Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • ИммуноГалактика (NEW!)
    • Гормональный оркестр
    • CardioSPACE
    • NeuroFusion (NEW!)
    • Современная Онкология
    • Урологика
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      ИммуноГалактика (NEW!)
      Гормональный оркестр
      CardioSPACE
      NeuroFusion (NEW!)
      Современная Онкология
      Урологика
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • ИммуноГалактика (NEW!)
      • Гормональный оркестр
      • CardioSPACE
      • NeuroFusion (NEW!)
      • Современная Онкология
      • Урологика
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • ИммуноГалактика (NEW!)
          • Гормональный оркестр
          • CardioSPACE
          • NeuroFusion (NEW!)
          • Современная Онкология
          • Урологика
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Consilium Medicum
        • 2025
        • №6 Дерматология и аллергология
        • Роль структурных белков кожи в развитии атопического дерматита

        Роль структурных белков кожи в развитии атопического дерматита

        Кандрашкина Ю.А., Орлова Е.А. Роль структурных белков кожи в развитии атопического дерматита. Consilium Medicum. 2025;27(6):361–365. DOI: 10.26442/20751753.2025.6.203306

        © ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.

        ________________________________________________

        Kandrashkina JuA, Orlova EA. The role of structural skin proteins in the development of atopic dermatitis: A review. Consilium Medicum. 2025;27(6):361–365. DOI: 10.26442/20751753.2025.6.203306

        Роль структурных белков кожи в развитии атопического дерматита

        Кандрашкина Ю.А., Орлова Е.А. Роль структурных белков кожи в развитии атопического дерматита. Consilium Medicum. 2025;27(6):361–365. DOI: 10.26442/20751753.2025.6.203306

        © ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.

        ________________________________________________

        Kandrashkina JuA, Orlova EA. The role of structural skin proteins in the development of atopic dermatitis: A review. Consilium Medicum. 2025;27(6):361–365. DOI: 10.26442/20751753.2025.6.203306

        • Читать PDF
          Роль структурных белков кожи в развитии атопического дерматита

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Полный текст
        • Список литературы
        • Авторы
        Аннотация
        Атопический дерматит (АтД) – хроническое воспалительное заболевание кожи, существенно снижающее качество жизни. В патогенезе АтД основополагающими факторами являются дисфункция эпидермального барьера и нарушение иммунной регуляции. Кератиноциты выполняют барьерную функцию на физическом и химическом уровне. В процессе формирования рогового слоя происходит последовательная выработка белковых компонентов. Такие белки, как филаггрин, филаггрин 2, инволюкрин и лорикрин, имеют решающее значение для функционирования эпидермального барьера. Помимо дисфункции эпидермального барьера АтД характеризуется развитием кожного воспалительного процесса, вызванного Т-хелперами (Тh) 2-го типа. Цитокины, полученные из Тh-2, такие как интерлейкин (ИЛ)-4, 13 и 31, играют значимую роль в развитии и прогрессировании АтД. Среда, образованная цитокинами, продуцированными Th-2 и 22, при АтД мешает скоординированной эпидермальной дифференцировке и созреванию кератиноцитов, усугубляя продукцию структурных белков кожи, ухудшая при этом дисфункцию кожного барьера. Дисфункция кожного барьера играет важную роль в развитии АтД. При АтД снижается экспрессия структурных белков кожи, таких как филаггрин, инволюкрин, лорикрин. В настоящее время механизмы, посредством которых регулируется продукция структурных белков кожи, до конца не изучены, что открывает возможности для дополнительных исследований. Углубленное изучение данной проблемы несет перспективу для разработки новых стратегий в лечении АтД. 

        Ключевые слова: атопический дерматит, филаггрин, инволюкрин, лорикрин, интерлейкин

        ________________________________________________

        Atopic dermatitis (AtD) is a chronic inflammatory skin disease that significantly reduces the quality of life. The underlying factors in the pathogenesis of AtD are dysfunction of the epidermal barrier and impaired immune regulation. Keratinocytes perform a barrier function at the physical and chemical levels. During the formation of the stratum corneum, protein components are sequentially produced. Proteins such as filaggrin, filaggrin 2, involucrin, and loricrin are critical for the functioning of the epidermal barrier. In addition to dysfunction of the epidermal barrier, AtD is characterized by the development of a skin inflammatory process caused by T-helpers (Th) type 2. Th-2-derived cytokines, such as interleukin (IL)-4, 13 and 31, play a significant role in the development and progression of AtD. The environment formed by Th-2 and Th-22-derived cytokines in AtD interferes with coordinated epidermal differentiation and maturation of keratinocytes, aggravating the production of structural skin proteins, thereby worsening the dysfunction of the skin barrier. Dysfunction of the skin barrier plays an important role in the development of AtD. In AtD, the expression of structural skin proteins such as filaggrin, involucrin, and loricrin decreases. To date, the mechanisms by which the production of structural skin proteins is regulated have not been fully studied, which opens up opportunities for additional research. In-depth study of this problem holds promise for the development of new strategies in the treatment of AtD. 

