Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Макрофаги в коже: роль в физиологических процессах и в ответе на косметологические процедуры
Макрофаги в коже: роль в физиологических процессах и в ответе на косметологические процедуры
Кирсанова Л.В., Аравийская Е.Р., Рыбакова М.Г., Соколовский Е.В., Богатенков А.И. Макрофаги в коже: роль в физиологических процессах и в ответе на косметологические процедуры. Consilium Medicum. 2025;27(12):776–782. DOI: 10.26442/20751753.2025.12.203433
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Макрофаги представляют собой гетерогенную популяцию иммунных клеток, происходящих преимущественно из костномозговых моноцитов и эмбриональных предшественников эритромиелоидных прогениторов желточного мешка, способных менять фенотип и функции в зависимости от микроокружения. В статье представлен обзор современных сведений о происхождении, строении и функции макрофагов дермы, включая исторические данные о первых наблюдениях И.А.Э. Гезе (1777), подтвержденных В.Ф. фон Гляйхен-Руссвурмом, термина Fresszellen К. Клауса и фагоцитарной теории И.И. Мечникова (1882–1884 гг.) до M1/M2-дихотомии Mills и соавт. (начало 2000-х гг.). Обобщены литературные данные о моноцитарно-макрофагальной системе человека как в норме, так и при патологических состояниях, с учетом гетерогенности моноцитов классических как предшественников тканевых макрофагов, неклассических для эндотелиального гомеостаза, промежуточных и органоспецифических макрофагов клетки Лангерганса в эпидермисе, микроглии центральной нервной системы, клетки Купфера печени. Приведены данные о различных фенотипах макрофагов от провоспалительных M1 с гликолитическим метаболизмом и индуцируемой синтазой оксида азота до репаративных M2 с митохондриальным дыханием и аргиназой-1, их участии в иммунном надзоре, защите кожи, регенерации, ангиогенезе и ремоделировании тканей. Представлен анализ роли макрофагов в ответе на косметологические процедуры – аблятивные и неаблятивные лазеры 10 600 и 1550 нм, микроигольчатый RF, SMAS-лифтинг, инъекции полимолочной кислоты, гидроксиапатита кальция, роли клеток Лангерганса в ответе на внешние стимулы ультрафиолетового облучения, косметики и др., роли макрофагов в развитии фиброза (M1-инициация, M2a-пролиферация, M2c-разрешение, SPP1+ с CXCL4 от тромбоцитов, PRP-гипотеза), регуляции популяции адипоцитов в дермально ассоциированной жировой ткани dWAT, элиминации биоматериалов. Уделено внимание резидентным макрофагам дермы, расположенным периваскулярно и периневрально в сосочковом и сетчатом слоях, их способности к пролиферации in situ для поддержания гомеостаза, синтеза ферментов коллагеназ, эластаз, гиалуронидазы и цитокинов, регулирующих функции клеток дермы и эпидермиса.
Ключевые слова: макрофаги, моноциты, дермально ассоциированная жировая ткань, клетки Лангерганса, фагоцитоз, гигантские клетки инородного тела, фиброз кожи
Keywords: macrophages, monocytes, dermal white adipose tissue, Langerhans cells, phagocytosis, foreign body giant cell, skin fibrosis
Ключевые слова: макрофаги, моноциты, дермально ассоциированная жировая ткань, клетки Лангерганса, фагоцитоз, гигантские клетки инородного тела, фиброз кожи
________________________________________________
Keywords: macrophages, monocytes, dermal white adipose tissue, Langerhans cells, phagocytosis, foreign body giant cell, skin fibrosis
Полный текст
Список литературы
1. Stossel TP. On the crawling of animal cells. Science. 1993;260(5111):1086-94. DOI:10.1126/science.8493552
2. Ельчанинов А.В., Фатхудинов Т.Х. Макрофаги. М.: ГЭОТАР-Медиа, 2023. DOI:10.33029/9704-7780-9-EAM-2023-1-208
3. Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 2025;10(1):93. DOI:10.1038/s41392-025-02124-y
4. Быков В.Л. Цитология и общая гистология. Функциональная морфология клеток и тканей человека. Учебник для студентов медицинских институтов. СПб: СОТИС, 2002 [Bykov VL. Tsitologiia i obshchaia gistologiia. Funktsionalnaia morfologiia kletok i tkanei cheloveka. Uchebnik dlia studentov meditsinskikh institutov. Saint Petersburg: SOTIS, 2002 (in Russian)].
5. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
6. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 2018;330:5-15. DOI:10.1016/j.cellimm.2018.0
7. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 2019;10:1907. DOI:10.3389/fimmu.2019.01907
8. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. DOI:10.1002/jcp.26429
9. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-73. DOI:10.4049/jimmunol.164.12.6166
10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009
11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670-89. DOI:10.1084/jem.158.3.670
12. Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 2019;51(6):997-1011.e7. DOI:10.1016/j.immuni.2019.11.009
13. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. DOI:10.1016/j.immuni.2014.06.008
14. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-30.e7. DOI:10.1016/j.celrep.2019.06.018
15. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684-96. DOI:10.1016/j.celrep.2016.09.008
16. Wculek SK, Dunphy G, Heras-Murillo I, et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384-408. DOI:10.1038/s41423-021-00791-9.2021
17. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. DOI:10.1016/j.ejphar.2020.173090
18. Oren E, Banerji A, Camargo CJr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J Allergy Clin Immunol. 2008;121(2):533-4. DOI:10.1016/j.jaci.2007.11.005
19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287-92. DOI:10.1084/jem.176.1.287
20. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. DOI:10.1016/j.cmet.2006.05.011
21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. DOI:10.1016/S1471-4906(02)02302-5
22. Gessain G, Bleriot C, Ginhoux F. Non-genetic Heterogeneity of Macrophages in Diseases – A Medical Perspective. Front Cell Dev Biol. 2020;8:613116. DOI:10.3389/fcell.2020.613116
23. Cook DN, Nakano H. A new wrinkle for skin dendritic cell migration. Blood. 2021;137(20):2716-7. DOI:10.1182/blood.2020010619
24. Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34-40. DOI:10.1038/ni.3324
25. Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022;10:e14053. DOI:10.7717/peerj.14053
26. Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng. 2019;21:267-97. DOI:10.1146/annurev-bioeng-062117-121224
27. Hatakeyama M, Fukunaga A, Washio K, et al. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J Immunol. 2017;199(8):2937-47. DOI:10.4049/jimmunol.1601681
28. Wang K, Wen D, Xu X, et al. Extracellular matrix stiffness – The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. DOI:10.3389/fmolb.2023.1132353
29. Varga J, Lafyatis R. Etiology and pathogenesis of systemic sclerosis. Rheumatology: Sixth Edition. Elsevier Inc, 2014.
30. Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The elusive antifibrotic macrophage. Front Med. 2015;2:81. DOI:10.3389/fmed.2015.00081
31. Максимова А.А., Шевела Е.Я., Сахно Л.В., и др. Продукция факторов, участвующих в регуляции фиброза, различными типами макрофагов человека. Медицинская иммунология. 2020;22(4):625-32 [Maksimova AA, Shevela EYa, Sakhno LV. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology. 2020;22(4):625-32 (in Russian)]. DOI:10.15789/1563-0625-POF-1954
32. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600. DOI:10.1165/rcmb.2015-0020TR
33. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1-11. DOI:10.1016/j.brainres.2014.12.045
34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-38. DOI:10.1038/nrneph.2016.48
35. Thomas AW, Kevin MV. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62. DOI:10.1016/j.immuni.2016.02.015.
36. Hoeft K, Schaefer GJL, Kim H, et al. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42(2):112131. DOI:10.1016/j.celrep.2023.112131
37. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis. 2024;15(6):443. DOI:10.1038/s41419-024-06818-z
38. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. DOI:10.3389/fphys.2024.1346612
39. Boschi F, Negri A, Conti A, et al. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat. 2024;255:152289. DOI:10.1016/j.aanat.2024.152289
40. Park C, Jarnagin H, Whitfield M, Pioli P. Macrophages Regulate Adipocyte Differentiation and Proliferation in Skin Fibrosis [abstract]. Arthritis Rheumatol. 2023;75 (suppl 9). Available at: https://acrabstracts.org/abstract/macrophages-regulate-adipocyte-differentiation-and-proliferation-i... Accessed: 05.08.2025.
