Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования
Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования
Махова А.А., Федорова Т.А., Ших Е.В. Нутритивная поддержка как способ корректировки иммунного ответа организма: экспериментальные данные и клинические исследования. Consilium Medicum. 2024;26(12):837–845. DOI: 10.26442/20751753.2024.12.203044
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2024 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
По данным Всемирной организации здравоохранения, ежегодно в мире от инфекционных болезней страдают 2 млрд человек. Инфекционные заболевания остаются в числе ведущих причин смертности и первой причиной преждевременной смерти, несмотря на реализацию программ вакцинаций. Витамины и микроэлементы играют важную роль в поддержке как клеточного, так и гуморального звеньев иммунной системы (ИС), повышая, соответственно, устойчивость к инфекциям. Дефицит микроэлементов является признанной глобальной проблемой общественного здравоохранения, а гиповитаминозы и дефицитарные по нутриентам состояния предрасполагают к развитию инфекционного процесса. Для формирования иммунокомпетентного состояния необходимы такие микронутриенты, как витамины A, C, D, E, B2, B6, B12, фолиевая кислота, селен, цинк и железо. Как в зрелом, так и в пожилом возрасте у пациентов повышаются риск возникновения и тяжесть течения инфекционного процесса, что связано с высокой распространенностью гиповитаминозов, снижением функции ИС и наличием сопутствующих заболеваний (коморбидности). Нутритивная поддержка витаминно-минеральными комплексами (ВМК) рационального состава является стратегией, направленной на коррекцию иммунного ответа. ВМК должны дополнять здоровую диету и содержать микронутриенты в пределах рекомендуемых значений на уровне пищевой суточной потребности. Целесообразно использовать дифференцированный подход к применению ВМК для модуляции функционирования ИС. Базовой нутритивной поддержки витаминами С, D и цинком чаще всего достаточно людям без рисков тяжелого и осложненного течения острых респираторных инфекций. Различные механизмы воздействия и разные точки приложения микронутриентов, корректирующих иммунный ответ организма, наличие синергичных взаимодействий позволяют обсуждать гипотезу более выраженного эффекта многокомпонентных ВМК. При наличии хронических заболеваний, в случае коморбидности целесообразно использовать ВМК расширенного состава, содержащие помимо витаминов С, D и цинка другие микронутриенты – витамины А, Е, группы В, медь, селен, что способствует снижению опасности тяжелого течения и осложнений респираторных инфекций в группах риска.
Ключевые слова: вирусные инфекции, иммунитет, витамины, микроэлементы, коморбидность, нутритивная поддержка
Keywords: viral infections, immunity, vitamins, micronutrients, comorbidity, nutritional support
Ключевые слова: вирусные инфекции, иммунитет, витамины, микроэлементы, коморбидность, нутритивная поддержка
________________________________________________
Keywords: viral infections, immunity, vitamins, micronutrients, comorbidity, nutritional support
Полный текст
Список литературы
1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int. Accessed: 15.02.2024.
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Ших Е.В., Махова А.А., Прокофьев А.Б., Назарчук А.С. Витамины и микроэлементы в профилактике инфекционных заболеваний у женщин репродуктивного возраста. Акушерство и гинекология. 2021;8:220-8 [Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian)]. DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., и др. Роль витамина D при сезонных острых респираторных вирусных инфекциях и COVID-19. Терапевтический архив. 2020;92(11):98-105 [Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian)]. DOI:10.26442/00403660.2020.11.000785
20. Ших Е.В., Махова А.А., Сизова Ж.М., Ших Н.В. Витамин D в профилактике осложнений беременности и заболеваний у детей первого года жизни. Вопросы гинекологии, акушерства и перинатологии. 2021;20(5):114-23 [Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian)]. DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции». М.: ПедиатрЪ, 2018 [Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian)].
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Ших Е.В., Махова А.А., Еременко Н.Н., и др. Рациональные комбинации в фармакотерапии железодефицита. Вопросы гинекологии, акушерства и перинатологии. 2023;22(3):108-16 [Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology.
2023;22(3):108-16 (in Russian)]. DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian). DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian). DOI:10.26442/00403660.2020.11.000785
20. Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian). DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian). DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian).