        Keywords: atopic dermatitis, filaggrin, involucrin, loricrin, interleukin

        Полный текст

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        Список литературы
        1. Kim HJ, Park M, Jang S, et al. Pulsatilla koreana Nakai Extract Attenuates Atopic Dermatitis-like Symptoms by Regulating Skin Barrier Factors and Inhibiting the JAK/STAT Pathway. Int J Mol Sci. 2025;26(7):2994. DOI:10.3390/ijms26072994
        2. Ong PY. Atopic dermatitis: Is innate or adaptive immunity in control? A clinical perspective. Front Immunol. 2022;13:943640. DOI:10.3389/fimmu.2022.943640
        3. Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-82. DOI:10.1111/jdv.14891
        4. Schoch JJ, Anderson KR, Jones AE, et al. Atopic Dermatitis: Update on Skin-Directed Management: Clinical Report. Pediatrics. 2025;e2025071812. DOI:10.1542/peds.2025-071812
        5. Marks R. The stratum corneum barrier: the final frontier. J Nutr. 2004;134(8):2017S-21. DOI:10.1093/jn/134.8.2017S
        6. Wong R, Geyer S, Weninger W, et al. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016; 25:92-8. DOI:10.1111/exd.12832
        7. Jensen JM, Proksch E. The skin's barrier. G Ital Dermatol Venereol. 2009;144:689-700.
        8. Szondi DC, Crompton RA, Oon L, et al. A role for arginase in skin epithelial differentiation and antimicrobial peptide production. British Journal of Dermatology. Br J Dermatol. 2025; 00:1-11. DOI:10.1093/bjd/ljaf057
        9. Мурашкин Н.Н., Савелова А.А., Иванов Р.А., и др. Современные представления о роли эпидермального барьера в развитии атопического фенотипа у детей. Вопросы современной педиатрии. 2019;18(5):386-92 [Murashkin NN, Savelova AA, Ivanov RA et al. Modern concepts of the role of the epidermal barrier in the development of the atopic phenotype in children. Voprosy sovremennoi pediatrii. 2019;18(5):386-92 (in Russian)]. DOI:10.15690/vsp.v18i5.2064 
        10. Zhao LP, Di Z, Zhang L, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol. 2012;26(5):572-5DOI:10.1111/j.1468- 3083.2011.04120.x
        11. Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci. 2020;21(15):5382. DOI:10.3390/ijms21155382
        12. Jang SI, Steinert PM. Loricrin expression in cultured human keratinocytes is controlled by a complex interplay between transcription factors of the Sp1, CREB, AP1, and AP2 families. J Biol Chem. 2002;277(44):42268-79. DOI:10.1074/jbc.M205593200
        13. Бейлин А.К., Риппа А.Л., Шаробаро В.И., и др. Реконструированный эпидермис человека in vitro – модель для фундаментальных и прикладных исследований кожи человека. Вестник дерматологии и венерологии. 2020;96(2):24-34 [Beilin AK, Rippa AL, Sharobaro VI, et al. The Reconstructed Human Epidermis in vitro – a Model for Basic and Applied Research of Human Skin. Vestnik dermatologii i venerologii. 2020;96(2):24-34 (in Russian)]. DOI:10.25208/vdv1107 
        14. Bikle DD. Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord. 2012;13(1):3-19. DOI:10.1007/s11154-011-9194-0
        15. Abhishek S, Palamadai Krishnan S. Epidermal Differentiation Complex: A Review on Its Epigenetic Regulation and Potential Drug Targets. Cell J. 2016;18(1):1-6. DOI:10.22074/cellj.2016.3980
        16. Cho YH, Kim JW, Kim N, et al. Lactobacillus brevis-Derived Exosomes Enhance Skin Barrier Integrity by Upregulating Key Barrier-Related Proteins. Clin Cosmet Ivestig Dermatol. 2025;18:1151-62. DOI:10.2147/CCID.S512793
        17. Ferrara F, Yan X, Pecorelli A, et al. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol. 2024;23(8):2644-56. DOI:10.1111/jocd.16321
        18. Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124(1):36-43. DOI:10.1016/j.anai.2019.10.008
        19. Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol. 2024;132(2):187-95. DOI:10.1016/j.anai.2023.09.009
        20. Kalankariyan S, Thottapillil A, Saxena A, et al. An in silico approach deciphering the commensal dynamics in the cutaneous milieu. NPJ Syst Biol Applications. 2025;11(1):42. DOI:10.1038/s41540-025-00524-y
        21. Barthe M, Clerbaux LA, Thénot JP, et al. Systematic characterization of the barrier function of diverse ex vivo models of damaged human skin. Front Med. 2024;11:1481645. DOI:10.3389/fmed.2024.1481645