41. Мураков С.В., Разумовская Е.А., Захаров Д.Ю., и др. Применение поли-L-молочной кислоты в эстетической медицине. Пластическая хирургия и эстетическая медицина. 2023;4:101-11 [Murakov SV, Razumovskaya EA, Zakharov DYu, et al. Poly-L-lactic acid in aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(4):101-11 (in Russian)]. DOI:10.17116/plast.hirurgia2023041101
42. Sheikh Z, Brooks P, Barzilay O. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-701. DOI:10.3390/ma8095269
43. Baranov MV, Kumar M, Sacanna S, et al. Modulation of Immune Responses by Particle Size and Shape. Front Immunol. 2021;11:607945. DOI:10.3389/fimmu.2020.607945
44. Anderson JM, Rodriguez A, Chang DT. Foreign Body Reaction to Biomaterials. Semin Immunol. 2008;20(2):86-100. DOI:10.1016/j.smim.2007.11.004
45. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231-8. DOI:10.1182/blood.v98.4.1231
46. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40. DOI:10.1002/jbm.a.35958
47. Fitzgerald R, Lawrence MB, David JG, et al. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). FACS. Aesthet Surg J. 2018;38(suppl_1):S13-7. DOI:10.1093/asj/sjy01247
48. Lemperle G, Morhenn V, Charrier U. Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation. Aesth Plast Surg. 2003;27(5):354-66. DOI:10.1007/s00266-003-3022-1
49. Ray S, Ta H. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J Funct Biomater. 2020;11(3):51. DOI:10.3390/jfb11030051
50. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-21. DOI:10.1007/s11095-008-9562-y
51. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244-9. DOI:10.1007/s11095-008-9626-z
52. Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408-12. DOI:10.1016/j.jconrel.2010.07.116
53. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):e10051. DOI:10.1371/journal.pone.0010051
54. Могильная Г.М., Фомичева Е.В., Блатт Ю.Е. Иммуногистохимический профиль дермы при введении полимолочной кислоты. Морфологические ведомости. 2020;28(1):23-29 [Mogilnaya GM, Fomicheva EV, Blatt YuE. Immunohistochemical profile of the dermis at the injection of polylactic acid. Morphological newsletter. 2020;28(1):23-9 (in Russian)]. DOI:10.20340/mv-mn.2020.28(1):23-9
2. Ельчанинов А.В., Фатхудинов Т.Х. Макрофаги. М.: ГЭОТАР-Медиа, 2023. DOI:10.33029/9704-7780-9-EAM-2023-1-208
3. Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 2025;10(1):93. DOI:10.1038/s41392-025-02124-y
4. Bykov VL. Tsitologiia i obshchaia gistologiia. Funktsionalnaia morfologiia kletok i tkanei cheloveka. Uchebnik dlia studentov meditsinskikh institutov. Saint Petersburg: SOTIS, 2002 (in Russian).
5. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
6. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 2018;330:5-15. DOI:10.1016/j.cellimm.2018.0
7. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 2019;10:1907. DOI:10.3389/fimmu.2019.01907
8. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. DOI:10.1002/jcp.26429
9. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-73. DOI:10.4049/jimmunol.164.12.6166
10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009
11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670-89. DOI:10.1084/jem.158.3.670
12. Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 2019;51(6):997-1011.e7. DOI:10.1016/j.immuni.2019.11.009
13. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. DOI:10.1016/j.immuni.2014.06.008
14. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-30.e7. DOI:10.1016/j.celrep.2019.06.018
15. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684-96. DOI:10.1016/j.celrep.2016.09.008
16. Wculek SK, Dunphy G, Heras-Murillo I, et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384-408. DOI:10.1038/s41423-021-00791-9.2021
17. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. DOI:10.1016/j.ejphar.2020.173090
18. Oren E, Banerji A, Camargo CJr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J Allergy Clin Immunol. 2008;121(2):533-4. DOI:10.1016/j.jaci.2007.11.005
19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287-92. DOI:10.1084/jem.176.1.287
20. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. DOI:10.1016/j.cmet.2006.05.011
21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. DOI:10.1016/S1471-4906(02)02302-5
22. Gessain G, Bleriot C, Ginhoux F. Non-genetic Heterogeneity of Macrophages in Diseases – A Medical Perspective. Front Cell Dev Biol. 2020;8:613116. DOI:10.3389/fcell.2020.613116
23. Cook DN, Nakano H. A new wrinkle for skin dendritic cell migration. Blood. 2021;137(20):2716-7. DOI:10.1182/blood.2020010619
24. Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34-40. DOI:10.1038/ni.3324
25. Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022;10:e14053. DOI:10.7717/peerj.14053
26. Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng. 2019;21:267-97. DOI:10.1146/annurev-bioeng-062117-121224
27. Hatakeyama M, Fukunaga A, Washio K, et al. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J Immunol. 2017;199(8):2937-47. DOI:10.4049/jimmunol.1601681
28. Wang K, Wen D, Xu X, et al. Extracellular matrix stiffness – The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. DOI:10.3389/fmolb.2023.1132353
29. Varga J, Lafyatis R. Etiology and pathogenesis of systemic sclerosis. Rheumatology: Sixth Edition. Elsevier Inc, 2014.
30. Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The elusive antifibrotic macrophage. Front Med. 2015;2:81. DOI:10.3389/fmed.2015.00081
31. Maksimova AA, Shevela EYa, Sakhno LV. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology. 2020;22(4):625-32 (in Russian). DOI:10.15789/1563-0625-POF-1954
32. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600. DOI:10.1165/rcmb.2015-0020TR
33. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1-11. DOI:10.1016/j.brainres.2014.12.045
34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-38. DOI:10.1038/nrneph.2016.48
35. Thomas AW, Kevin MV. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62. DOI:10.1016/j.immuni.2016.02.015.
36. Hoeft K, Schaefer GJL, Kim H, et al. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42(2):112131. DOI:10.1016/j.celrep.2023.112131
37. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis. 2024;15(6):443. DOI:10.1038/s41419-024-06818-z
38. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. DOI:10.3389/fphys.2024.1346612
39. Boschi F, Negri A, Conti A, et al. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat. 2024;255:152289. DOI:10.1016/j.aanat.2024.152289
40. Park C, Jarnagin H, Whitfield M, Pioli P. Macrophages Regulate Adipocyte Differentiation and Proliferation in Skin Fibrosis [abstract]. Arthritis Rheumatol. 2023;75 (suppl 9). Available at: https://acrabstracts.org/abstract/macrophages-regulate-adipocyte-differentiation-and-proliferation-i... Accessed: 05.08.2025.
