Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
ADAMTS-4 в роли сердечно-сосудистого биологического маркера при атеросклерозе (обзор литературы)
ADAMTS-4 в роли сердечно-сосудистого биологического маркера при атеросклерозе (обзор литературы)
Алиева А.М., Резник Е.В., Байкова И.Е., Теплова Н.В., Хачирова Э.А., Султангалиева А.Б., Этезова Э.З., Рабаева Ж.Л., Иманова Р.Н., Боева П.Ю., Никитин И.Г. ADAMTS-4 в роли сердечно-сосудистого биологического маркера при атеросклерозе (обзор литературы). Consilium Medicum. 2025;27(10):620–624. DOI: 10.26442/20751753.2025.10.203170
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Сердечно-сосудистые заболевания представляют собой серьезную проблему для медицины, общества и экономики во всем мире. В настоящее время ведется активный поиск новых биологических маркеров и терапевтических мишеней с целью разработки эффективных подходов к стратификации риска и вторичной профилактике сердечно-сосудистой патологии. В спектр научных интересов исследователей в последнее время входит изучение дезинтегрина и металлопротеиназы с тромбоспондиновыми мотивами (ADAMTS) при атеросклерозе и связанных с ним заболеваниях. ADAMTS регулируют структуру и функцию компонентов внеклеточного матрикса. В нашем научном обзоре выполнен анализ актуальных экспериментальных и клинических исследований, посвященных изучению ADAMTS-4 в качестве нового диагностического и прогностического маркера при атеросклерозе, который подтверждает важную роль этого биологического маркера в патогенезе и диагностике атеросклероза. Ожидается, что будущие обширные доклинические и клинические исследования покажут, что ADAMTS-4 может стать ценным дополнением к лабораторным методам диагностики. Регуляция уровня и экспрессии ADAMTS-4, предположительно, станет эффективной стратегией лечения пациентов с атеросклерозом.
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, биологические маркеры, дезинтегрин и металлопротеиназа с тромбоспондиновыми мотивами 4
Keywords: cardiovascular diseases, atherosclerosis, biological markers, disintegrin and metalloproteinase with thrombospondin motifs 4
Ключевые слова: сердечно-сосудистые заболевания, атеросклероз, биологические маркеры, дезинтегрин и металлопротеиназа с тромбоспондиновыми мотивами 4
________________________________________________
Keywords: cardiovascular diseases, atherosclerosis, biological markers, disintegrin and metalloproteinase with thrombospondin motifs 4
Полный текст
Список литературы
1. Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. DOI:10.1186/s12939-023-01988-2
2. Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. DOI:10.26442/20751753.2022.1.201382
3. Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. DOI:10.20514/2226-6704-2023-13-1-14-23
4. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapiya. 2022;1:60-70 (in Russian)]. DOI:10.18565/therapy.2022.1.60-70
5. Ларина В.Н., Лунев В.И. Значение биомаркеров в диагностике и прогнозировании сердечной недостаточности в старшем возрасте. Архивъ внутренней медицины. 2021;11(2):98-110 [Larina VN, Lunev VI. The Value of Biomarkers in the Diagnosis and Prognosis of Heart Failure in Older Age. The Russian Archives of Internal Medicine. 2021;11(2):98-110 (in Russian)]. DOI:10.20514/2226-6704-2021-11-2-98-110
6. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее. Кардиология. 2021;61(5):4-16 [Kozhevnikova MV, Belenkov YN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4-16 (in Russian)]. DOI:10.18087/cardio.2021.5.n1530
7. Novak R, Hrkac S, Salai G, et al. The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. J Vasc Res. 2022;59(2):69-77. DOI:10.1159/000521498
8. Santamaria S, de Groot R. ADAMTS proteases in cardiovascular physiology and disease. Open Biol. 2020;10(12):200333. DOI:10.1098/rsob.200333
9. Mougin Z, Huguet Herrero J, Boileau C, et al. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules. 2021;12(1):12. DOI:10.3390/biom12010012
10. Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol. 2024; 25(11):865-85. DOI:10.1038/s41580-024-00767-3