        22. Seguchi T, Cui CY, Kusuda S, et al. Decreased expression of filaggrin in atopic skin. Arch Dermatol Res. 1996;288:442-6.
        23. Bak SG, Lim HJ, Won YS, et al. Regulatory effects of Ishige okamurae extract and Diphlorethohydroxycarmalol on skin barrier function. Heliyon. 2024;10(23):e40227. DOI:10.1016/j.heliyon.2024.e40227
        24. Тамразова О.Б., Глухова Е.А. Уникальная молекула филаггрин в структуре эпидермиса и ее роль в развитии ксероза и патогенеза атопического дерматита. Клиническая дерматология и венерология. 2021;20(6):102-10 [Tamrazova OB, Glukhova EA. Unique molecule filaggrin in epidermal structure and its role in the xerosis development and atopic dermatitis pathogenesis. Russian Journal of Clinical Dermatology and Venereology. 2021;20(6):102-10 (in Russian)]. DOI:10.17116/klinderma202120061102
        25. Kobiela A, Hovhannisyan L, Jurkowska P, et al. Excess filaggrin in keratinocytes is removed by extracellular vesicles to prevent premature death and this mechanism can be hijacked by Staphylococcus aureus in a TLR2–dependent fashion. J Extracell Vesicles. 2023;12(6):e12335. DOI:10.1002/jev2.12335. 
        26. Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci. 2021;22(15):7912. DOI:10.3390/ijms22157912
        27. Круглова Л.С., Переверзина Н.О. Филаггрин: от истории открытия до применения модуляторов филаггрина в клинической практике (обзор литературы). Медицинский алфавит. 2021;27:8-12 [Kruglova LS, Pereverzina NO. Filaggrin: from history of discovery to clinical usage (literature review). Medical alphabet. 2021;27:8-12 (in Russian)]. DOI:10.33667/2078-5631-2021-27-8-12
        28. Watabe A, Sugawara T, Kikuchi K, et al. Sweat constitutes several natural moisturizing factors, lactate, urea, sodium, and potassium. J Dermatol Sci. 2013;72(2):177-82. DOI:10.1016/j.jdermsci.2013.06.005
        29. Presland RB, Fleckman P, Haydock PV, et al. Characterization of the human epidermal profilaggrin gene: Genomic organization and identification of an S-100- like calcium binding domain at the amino terminus. J Biol Chem. 1992;267(33):23772-81. 
        30. Seykora J, Dentchev T, Margolis DJ. Filaggrin-2 barrier protein inversely varies with skin inflammation. Experimental dermatology. 2015;24(9):720-2. DOI:10.1111/exd.12749
        31. Donovan M, Salamito M, Thomas-Collignon A, et al. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation. PloS One. 2020;15(5):e0232679. DOI:10.1371/journal.pone.0232679
        32. Wu Z, Hansmann B, Meyer-Hoffert U, et al. Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. PLoS One. 2009;4:e5227. DOI:10.1371/journal.pone.0005227
        33. Pendaries V, Le Lamer M, Cau L, et al. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Dis. 2015;6:e1656. DOI:10.1038/cddis.2015.29
        34. Mohamad J, Sarig O, Godsel LM, et al. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome Type A. J Investig Dermatol. 2018;138:1736-43. DOI:10.1016/j.jid.2018.04.032
        35. Левашева С.В., Эткина Э.И., Гурьева Л.Л., и др. Мутации гена филаггрина как фактор нарушения регуляции эпидермального барьера у детей. Лечащий врач. 2016;(1):24-2-6 [Levasheva SV, Etkina EI, Gur’eva LL, et al. Filaggrin gene mutations as a factor in dysregulation of the epidermal barrier in children. Attending Physician. 2016;(1):24-6 (in Russian)]. 
        36. Makowska K, Nowaczyk J, Blicharz L, et al. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int J Mol Sci. 2023;24(1):781. DOI:10.3390/ijms24010781
        37. Rasheed Z, Zedan K, Saif GB, et al. Markers of atopic dermatitis, allergic rhinitis and bronchial asthma in pediatric patients: correlation with filaggrin, eosinophil major basic protein and immunoglobulin E. Clin Mol Allergy. 2018;16:23. DOI:10.1186/s12948-018-0102-y
        38. Кандрашкина Ю.А., Орлова Е.А., Левашова О.А., Костина Е.М. Филаггрин как биомаркер обострения атопического дерматита при беременности. Фарматека. 2024;31(1):183-7 [Kandrashkina YuA, Orlova EA, Levashova OA, Kostina EM. Filaggrin as a biomarker of exacerbation of atopic dermatitis during pregnancy. Pharmateca. 2024;31(1):183-7 (in Russian)]. DOI:10.18565/pharmateca.2024.1.183-187