41. Murakov SV, Razumovskaya EA, Zakharov DYu, et al. Poly-L-lactic acid in aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(4):101-11 (in Russian). DOI:10.17116/plast.hirurgia2023041101
42. Sheikh Z, Brooks P, Barzilay O. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-701. DOI:10.3390/ma8095269
43. Baranov MV, Kumar M, Sacanna S, et al. Modulation of Immune Responses by Particle Size and Shape. Front Immunol. 2021;11:607945. DOI:10.3389/fimmu.2020.607945
44. Anderson JM, Rodriguez A, Chang DT. Foreign Body Reaction to Biomaterials. Semin Immunol. 2008;20(2):86-100. DOI:10.1016/j.smim.2007.11.004
45. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231-8. DOI:10.1182/blood.v98.4.1231
46. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40. DOI:10.1002/jbm.a.35958
47. Fitzgerald R, Lawrence MB, David JG, et al. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). FACS. Aesthet Surg J. 2018;38(suppl_1):S13-7. DOI:10.1093/asj/sjy01247
48. Lemperle G, Morhenn V, Charrier U. Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation. Aesth Plast Surg. 2003;27(5):354-66. DOI:10.1007/s00266-003-3022-1
49. Ray S, Ta H. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J Funct Biomater. 2020;11(3):51. DOI:10.3390/jfb11030051
50. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-21. DOI:10.1007/s11095-008-9562-y
51. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244-9. DOI:10.1007/s11095-008-9626-z
52. Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408-12. DOI:10.1016/j.jconrel.2010.07.116
53. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):e10051. DOI:10.1371/journal.pone.0010051
54. Mogilnaya GM, Fomicheva EV, Blatt YuE. Immunohistochemical profile of the dermis at the injection of polylactic acid. Morphological newsletter. 2020;28(1):23-9 (in Russian). DOI:10.20340/mv-mn.2020.28(1):23-9
2. Ельчанинов А.В., Фатхудинов Т.Х. Макрофаги. М.: ГЭОТАР-Медиа, 2023. DOI:10.33029/9704-7780-9-EAM-2023-1-208
3. Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 2025;10(1):93. DOI:10.1038/s41392-025-02124-y
4. Быков В.Л. Цитология и общая гистология. Функциональная морфология клеток и тканей человека. Учебник для студентов медицинских институтов. СПб: СОТИС, 2002 [Bykov VL. Tsitologiia i obshchaia gistologiia. Funktsionalnaia morfologiia kletok i tkanei cheloveka. Uchebnik dlia studentov meditsinskikh institutov. Saint Petersburg: SOTIS, 2002 (in Russian)].
5. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
6. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 2018;330:5-15. DOI:10.1016/j.cellimm.2018.0
7. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 2019;10:1907. DOI:10.3389/fimmu.2019.01907
8. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. DOI:10.1002/jcp.26429
9. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-73. DOI:10.4049/jimmunol.164.12.6166
10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009
11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670-89. DOI:10.1084/jem.158.3.670
12. Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 2019;51(6):997-1011.e7. DOI:10.1016/j.immuni.2019.11.009
13. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. DOI:10.1016/j.immuni.2014.06.008
14. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-30.e7. DOI:10.1016/j.celrep.2019.06.018
15. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684-96. DOI:10.1016/j.celrep.2016.09.008
16. Wculek SK, Dunphy G, Heras-Murillo I, et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384-408. DOI:10.1038/s41423-021-00791-9.2021
17. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. DOI:10.1016/j.ejphar.2020.173090
18. Oren E, Banerji A, Camargo CJr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J Allergy Clin Immunol. 2008;121(2):533-4. DOI:10.1016/j.jaci.2007.11.005
19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287-92. DOI:10.1084/jem.176.1.287
20. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. DOI:10.1016/j.cmet.2006.05.011
21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. DOI:10.1016/S1471-4906(02)02302-5
22. Gessain G, Bleriot C, Ginhoux F. Non-genetic Heterogeneity of Macrophages in Diseases – A Medical Perspective. Front Cell Dev Biol. 2020;8:613116. DOI:10.3389/fcell.2020.613116
23. Cook DN, Nakano H. A new wrinkle for skin dendritic cell migration. Blood. 2021;137(20):2716-7. DOI:10.1182/blood.2020010619
24. Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34-40. DOI:10.1038/ni.3324
25. Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022;10:e14053. DOI:10.7717/peerj.14053
26. Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng. 2019;21:267-97. DOI:10.1146/annurev-bioeng-062117-121224
27. Hatakeyama M, Fukunaga A, Washio K, et al. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J Immunol. 2017;199(8):2937-47. DOI:10.4049/jimmunol.1601681
28. Wang K, Wen D, Xu X, et al. Extracellular matrix stiffness – The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. DOI:10.3389/fmolb.2023.1132353
29. Varga J, Lafyatis R. Etiology and pathogenesis of systemic sclerosis. Rheumatology: Sixth Edition. Elsevier Inc, 2014.
30. Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The elusive antifibrotic macrophage. Front Med. 2015;2:81. DOI:10.3389/fmed.2015.00081
31. Максимова А.А., Шевела Е.Я., Сахно Л.В., и др. Продукция факторов, участвующих в регуляции фиброза, различными типами макрофагов человека. Медицинская иммунология. 2020;22(4):625-32 [Maksimova AA, Shevela EYa, Sakhno LV. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology. 2020;22(4):625-32 (in Russian)]. DOI:10.15789/1563-0625-POF-1954
32. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600. DOI:10.1165/rcmb.2015-0020TR
33. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1-11. DOI:10.1016/j.brainres.2014.12.045
34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-38. DOI:10.1038/nrneph.2016.48
35. Thomas AW, Kevin MV. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62. DOI:10.1016/j.immuni.2016.02.015.
36. Hoeft K, Schaefer GJL, Kim H, et al. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42(2):112131. DOI:10.1016/j.celrep.2023.112131
37. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis. 2024;15(6):443. DOI:10.1038/s41419-024-06818-z
38. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. DOI:10.3389/fphys.2024.1346612
39. Boschi F, Negri A, Conti A, et al. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat. 2024;255:152289. DOI:10.1016/j.aanat.2024.152289
40. Park C, Jarnagin H, Whitfield M, Pioli P. Macrophages Regulate Adipocyte Differentiation and Proliferation in Skin Fibrosis [abstract]. Arthritis Rheumatol. 2023;75 (suppl 9). Available at: https://acrabstracts.org/abstract/macrophages-regulate-adipocyte-differentiation-and-proliferation-i... Accessed: 05.08.2025.
41. Мураков С.В., Разумовская Е.А., Захаров Д.Ю., и др. Применение поли-L-молочной кислоты в эстетической медицине. Пластическая хирургия и эстетическая медицина. 2023;4:101-11 [Murakov SV, Razumovskaya EA, Zakharov DYu, et al. Poly-L-lactic acid in aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(4):101-11 (in Russian)]. DOI:10.17116/plast.hirurgia2023041101
42. Sheikh Z, Brooks P, Barzilay O. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-701. DOI:10.3390/ma8095269
43. Baranov MV, Kumar M, Sacanna S, et al. Modulation of Immune Responses by Particle Size and Shape. Front Immunol. 2021;11:607945. DOI:10.3389/fimmu.2020.607945
44. Anderson JM, Rodriguez A, Chang DT. Foreign Body Reaction to Biomaterials. Semin Immunol. 2008;20(2):86-100. DOI:10.1016/j.smim.2007.11.004
45. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231-8. DOI:10.1182/blood.v98.4.1231
46. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40. DOI:10.1002/jbm.a.35958
47. Fitzgerald R, Lawrence MB, David JG, et al. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). FACS. Aesthet Surg J. 2018;38(suppl_1):S13-7. DOI:10.1093/asj/sjy01247
48. Lemperle G, Morhenn V, Charrier U. Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation. Aesth Plast Surg. 2003;27(5):354-66. DOI:10.1007/s00266-003-3022-1
49. Ray S, Ta H. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J Funct Biomater. 2020;11(3):51. DOI:10.3390/jfb11030051
50. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-21. DOI:10.1007/s11095-008-9562-y
51. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244-9. DOI:10.1007/s11095-008-9626-z
52. Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408-12. DOI:10.1016/j.jconrel.2010.07.116
53. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):e10051. DOI:10.1371/journal.pone.0010051
54. Могильная Г.М., Фомичева Е.В., Блатт Ю.Е. Иммуногистохимический профиль дермы при введении полимолочной кислоты. Морфологические ведомости. 2020;28(1):23-29 [Mogilnaya GM, Fomicheva EV, Blatt YuE. Immunohistochemical profile of the dermis at the injection of polylactic acid. Morphological newsletter. 2020;28(1):23-9 (in Russian)]. DOI:10.20340/mv-mn.2020.28(1):23-9
________________________________________________
2. Ельчанинов А.В., Фатхудинов Т.Х. Макрофаги. М.: ГЭОТАР-Медиа, 2023. DOI:10.33029/9704-7780-9-EAM-2023-1-208
3. Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther. 2025;10(1):93. DOI:10.1038/s41392-025-02124-y
4. Bykov VL. Tsitologiia i obshchaia gistologiia. Funktsionalnaia morfologiia kletok i tkanei cheloveka. Uchebnik dlia studentov meditsinskikh institutov. Saint Petersburg: SOTIS, 2002 (in Russian).
5. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
6. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 2018;330:5-15. DOI:10.1016/j.cellimm.2018.0
7. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 2019;10:1907. DOI:10.3389/fimmu.2019.01907
8. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-40. DOI:10.1002/jcp.26429
9. Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-73. DOI:10.4049/jimmunol.164.12.6166
10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009
11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670-89. DOI:10.1084/jem.158.3.670
12. Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 2019;51(6):997-1011.e7. DOI:10.1016/j.immuni.2019.11.009
13. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. DOI:10.1016/j.immuni.2014.06.008
14. Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-30.e7. DOI:10.1016/j.celrep.2019.06.018
15. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684-96. DOI:10.1016/j.celrep.2016.09.008
16. Wculek SK, Dunphy G, Heras-Murillo I, et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384-408. DOI:10.1038/s41423-021-00791-9.2021
17. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. DOI:10.1016/j.ejphar.2020.173090
18. Oren E, Banerji A, Camargo CJr. Vitamin D and atopic disorders in an obese population screened for vitamin D deficiency. J Allergy Clin Immunol. 2008;121(2):533-4. DOI:10.1016/j.jaci.2007.11.005
19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287-92. DOI:10.1084/jem.176.1.287
20. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. DOI:10.1016/j.cmet.2006.05.011
21. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. DOI:10.1016/S1471-4906(02)02302-5
22. Gessain G, Bleriot C, Ginhoux F. Non-genetic Heterogeneity of Macrophages in Diseases – A Medical Perspective. Front Cell Dev Biol. 2020;8:613116. DOI:10.3389/fcell.2020.613116
23. Cook DN, Nakano H. A new wrinkle for skin dendritic cell migration. Blood. 2021;137(20):2716-7. DOI:10.1182/blood.2020010619
24. Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17(1):34-40. DOI:10.1038/ni.3324
25. Yu Y, Yue Z, Xu M, et al. Macrophages play a key role in tissue repair and regeneration. PeerJ. 2022;10:e14053. DOI:10.7717/peerj.14053
26. Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng. 2019;21:267-97. DOI:10.1146/annurev-bioeng-062117-121224
27. Hatakeyama M, Fukunaga A, Washio K, et al. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J Immunol. 2017;199(8):2937-47. DOI:10.4049/jimmunol.1601681
28. Wang K, Wen D, Xu X, et al. Extracellular matrix stiffness – The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. DOI:10.3389/fmolb.2023.1132353
29. Varga J, Lafyatis R. Etiology and pathogenesis of systemic sclerosis. Rheumatology: Sixth Edition. Elsevier Inc, 2014.
30. Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The elusive antifibrotic macrophage. Front Med. 2015;2:81. DOI:10.3389/fmed.2015.00081
31. Maksimova AA, Shevela EYa, Sakhno LV. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology. 2020;22(4):625-32 (in Russian). DOI:10.15789/1563-0625-POF-1954
32. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585-600. DOI:10.1165/rcmb.2015-0020TR
33. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1-11. DOI:10.1016/j.brainres.2014.12.045
34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-38. DOI:10.1038/nrneph.2016.48