11. Fu Y, Zhou Y, Wang K, et al. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res. 2024;134(7):931-49. DOI:10.1161/CIRCRESAHA.123.324055
12. Aswani SS, Aparna NS, Mohan MS, et al. Sesame oil downregulates the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis. Prostaglandins Other Lipid Mediat. 2024;174:106862. DOI:10.1016/j.prostaglandins.2024.106862
13. Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci. 2023;24(15):12135. DOI:10.3390/ijms241512135
14. Apte SS. ADAMTS Proteins: Concepts, Challenges, and Prospects. Methods Mol Biol. 2020;2043:1-12. DOI:10.1007/978-1-4939-9698-8_1
15. Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-2:225-39. DOI:10.1016/j.matbio.2018.06.002
16. Karoulias SZ, Taye N, Stanley S, et al. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules. 2020;10(4):596. DOI:10.3390/biom10040596
17. Pelisek J, Deutsch L, Ansel A, et al. Expression of a metalloproteinase family of ADAMTS in human vulnerable carotid lesions. J Cardiovasc Med (Hagerstown). 2017;18(1):10-8. DOI:10.2459/JCM.0000000000000254
18. Wight TN, Kinsella MG, Evanko SP, et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840(8):2441-51. DOI:10.1016/j.bbagen.2013.12.028
19. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. DOI:10.1038/s41572-019-0106-z
20. Rienks M, Barallobre-Barreiro J, Mayr M. The Emerging Role of the ADAMTS Family in Vascular Diseases. Circ Res. 2018;123(12):1279-81. DOI:10.1161/CIRCRESAHA.118.313737
21. Koch CD, Lee CM, Apte SS. Aggrecan in Cardiovascular Development and Disease. J Histochem Cytochem. 2020;68(11):777-95. DOI:10.1369/0022155420952902
22. Kenagy RD, Min SK, Clowes AW, et al. Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem. 2009;57(9):889-97. DOI:10.1369/jhc.2009.953901
23. Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399-404. DOI:10.1136/jcp.2010.088484
24. Wågsäter D, Björk H, Zhu C, et al. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis. 2008;196(2):514-22. DOI:10.1016/j.atherosclerosis.2007.05.018
25. Kumar S, Chen M, Li Y, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE (-/-) mice. Sci Rep. 2016;6:31130. DOI:10.1038/srep31130
26. Aswani SS, Mohan MS, Aparna NS, et al. Oxidized LDL-mediated upregulation of ADAMTS-4 in monocytes/macrophages involves ROS-NF-κB-SIRT-1 pathway. Physiol Int. 2023;110(2):173-90. DOI:10.1556/2060.2023.00170
27. Ren P, Hughes M, Krishnamoorthy S, et al. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep. 2017;7(1):12351. DOI:10.1038/s41598-017-12248-z
28. Li L, Ma W, Pan S, et al. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J Cell Mol Med. 2020;24(14):7896-906. DOI:10.1111/jcmm.15422
29. Ren P, Zhang L, Xu G, et al. ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2013;95(2):570-7. DOI:10.1016/j.athoracsur.2012.10.084
30. Aswani SS, Jayan SG, Mohan MS, et al. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep. 2024;51(1):968. DOI:10.1007/s11033-024-09896-6
31. Dong H, Du T, Premaratne S, et al. Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg. 2018;67(4):1120-6. DOI:10.1016/j.jvs.2017.08.075
32. Chen L, Yang L, Zha Y, et al. Association of serum a disintegrin and metalloproteinase with thrombospodin motif 4 levels with the presence and severity of coronary artery disease. Coron Artery Dis. 2011;22(8):570-6. DOI:10.1097/MCA.0b013e32834c7565
33. Zha Y, Chen Y, Xu F, et al. Elevated level of ADAMTS4 in plasma and peripheral monocytes from patients with acute coronary syndrome. Clin Res Cardiol. 2010;99(12):781-6. DOI:10.1007/s00392-010-0183-1
34. Uluçay S, Çam FS, Batır MB, et al. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol. 2015;15(10):823-9. DOI:10.5152/akd.2014.5762
35. Li K, Wang ZW, Hu Z, et al. Assessing Serum Levels of ADAMTS1 and ADAMTS4 as New Biomarkers for Patients with Type A Acute Aortic Dissection. Med Sci Monit. 2017;23:3913-22. DOI:10.12659/msm.905092
2. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian). DOI:10.26442/20751753.2022.1.201382
3. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian). DOI:10.20514/2226-6704-2023-13-1-14-23
4. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapiya. 2022;1:60-70 (in Russian). DOI:10.18565/therapy.2022.1.60-70
5. Larina VN, Lunev VI. The Value of Biomarkers in the Diagnosis and Prognosis of Heart Failure in Older Age. The Russian Archives of Internal Medicine. 2021;11(2):98-110 (in Russian). DOI:10.20514/2226-6704-2021-11-2-98-110
6. Kozhevnikova MV, Belenkov YN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4-16 (in Russian). DOI:10.18087/cardio.2021.5.n1530
7. Novak R, Hrkac S, Salai G, et al. The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. J Vasc Res. 2022;59(2):69-77. DOI:10.1159/000521498
8. Santamaria S, de Groot R. ADAMTS proteases in cardiovascular physiology and disease. Open Biol. 2020;10(12):200333. DOI:10.1098/rsob.200333
9. Mougin Z, Huguet Herrero J, Boileau C, et al. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules. 2021;12(1):12. DOI:10.3390/biom12010012
10. Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol. 2024; 25(11):865-85. DOI:10.1038/s41580-024-00767-3
11. Fu Y, Zhou Y, Wang K, et al. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res. 2024;134(7):931-49. DOI:10.1161/CIRCRESAHA.123.324055
12. Aswani SS, Aparna NS, Mohan MS, et al. Sesame oil downregulates the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis. Prostaglandins Other Lipid Mediat. 2024;174:106862. DOI:10.1016/j.prostaglandins.2024.106862
13. Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci. 2023;24(15):12135. DOI:10.3390/ijms241512135
14. Apte SS. ADAMTS Proteins: Concepts, Challenges, and Prospects. Methods Mol Biol. 2020;2043:1-12. DOI:10.1007/978-1-4939-9698-8_1
15. Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-2:225-39. DOI:10.1016/j.matbio.2018.06.002
16. Karoulias SZ, Taye N, Stanley S, et al. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules. 2020;10(4):596. DOI:10.3390/biom10040596
17. Pelisek J, Deutsch L, Ansel A, et al. Expression of a metalloproteinase family of ADAMTS in human vulnerable carotid lesions. J Cardiovasc Med (Hagerstown). 2017;18(1):10-8. DOI:10.2459/JCM.0000000000000254
18. Wight TN, Kinsella MG, Evanko SP, et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840(8):2441-51. DOI:10.1016/j.bbagen.2013.12.028
19. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. DOI:10.1038/s41572-019-0106-z
20. Rienks M, Barallobre-Barreiro J, Mayr M. The Emerging Role of the ADAMTS Family in Vascular Diseases. Circ Res. 2018;123(12):1279-81. DOI:10.1161/CIRCRESAHA.118.313737
21. Koch CD, Lee CM, Apte SS. Aggrecan in Cardiovascular Development and Disease. J Histochem Cytochem. 2020;68(11):777-95. DOI:10.1369/0022155420952902
22. Kenagy RD, Min SK, Clowes AW, et al. Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem. 2009;57(9):889-97. DOI:10.1369/jhc.2009.953901
23. Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399-404. DOI:10.1136/jcp.2010.088484
24. Wågsäter D, Björk H, Zhu C, et al. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis. 2008;196(2):514-22. DOI:10.1016/j.atherosclerosis.2007.05.018
25. Kumar S, Chen M, Li Y, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE (-/-) mice. Sci Rep. 2016;6:31130. DOI:10.1038/srep31130
26. Aswani SS, Mohan MS, Aparna NS, et al. Oxidized LDL-mediated upregulation of ADAMTS-4 in monocytes/macrophages involves ROS-NF-κB-SIRT-1 pathway. Physiol Int. 2023;110(2):173-90. DOI:10.1556/2060.2023.00170
27. Ren P, Hughes M, Krishnamoorthy S, et al. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep. 2017;7(1):12351. DOI:10.1038/s41598-017-12248-z
28. Li L, Ma W, Pan S, et al. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J Cell Mol Med. 2020;24(14):7896-906. DOI:10.1111/jcmm.15422
29. Ren P, Zhang L, Xu G, et al. ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2013;95(2):570-7. DOI:10.1016/j.athoracsur.2012.10.084
30. Aswani SS, Jayan SG, Mohan MS, et al. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep. 2024;51(1):968. DOI:10.1007/s11033-024-09896-6
31. Dong H, Du T, Premaratne S, et al. Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg. 2018;67(4):1120-6. DOI:10.1016/j.jvs.2017.08.075