        39. Bao L, Alexander JB, Zhang H, et al. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein. J Interferon Cytokine Res. 2016;36(6):374-81. DOI:10.1089/jir.2015.0056
        40. Eckert RL, Yaffe MB, Crish JF, et al. Involucrin – structure and role in envelope assembly. J Invest Dermatol. 1993;100(5):613-7. DOI:10.1111/1523-1747.ep12472288
        41. Русанов А.Л., Кожин П.М., Ромашин Д.Д., и др. Влияние модуляции активности р53 на взаимодействие членов семейства р53 в процессе дифференцировки кератиноцитов линии НаСаТ. Вестник РГМУ. 2020;(6):60-7 [Rusanov AL, Kozhin PM, Romashin DD, et al. The effect of p53 activity modulation on the interaction of p53 family members during differentiation of HaCaT keratinocytes. Vestnik RGMU. 2020;(6):60-7 (in Russian)]. DOI:10.24075/vrgmu.2020.082
        42. Rawlings AV, Matts PJ. Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol. 2005;124:1099-110.
        43. Тамразова О.Б. Ксероз кожи: симптом, синдром или болезнь? Клиническая дерматология и венерология. 2019;18(2):193-202 [Tamrazova OB. Skin xerosis: symptom, syndrome or disease? Russian Journal of Clinical Dermatology and Venereology. 2019;18(2):193-202 (in Russian)]. DOI:10.17116/klinderma201918021193
        44. Ishida-Yamamoto A. Loricrin keratoderma: a novel disease entity characterized by nuclear accumulation of mutant loricrin. J Dermatolog Sci. 2003;31(1):3-8. DOI:10.1016/S0923-1811(02)00143-3.
        45. Ishitsuka Y, Roop DR. Loricrin at the Boundary between Inside and Outside. Biomolecules. 2022;12(5):673. DOI:10.3390/biom12050673
        46. Moreno AS, McPhee R, Arruda LK, Howell MD. Targeting the T Helper 2 Inflammatory Axis in Atopic Dermatitis. Int Arch Allergy Immunol. 2016;171(2):71-80. DOI:10.1159/000451083
        47. Furue M. T helper type 2 signatures in atopic dermatitis. J Cutan Immunol Allergy. 2018;1:93-9. DOI:10.1002/cia2.12023
        48. Makino T, Mizawa M, Takemoto K, et al. Effect of tumour necrotic factor-α, interleukin-17 and interleukin-22 on the expression of filaggerin-2 and hornerin: Analysis of a three-dimensional psoriatic skin model. Skin Health Dis. 2024;4(6):e440. DOI:10.1002/ski2.440
        49. Combarros D, Brahmi R, Musaefendic E, et al. Reconstructed Epidermis Produced with Atopic Dog Keratinocytes Only Exhibit Skin Barrier Defects after the Addition of Proinflammatory and Allergic Cytokines. JID Innovations. 2024;5(2):100330. DOI:10.1016/j.xjidi.2024.100330
        50. Sharafian Z, Littlejohn PT, Michalski C, et al. Crosstalk with infant-derived Th17 cells, as well as exposure to IL-22 promotes maturation of intestinal epithelial cells in an enteroid model. Frontiers Immunol. 2025;16:1582688. DOI:10.3389/fimmu.2025.1582688
        51. Boniface K, Bernard FX, Garcia M, et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174:3695-702. DOI:10.4049/jimmunol.174.6.3695
        52. Muromoto R, Hirao T, Tawa K, et al. IL-17A plays a central role in the expression of psoriasis signature genes through the induction of IκB-ζ in keratinocytes. Int Immunol. 2016;28(9):443-52. DOI:10.1093/intimm/dxw011
        53. Lai X, Li X, Chang L, et al. IL-19 up-regulates mucin 5AC production in patients with chronic rhinosinusitis via STAT3 pathway. Front Immunol. 2019;10:1682. DOI:10.3389/fimmu.2019.01682
        54. Keller KE, Yang YF, Sun YY, et al. Analysis of interleukin-20 receptor complexes in trabecular meshwork cells and effects of cytokine signaling in anterior segment perfusion culture. Mol Vision. 2019;25:266-82.
        55. Dai X, Shiraishi K, Muto J, et al. Nuclear IL-33 Plays an Important Role in IL-31 – Mediated Downregulation of FLG, Keratin 1, and Keratin 10 by Regulating Signal Transducer and Activator of Transcription 3 Activation in Human Keratinocytes. J Investig Dermatol. 2022;142(1):136-44.e3. DOI:10.1016/j.jid.2021.05.033
        56. Rizzo JM, Oyelakin A, Min S, et al. ΔNp63 regulates IL-33 and IL-31 signaling in atopic dermatitis. Cell Death Differentiation. 2016;23(6):1073-85. DOI:10.1038/cdd.2015.162
        57. Toskas A, Milias S, Papamitsou T, et al. The role of IL-19, IL-24, IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: A narrative review. Arab J Gastroenterol. 2025;26(1):9-17. DOI:10.1016/j.ajg.2024.01.002