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology. 2023;22(3):108-16 (in Russian). DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Ших Е.В., Махова А.А., Прокофьев А.Б., Назарчук А.С. Витамины и микроэлементы в профилактике инфекционных заболеваний у женщин репродуктивного возраста. Акушерство и гинекология. 2021;8:220-8 [Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian)]. DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., и др. Роль витамина D при сезонных острых респираторных вирусных инфекциях и COVID-19. Терапевтический архив. 2020;92(11):98-105 [Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian)]. DOI:10.26442/00403660.2020.11.000785
20. Ших Е.В., Махова А.А., Сизова Ж.М., Ших Н.В. Витамин D в профилактике осложнений беременности и заболеваний у детей первого года жизни. Вопросы гинекологии, акушерства и перинатологии. 2021;20(5):114-23 [Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian)]. DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции». М.: ПедиатрЪ, 2018 [Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian)].
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Ших Е.В., Махова А.А., Еременко Н.Н., и др. Рациональные комбинации в фармакотерапии железодефицита. Вопросы гинекологии, акушерства и перинатологии. 2023;22(3):108-16 [Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology.
2023;22(3):108-16 (in Russian)]. DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
________________________________________________
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI:10.1038/s41564-020-0695-z
3. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. DOI:10.1016/j.jaci.2009.12.980
4. Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. DOI:10.1016/j.clim.2020.108545
5. Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. DOI:10.1017/S0007114521000386
6. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. DOI:10.3109/09513590.2013.852531
7. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. DOI:10.1155/2016/4273943
8. Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376.
DOI:10.4172/2376-1318.1000167
9. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. DOI:10.1017/S0029665113001286
10. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. DOI:10.3390/nu12103198
11. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. DOI:10.1136/bmjnph-2020-000085
12. Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian). DOI:10.18565/aig.2021.8.220-228
13. Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. DOI:10.1177/1084822317713300
14. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. DOI:10.3945/an.114.006361
15. Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). DOI:10.3390/nu12103198
16. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. DOI:10.1086/587658
17. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. DOI:10.3390/nu10101531
18. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. DOI:10.1086/313792
19. Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian). DOI:10.26442/00403660.2020.11.000785
20. Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian). DOI:10.20953/1726-1678-2021-5-114-123
21. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. DOI:10.3310/hta23020
22. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. DOI:10.1016/j.clnesp.2021.03.012
23. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. DOI:10.1016/S2213-8587(17)30357-1
24. Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. DOI:10.4103/0976-500X.103685
25. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. DOI:10.1136/bmj.i6583
26. Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. DOI:10.3390/nu13020411
27. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. DOI:10.1038/s41598-020-77093-z
28. D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. DOI:10.3390/nu12051359
29. De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. DOI:10.1101/2020.05.01.20079376
30. Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). DOI:10.3390/nu12092757
31. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. DOI:10.1111/febs.15495
32. Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian). DOI:10.26442/00403660.2024.03.202635
33. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. DOI:10.1080/10408398.2020.1841090
34. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. DOI:10.1016/j.vaccine.2011.04.077
35. Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. DOI:10.3945/ajcn.116.151415
36. Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian).
37. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. DOI:10.3390/nu9111211
38. Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
39. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. DOI:10.1002/14651858.CD000980.pub4
40. Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
41. Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. DOI:10.3945/an.112.003038
42. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. DOI:10.1016/j.ijid.2020.09.014
43. Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. DOI:10.1017/S0007114521000738
44. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI:10.3390/nu10091203
45. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. DOI:10.1128/CMR.18.3.446-464.2005
46. Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem.
1992;267(33):23988-92.
47. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. DOI:10.1017/S0007114520003128
48. Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. DOI:10.1093/jn/133.5.1463S
49. Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. DOI:10.1093/ajcn/nqaa095
50. Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. DOI:10.3945/an.114.007575
51. Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. DOI:10.3390/nu12072098
52. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. DOI:10.1016/j.mehy.2020.109878
53. Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. DOI:10.1038/s41467-019-11002-5
54. Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. DOI:10.1016/j.medj.2020.10.004
55. Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology. 2023;22(3):108-16 (in Russian). DOI:10.20953/1726-1678-2023-3-108-116
56. Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. DOI:10.1186/1476-511X-10-177
57. Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. DOI:10.1038/ncomms3142
58. Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. DOI:10.1165/rcmb.2017-0290OC
Авторы
А.А. Махова*, Т.А. Федорова, Е.В. Ших
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*makhova_a_a@staff.sechenov.ru
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*makhova_a_a@staff.sechenov.ru
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*makhova_a_a@staff.sechenov.ru
________________________________________________
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*makhova_a_a@staff.sechenov.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