32. Chen L, Yang L, Zha Y, et al. Association of serum a disintegrin and metalloproteinase with thrombospodin motif 4 levels with the presence and severity of coronary artery disease. Coron Artery Dis. 2011;22(8):570-6. DOI:10.1097/MCA.0b013e32834c7565
33. Zha Y, Chen Y, Xu F, et al. Elevated level of ADAMTS4 in plasma and peripheral monocytes from patients with acute coronary syndrome. Clin Res Cardiol. 2010;99(12):781-6. DOI:10.1007/s00392-010-0183-1
34. Uluçay S, Çam FS, Batır MB, et al. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol. 2015;15(10):823-9. DOI:10.5152/akd.2014.5762
35. Li K, Wang ZW, Hu Z, et al. Assessing Serum Levels of ADAMTS1 and ADAMTS4 as New Biomarkers for Patients with Type A Acute Aortic Dissection. Med Sci Monit. 2017;23:3913-22. DOI:10.12659/msm.905092
2. Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. DOI:10.26442/20751753.2022.1.201382
3. Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. DOI:10.20514/2226-6704-2023-13-1-14-23
4. Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapiya. 2022;1:60-70 (in Russian)]. DOI:10.18565/therapy.2022.1.60-70
5. Ларина В.Н., Лунев В.И. Значение биомаркеров в диагностике и прогнозировании сердечной недостаточности в старшем возрасте. Архивъ внутренней медицины. 2021;11(2):98-110 [Larina VN, Lunev VI. The Value of Biomarkers in the Diagnosis and Prognosis of Heart Failure in Older Age. The Russian Archives of Internal Medicine. 2021;11(2):98-110 (in Russian)]. DOI:10.20514/2226-6704-2021-11-2-98-110
6. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее. Кардиология. 2021;61(5):4-16 [Kozhevnikova MV, Belenkov YN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4-16 (in Russian)]. DOI:10.18087/cardio.2021.5.n1530
7. Novak R, Hrkac S, Salai G, et al. The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. J Vasc Res. 2022;59(2):69-77. DOI:10.1159/000521498
8. Santamaria S, de Groot R. ADAMTS proteases in cardiovascular physiology and disease. Open Biol. 2020;10(12):200333. DOI:10.1098/rsob.200333
9. Mougin Z, Huguet Herrero J, Boileau C, et al. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules. 2021;12(1):12. DOI:10.3390/biom12010012
10. Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol. 2024; 25(11):865-85. DOI:10.1038/s41580-024-00767-3
11. Fu Y, Zhou Y, Wang K, et al. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res. 2024;134(7):931-49. DOI:10.1161/CIRCRESAHA.123.324055
12. Aswani SS, Aparna NS, Mohan MS, et al. Sesame oil downregulates the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis. Prostaglandins Other Lipid Mediat. 2024;174:106862. DOI:10.1016/j.prostaglandins.2024.106862
13. Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci. 2023;24(15):12135. DOI:10.3390/ijms241512135
14. Apte SS. ADAMTS Proteins: Concepts, Challenges, and Prospects. Methods Mol Biol. 2020;2043:1-12. DOI:10.1007/978-1-4939-9698-8_1
15. Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-2:225-39. DOI:10.1016/j.matbio.2018.06.002
16. Karoulias SZ, Taye N, Stanley S, et al. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules. 2020;10(4):596. DOI:10.3390/biom10040596
17. Pelisek J, Deutsch L, Ansel A, et al. Expression of a metalloproteinase family of ADAMTS in human vulnerable carotid lesions. J Cardiovasc Med (Hagerstown). 2017;18(1):10-8. DOI:10.2459/JCM.0000000000000254
18. Wight TN, Kinsella MG, Evanko SP, et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840(8):2441-51. DOI:10.1016/j.bbagen.2013.12.028
19. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. DOI:10.1038/s41572-019-0106-z
20. Rienks M, Barallobre-Barreiro J, Mayr M. The Emerging Role of the ADAMTS Family in Vascular Diseases. Circ Res. 2018;123(12):1279-81. DOI:10.1161/CIRCRESAHA.118.313737
21. Koch CD, Lee CM, Apte SS. Aggrecan in Cardiovascular Development and Disease. J Histochem Cytochem. 2020;68(11):777-95. DOI:10.1369/0022155420952902
22. Kenagy RD, Min SK, Clowes AW, et al. Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem. 2009;57(9):889-97. DOI:10.1369/jhc.2009.953901
23. Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399-404. DOI:10.1136/jcp.2010.088484