35. Thomas AW, Kevin MV. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62. DOI:10.1016/j.immuni.2016.02.015.
36. Hoeft K, Schaefer GJL, Kim H, et al. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42(2):112131. DOI:10.1016/j.celrep.2023.112131
37. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis. 2024;15(6):443. DOI:10.1038/s41419-024-06818-z
38. Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol. 2024;15:1346612. DOI:10.3389/fphys.2024.1346612
39. Boschi F, Negri A, Conti A, et al. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat. 2024;255:152289. DOI:10.1016/j.aanat.2024.152289
40. Park C, Jarnagin H, Whitfield M, Pioli P. Macrophages Regulate Adipocyte Differentiation and Proliferation in Skin Fibrosis [abstract]. Arthritis Rheumatol. 2023;75 (suppl 9). Available at: https://acrabstracts.org/abstract/macrophages-regulate-adipocyte-differentiation-and-proliferation-i... Accessed: 05.08.2025.
41. Murakov SV, Razumovskaya EA, Zakharov DYu, et al. Poly-L-lactic acid in aesthetic medicine. Plastic Surgery and Aesthetic Medicine. 2023;(4):101-11 (in Russian). DOI:10.17116/plast.hirurgia2023041101
42. Sheikh Z, Brooks P, Barzilay O. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-701. DOI:10.3390/ma8095269
43. Baranov MV, Kumar M, Sacanna S, et al. Modulation of Immune Responses by Particle Size and Shape. Front Immunol. 2021;11:607945. DOI:10.3389/fimmu.2020.607945
44. Anderson JM, Rodriguez A, Chang DT. Foreign Body Reaction to Biomaterials. Semin Immunol. 2008;20(2):86-100. DOI:10.1016/j.smim.2007.11.004
45. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231-8. DOI:10.1182/blood.v98.4.1231
46. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40. DOI:10.1002/jbm.a.35958
47. Fitzgerald R, Lawrence MB, David JG, et al. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). FACS. Aesthet Surg J. 2018;38(suppl_1):S13-7. DOI:10.1093/asj/sjy01247
48. Lemperle G, Morhenn V, Charrier U. Human Histology and Persistence of Various Injectable Filler Substances for Soft Tissue Augmentation. Aesth Plast Surg. 2003;27(5):354-66. DOI:10.1007/s00266-003-3022-1
49. Ray S, Ta H. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J Funct Biomater. 2020;11(3):51. DOI:10.3390/jfb11030051
50. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-21. DOI:10.1007/s11095-008-9562-y
51. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244-9. DOI:10.1007/s11095-008-9626-z
52. Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408-12. DOI:10.1016/j.jconrel.2010.07.116
53. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):e10051. DOI:10.1371/journal.pone.0010051
54. Mogilnaya GM, Fomicheva EV, Blatt YuE. Immunohistochemical profile of the dermis at the injection of polylactic acid. Morphological newsletter. 2020;28(1):23-9 (in Russian). DOI:10.20340/mv-mn.2020.28(1):23-9
Авторы
Л.В. Кирсанова*1–3, Е.Р. Аравийская1,2, М.Г. Рыбакова1, Е.В. Соколовский1, А.И. Богатенков2
1ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, Санкт-Петербург, Российская Федерация
2Институт красоты «Галактика», Санкт-Петербург, Российская Федерация
3Клиника косметологии Candela, Санкт-Петербург, Российская Федерация
*lvkirsanova@yandex.ru
1Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russian Federation
2Galaxy Beauty Institute, Saint Petersburg, Russian Federation;
3Candela Cosmetology Clinic, Saint Petersburg, Russian Federation
*lvkirsanova@yandex.ru
1ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, Санкт-Петербург, Российская Федерация
2Институт красоты «Галактика», Санкт-Петербург, Российская Федерация
3Клиника косметологии Candela, Санкт-Петербург, Российская Федерация
*lvkirsanova@yandex.ru
________________________________________________
1Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russian Federation
2Galaxy Beauty Institute, Saint Petersburg, Russian Federation;
3Candela Cosmetology Clinic, Saint Petersburg, Russian Federation
*lvkirsanova@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
