Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования
Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования
Махова А.А., Федорова Т.А., Ших Е.В. Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования. Consilium Medicum. 2024;26(12):837–845. DOI: 10.26442/20751753.2024.12.203044
Makhova AA, Fedorova TA, Shikh EV. Nutritional support as a way to adjust the body's immune response: Experimental data and clinical studies. A review. Consilium Medicum. 2024;26(12):837–845. DOI: 10.26442/20751753.2024.12.203044
Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования
Махова А.А., Федорова Т.А., Ших Е.В. Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования. Consilium Medicum. 2024;26(12):837–845. DOI: 10.26442/20751753.2024.12.203044
Makhova AA, Fedorova TA, Shikh EV. Nutritional support as a way to adjust the body's immune response: Experimental data and clinical studies. A review. Consilium Medicum. 2024;26(12):837–845. DOI: 10.26442/20751753.2024.12.203044
По данным Всемирной организации здравоохранения, ежегодно в мире от инфекционных болезней страдают 2 млрд человек. Инфекционные заболевания остаются в числе ведущих причин смертности и первой причиной преждевременной смерти, несмотря на реализацию программ вакцинаций. Витамины и микроэлементы играют важную роль в поддержке как клеточного, так и гуморального звеньев иммунной системы (ИС), повышая, соответственно, устойчивость к инфекциям. Дефицит микроэлементов является признанной глобальной проблемой общественного здравоохранения, а гиповитаминозы и дефицитарные по нутриентам состояния предрасполагают к развитию инфекционного процесса. Для формирования иммунокомпетентного состояния необходимы такие микронутриенты, как витамины A, C, D, E, B2, B6, B12, фолиевая кислота, селен, цинк и железо. Как в зрелом, так и в пожилом возрасте у пациентов повышаются риск возникновения и тяжесть течения инфекционного процесса, что связано с высокой распространенностью гиповитаминозов, снижением функции ИС и наличием сопутствующих заболеваний (коморбидности). Нутритивная поддержка витаминно-минеральными комплексами (ВМК) рационального состава является стратегией, направленной на коррекцию иммунного ответа. ВМК должны дополнять здоровую диету и содержать микронутриенты в пределах рекомендуемых значений на уровне пищевой суточной потребности. Целесообразно использовать дифференцированный подход к применению ВМК для модуляции функционирования ИС. Базовой нутритивной поддержки витаминами С, D и цинком чаще всего достаточно людям без рисков тяжелого и осложненного течения острых респираторных инфекций. Различные механизмы воздействия и разные точки приложения микронутриентов, корректирующих иммунный ответ организма, наличие синергичных взаимодействий позволяют обсуждать гипотезу более выраженного эффекта многокомпонентных ВМК. При наличии хронических заболеваний, в случае коморбидности целесообразно использовать ВМК расширенного состава, содержащие помимо витаминов С, D и цинка другие микронутриенты – витамины А, Е, группы В, медь, селен, что способствует снижению опасности тяжелого течения и осложнений респираторных инфекций в группах риска.
Ключевые слова: вирусные инфекции, иммунитет, витамины, микроэлементы, коморбидность, нутритивная поддержка
________________________________________________
According to the World Health Organization, 2 billion people all over the world suffer from infectious diseases every year. Infectious diseases remain among the leading causes of death and the first cause of premature death despite the implementation of vaccination programs. Vitamins and micronutrients are essential in supporting both the cellular and humoral parts of the immune system (IS), increasing resistance to infections. Micronutrient deficiency is a recognized global public health problem, and hypovitaminosis and nutrient deficiency conditions predispose to infections. Micronutrients such as vitamins A, C, D, E, B2, B6, B12, folic acid, selenium, zinc, and iron are necessary to maintain immunocompetency. Both in adulthood and in old age, patients have an increased risk of occurrence and severity of infections due to the high prevalence of hypovitaminosis, a decrease in the function of the IS, and the presence of comorbidities. Nutritional support by vitamin and mineral complexes (VMC) with rational composition is a strategy to correct the immune response. VMCs should complement a healthy diet and contain micronutrients within the recommended amounts at the level of daily food requirement. It is advisable to use a differentiated approach to VMCs to modulate the IS function. Basic nutritional support with vitamins C, D, and zinc is most often sufficient for people without the risks of severe and complicated acute respiratory infections. Various mechanisms of action and different targets of micronutrients that correct the body's immune response and synergistic interactions support the discussion of the hypothesis of a more pronounced effect of multicomponent VMCs. In the presence of chronic diseases, in the case of comorbidity, it is advisable to use expanded formulation VMCs containing, in addition to vitamins C, D, and zinc, other micronutrients, such as vitamins A, E, B, copper, selenium, which helps reduce the risk of severe course and complications of respiratory infections in at-risk groups.
Keywords: viral infections, immunity, vitamins, micronutrients, comorbidity, nutritional support
1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int. Accessed: 15.02.2024.
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Ших Е.В., Махова А.А., Прокофьев А.Б., Назарчук А.С. Витамины и микроэлементы в профилактике инфекционных заболеваний у женщин репродуктивного возраста. Акушерство и гинекология. 2021;8:220-8 [Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian)]. DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., и др. Роль витамина D при сезонных острых респираторных вирусных инфекциях и COVID-19. Терапевтический архив. 2020;92(11):98-105 [Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian)]. DOI:10.26442/00403660.2020.11.000785
20. Ших Е.В., Махова А.А., Сизова Ж.М., Ших Н.В. Витамин D в профилактике осложнений беременности и заболеваний у детей первого года жизни. Вопросы гинекологии, акушерства и перинатологии. 2021;20(5):114-23 [Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian)]. DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции». М.: ПедиатрЪ, 2018 [Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian)].
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Ших Е.В., Махова А.А., Еременко Н.Н., и др. Рациональные комбинации в фармакотерапии железодефицита. Вопросы гинекологии, акушерства и перинатологии. 2023;22(3):108-16 [Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology.
2023;22(3):108-16 (in Russian)]. DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
________________________________________________
1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int. Accessed: 15.02.2024.
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian). DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian). DOI:10.26442/00403660.2020.11.000785
20. Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian). DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian). DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian).
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology. 2023;22(3):108-16 (in Russian). DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
Авторы
А.А. Махова*, Т.А. Федорова, Е.В. Ших
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*makhova_a_a@staff.sechenov.ru
________________________________________________
Anna А. Makhova*, Tatiana A. Fedorova, Evgenia V. Shikh