24. Wågsäter D, Björk H, Zhu C, et al. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis. 2008;196(2):514-22. DOI:10.1016/j.atherosclerosis.2007.05.018
25. Kumar S, Chen M, Li Y, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE (-/-) mice. Sci Rep. 2016;6:31130. DOI:10.1038/srep31130
26. Aswani SS, Mohan MS, Aparna NS, et al. Oxidized LDL-mediated upregulation of ADAMTS-4 in monocytes/macrophages involves ROS-NF-κB-SIRT-1 pathway. Physiol Int. 2023;110(2):173-90. DOI:10.1556/2060.2023.00170
27. Ren P, Hughes M, Krishnamoorthy S, et al. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep. 2017;7(1):12351. DOI:10.1038/s41598-017-12248-z
28. Li L, Ma W, Pan S, et al. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J Cell Mol Med. 2020;24(14):7896-906. DOI:10.1111/jcmm.15422
29. Ren P, Zhang L, Xu G, et al. ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2013;95(2):570-7. DOI:10.1016/j.athoracsur.2012.10.084
30. Aswani SS, Jayan SG, Mohan MS, et al. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep. 2024;51(1):968. DOI:10.1007/s11033-024-09896-6
31. Dong H, Du T, Premaratne S, et al. Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg. 2018;67(4):1120-6. DOI:10.1016/j.jvs.2017.08.075
32. Chen L, Yang L, Zha Y, et al. Association of serum a disintegrin and metalloproteinase with thrombospodin motif 4 levels with the presence and severity of coronary artery disease. Coron Artery Dis. 2011;22(8):570-6. DOI:10.1097/MCA.0b013e32834c7565
33. Zha Y, Chen Y, Xu F, et al. Elevated level of ADAMTS4 in plasma and peripheral monocytes from patients with acute coronary syndrome. Clin Res Cardiol. 2010;99(12):781-6. DOI:10.1007/s00392-010-0183-1
34. Uluçay S, Çam FS, Batır MB, et al. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol. 2015;15(10):823-9. DOI:10.5152/akd.2014.5762
35. Li K, Wang ZW, Hu Z, et al. Assessing Serum Levels of ADAMTS1 and ADAMTS4 as New Biomarkers for Patients with Type A Acute Aortic Dissection. Med Sci Monit. 2017;23:3913-22. DOI:10.12659/msm.905092
________________________________________________
2. Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian). DOI:10.26442/20751753.2022.1.201382
3. Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian). DOI:10.20514/2226-6704-2023-13-1-14-23
4. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapiya. 2022;1:60-70 (in Russian). DOI:10.18565/therapy.2022.1.60-70
5. Larina VN, Lunev VI. The Value of Biomarkers in the Diagnosis and Prognosis of Heart Failure in Older Age. The Russian Archives of Internal Medicine. 2021;11(2):98-110 (in Russian). DOI:10.20514/2226-6704-2021-11-2-98-110
6. Kozhevnikova MV, Belenkov YN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4-16 (in Russian). DOI:10.18087/cardio.2021.5.n1530
7. Novak R, Hrkac S, Salai G, et al. The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. J Vasc Res. 2022;59(2):69-77. DOI:10.1159/000521498
8. Santamaria S, de Groot R. ADAMTS proteases in cardiovascular physiology and disease. Open Biol. 2020;10(12):200333. DOI:10.1098/rsob.200333
9. Mougin Z, Huguet Herrero J, Boileau C, et al. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules. 2021;12(1):12. DOI:10.3390/biom12010012
10. Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol. 2024; 25(11):865-85. DOI:10.1038/s41580-024-00767-3
11. Fu Y, Zhou Y, Wang K, et al. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res. 2024;134(7):931-49. DOI:10.1161/CIRCRESAHA.123.324055
12. Aswani SS, Aparna NS, Mohan MS, et al. Sesame oil downregulates the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis. Prostaglandins Other Lipid Mediat. 2024;174:106862. DOI:10.1016/j.prostaglandins.2024.106862
13. Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci. 2023;24(15):12135. DOI:10.3390/ijms241512135
14. Apte SS. ADAMTS Proteins: Concepts, Challenges, and Prospects. Methods Mol Biol. 2020;2043:1-12. DOI:10.1007/978-1-4939-9698-8_1
15. Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-2:225-39. DOI:10.1016/j.matbio.2018.06.002
