanol effect on erythrocytes in vitro: a new approach to differential diagnostics of fatty liver disease. Experimental and Clinical Gastroenterology. 2019;(12):122-34 (in Russian). DOI:10.31146/1682-8658-ecg-172-12-122-134
20. Kruchinina MV, Gromov AA, Generalov VM, et al. The effect of omega-3 polyunsaturated fatty acids on the electrical and viscoelastic parameters of erythrocytes in an in vitro experiment in patients with acute Crohn's disease. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2021;(12-2):72-84 (in Russian). DOI:10.37882/2223-2966.2021.12-2.06
21. Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. The effect of cytoflavin on the erythrocytes of patients who underwent COVID-19 in vitro. Experimental and Clinical Pharmacology. 2022;85(10):14-25 (in Russian). DOI:10.30906/0869-2092-2022-85-10-14-25
22. Kruchinina MV, Gromov AA, Generalov VM, Kruchinina EV. Eritrotsity: rol' v razvitii narushenii mikrotsirkuliatsii i gemostaza. Novosibirsk: Ofset–TM, 2022 (in Russian).
23. Dávalos A, Secades J. Citicoline preclinical and clinical update 2009–2010. Stroke. 2011;42(1 Suppl.):S36-9. DOI:10.1161/STROKEAHA.110.605568
24. Tran NKS, Trinh TA, Pyo J, et al. Neuroprotective Potential of Pyranocoumarins from Angelica gigas Nakai on Glutamate-Induced Hippocampal Cell Death. Antioxidants (Basel). 2023;12(8):1651. DOI:10.3390/antiox12081651
25. Huang Y, He Q, Zhan L. The effects of CDP-Choline on the improvement of the successful rate of cardiopulmonary resuscitation and post-resuscitation cardiac function. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013;25(2):80-3 [Article in Chinese]. DOI:10.3760/cma.j.issn.2095-4352.2013.02.007
26. Quinn PJ. The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release. 2012;160(2):158-63. DOI:10.1016/j.jconrel.2011.12.029
27. Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. DOI:10.3389/fchem.2023.1158198
28. Roy P, Tomassoni D, Nittari G, et al. Effects of choline containing phospholipids on the neurovascular unit: A review. Front Cell Neurosci. 2022;16:988759. DOI:10.3389/fncel.2022.988759
29. El-Assaad F, Combes V, Grau GE, Jambou R. Potential efficacy of citicoline as adjunct therapy in treatment of cerebral malaria. Antimicrob Agents Chemother. 2014;58(1):602-5. DOI:10.1128/AAC.02591-12
30. Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics. 2020;12(12):1235. DOI:10.3390/pharmaceutics12121235
31. Wahhab IAA, Sarmad NG, Kadhim HA. Assessment of RBCs membrane protective activity of citicoline and eicosapentanoic-decosahexanoic acid in osmotic fragility model. Al-Qadisiya Medical Journal. 2014;10(18):118-21.
32. Pathan AB, Doijad RC, Baraskar SS, et al. Therapeutic Applications of Citicoline and Methylcobalamin Combination. Advance Research in Pharmaceuticals and Biologicals. 2012;2(3):242-9.
33. De Almeida JP, Saldanha C. Nonneuronal cholinergic system in human erythrocytes: biological role and clinical relevance. J Membr Biol. 2010;234(3):227-34. DOI:10.1007/s00232-010-9250-9
34. Trivedi G, Inoue D, Chen C, et al. Muscarinic acetylcholine receptor regulates self-renewal of early erythroid progenitors. Sci Transl Med. 2019;11(511):eaaw3781. DOI:10.1126/scitranslmed.aaw3781
35. Gupta S, Belle VS, Kumbarakeri Rajashekhar R, et al. Correlation of Red Blood Cell Acetylcholinesterase Enzyme Activity with Various RBC Indices. Indian J Clin Biochem. 2018;33(4):445-9. DOI:10.1007/s12291-017-0691-0
36. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27. DOI:10.1002/jat.993
37. Teixeira P, Duro N, Napoleão P, Saldanha C. Acetylcholinesterase conformational states influence nitric oxide mobilization in the erythrocyte. J Membr Biol. 2015;248(2):349-54. DOI:10.1007/s00232-015-9776-y
38. Kuryanova EV, Tryasuchev AV, Teply DL. Adreno- and cholinoreactivity of erythrocytes and estimation of their conjugation with parameters of free radical balance of blood in non-linear rats. Siberian Scientific Medical Journal. 2019;39(4):37-45 (in Russian). DOI:10.15372/SSMJ20190405
39. Strelnikova AI, Tsikin VI, Krysova AB, et al. M-holinoreactivity of erythrocytes of non-pregnant and pregnant women, determined by the change in the rate of agglutination of erythrocytes under the influence of acetylcholine. Bulletin of Experimental Biology and Medicine. 2012;154(8):140-3 (in Russian).
40. Zyubanova IV, Falkovskaya AYu, Mordovin VF, et al. Erythrocyte membranes beta-adrenoreactivity changes after renal denervation in patients with resistant hypertension, relationship with antihypertensive and cardioprotective intervention efficacy. Kardiologiia. 2021;61(8):32-9 [Article in English, English]. DOI:10.18087/cardio.2021.8.n1556
41. Diederich L, Suvorava T, Sansone R, et al. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Front Physiol. 2018;9:332. DOI:10.3389/fphys.2018.00332
42. Peleli M, Bibli SI, Li Z, et al. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol. 2020;176:113833. DOI:10.1016/j.bcp.2020.113833
43. Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312(1):C3-15. DOI:10.1152/ajpcell.00282.2016
44. Secades JJ, Gareri P. Citicoline: pharmacological and clinical review, 2022 update. Rev Neurol. 2022;75(s05):S1-89 [Article in English, Spanish]. DOI:10.33588/rn.75s05.2022311
45. Samadian H, Ehterami A, Sarrafzadeh A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol. 2020;150:380-8. DOI:10.1016/j.ijbiomac.2020.02.102
46. Gudi V, Schäfer N, Gingele S, et al. Regenerative effects of CDP-choline: a dose-dependent study in the toxic cuprizone model of de- and remyelination. Pharmaceuticals (Basel). 2021;14(11):1156. DOI:10.3390/ph14111156
47. Rossi GCM, Rolle T, De Silvestri A, et al. Multicenter, prospective, randomized, single blind, cross-over study on the effect of a fixed combination of citicoline 500 mg plus homotaurine 50 mg on pattern electroretinogram (PERG) in patients with open angle glaucoma on well controlled intraocular pressure. Front Med (Lausanne). 2022;9:882335. DOI:10.3389/fmed.2022.882335
1Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения РАН», Новосибирск, Россия; 2ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия; 3ООО «Центр профилактики тромбозов», Новосибирск, Россия
*kruchmargo@yandex.ru
________________________________________________
Margarita V. Kruchinina*1,2, Andrei A. Gromov1,3, Elina V. Kruchinina2, Yulia A. Shishakina2
1The Institute of Internal and Preventive Medicine – a branch of the Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; 2Novosibirsk State Medical University, Novosibirsk, Russia; 3Thrombosis Prevention Center LLC, Novosibirsk, Russia
*kruchmargo@yandex.ru