16. Karoulias SZ, Taye N, Stanley S, et al. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases. Biomolecules. 2020;10(4):596. DOI:10.3390/biom10040596
17. Pelisek J, Deutsch L, Ansel A, et al. Expression of a metalloproteinase family of ADAMTS in human vulnerable carotid lesions. J Cardiovasc Med (Hagerstown). 2017;18(1):10-8. DOI:10.2459/JCM.0000000000000254
18. Wight TN, Kinsella MG, Evanko SP, et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840(8):2441-51. DOI:10.1016/j.bbagen.2013.12.028
19. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. DOI:10.1038/s41572-019-0106-z
20. Rienks M, Barallobre-Barreiro J, Mayr M. The Emerging Role of the ADAMTS Family in Vascular Diseases. Circ Res. 2018;123(12):1279-81. DOI:10.1161/CIRCRESAHA.118.313737
21. Koch CD, Lee CM, Apte SS. Aggrecan in Cardiovascular Development and Disease. J Histochem Cytochem. 2020;68(11):777-95. DOI:10.1369/0022155420952902
22. Kenagy RD, Min SK, Clowes AW, et al. Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem. 2009;57(9):889-97. DOI:10.1369/jhc.2009.953901
23. Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399-404. DOI:10.1136/jcp.2010.088484
24. Wågsäter D, Björk H, Zhu C, et al. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis. 2008;196(2):514-22. DOI:10.1016/j.atherosclerosis.2007.05.018
25. Kumar S, Chen M, Li Y, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE (-/-) mice. Sci Rep. 2016;6:31130. DOI:10.1038/srep31130
26. Aswani SS, Mohan MS, Aparna NS, et al. Oxidized LDL-mediated upregulation of ADAMTS-4 in monocytes/macrophages involves ROS-NF-κB-SIRT-1 pathway. Physiol Int. 2023;110(2):173-90. DOI:10.1556/2060.2023.00170
27. Ren P, Hughes M, Krishnamoorthy S, et al. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep. 2017;7(1):12351. DOI:10.1038/s41598-017-12248-z
28. Li L, Ma W, Pan S, et al. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J Cell Mol Med. 2020;24(14):7896-906. DOI:10.1111/jcmm.15422
29. Ren P, Zhang L, Xu G, et al. ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2013;95(2):570-7. DOI:10.1016/j.athoracsur.2012.10.084
30. Aswani SS, Jayan SG, Mohan MS, et al. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep. 2024;51(1):968. DOI:10.1007/s11033-024-09896-6
31. Dong H, Du T, Premaratne S, et al. Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg. 2018;67(4):1120-6. DOI:10.1016/j.jvs.2017.08.075
32. Chen L, Yang L, Zha Y, et al. Association of serum a disintegrin and metalloproteinase with thrombospodin motif 4 levels with the presence and severity of coronary artery disease. Coron Artery Dis. 2011;22(8):570-6. DOI:10.1097/MCA.0b013e32834c7565
33. Zha Y, Chen Y, Xu F, et al. Elevated level of ADAMTS4 in plasma and peripheral monocytes from patients with acute coronary syndrome. Clin Res Cardiol. 2010;99(12):781-6. DOI:10.1007/s00392-010-0183-1
34. Uluçay S, Çam FS, Batır MB, et al. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol. 2015;15(10):823-9. DOI:10.5152/akd.2014.5762
35. Li K, Wang ZW, Hu Z, et al. Assessing Serum Levels of ADAMTS1 and ADAMTS4 as New Biomarkers for Patients with Type A Acute Aortic Dissection. Med Sci Monit. 2017;23:3913-22. DOI:10.12659/msm.905092
Авторы
А.М. Алиева*1, Е.В. Резник1, И.Е. Байкова1, Н.В. Теплова1, Э.А. Хачирова1, А.Б. Султангалиева1, Э.З. Этезова2, Ж.Л. Рабаева1, Р.Н. Иманова1, П.Ю. Боева1, И.Г. Никитин1
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России (Пироговский Университет), Москва, Россия;
2ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России, Краснодар, Россия
*amisha_alieva@mail.ru
1Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia;
2Kuban State Medical University, Kuban, Russia
*amisha_alieva@mail.ru
1ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России (Пироговский Университет), Москва, Россия;
2ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России, Краснодар, Россия
*amisha_alieva@mail.ru
________________________________________________
1Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia;
2Kuban State Medical University, Kuban, Russia
*amisha_alieva@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