        ________________________________________________

        1. Kim HJ, Park M, Jang S, et al. Pulsatilla koreana Nakai Extract Attenuates Atopic Dermatitis-like Symptoms by Regulating Skin Barrier Factors and Inhibiting the JAK/STAT Pathway. Int J Mol Sci. 2025;26(7):2994. DOI:10.3390/ijms26072994
        2. Ong PY. Atopic dermatitis: Is innate or adaptive immunity in control? A clinical perspective. Front Immunol. 2022;13:943640. DOI:10.3389/fimmu.2022.943640
        3. Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-82. DOI:10.1111/jdv.14891
        4. Schoch JJ, Anderson KR, Jones AE, et al. Atopic Dermatitis: Update on Skin-Directed Management: Clinical Report. Pediatrics. 2025;e2025071812. DOI:10.1542/peds.2025-071812
        5. Marks R. The stratum corneum barrier: the final frontier. J Nutr. 2004;134(8):2017S-21. DOI:10.1093/jn/134.8.2017S
        6. Wong R, Geyer S, Weninger W, et al. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016; 25:92-8. DOI:10.1111/exd.12832
        7. Jensen JM, Proksch E. The skin's barrier. G Ital Dermatol Venereol. 2009;144:689-700.
        8. Szondi DC, Crompton RA, Oon L, et al. A role for arginase in skin epithelial differentiation and antimicrobial peptide production. British Journal of Dermatology. Br J Dermatol. 2025; 00:1-11. DOI:10.1093/bjd/ljaf057
        9. Murashkin NN, Savelova AA, Ivanov RA et al. Modern concepts of the role of the epidermal barrier in the development of the atopic phenotype in children. Voprosy sovremennoi pediatrii. 2019;18(5):386-92 (in Russian). DOI:10.15690/vsp.v18i5.2064 
        10. Zhao LP, Di Z, Zhang L, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol. 2012;26(5):572-5DOI:10.1111/j.1468- 3083.2011.04120.x
        11. Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci. 2020;21(15):5382. DOI:10.3390/ijms21155382
        12. Jang SI, Steinert PM. Loricrin expression in cultured human keratinocytes is controlled by a complex interplay between transcription factors of the Sp1, CREB, AP1, and AP2 families. J Biol Chem. 2002;277(44):42268-79. DOI:10.1074/jbc.M205593200
        13. Beilin AK, Rippa AL, Sharobaro VI, et al. The Reconstructed Human Epidermis in vitro – a Model for Basic and Applied Research of Human Skin. Vestnik dermatologii i venerologii. 2020;96(2):24-34 (in Russian). DOI:10.25208/vdv1107 
        14. Bikle DD. Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord. 2012;13(1):3-19. DOI:10.1007/s11154-011-9194-0
        15. Abhishek S, Palamadai Krishnan S. Epidermal Differentiation Complex: A Review on Its Epigenetic Regulation and Potential Drug Targets. Cell J. 2016;18(1):1-6. DOI:10.22074/cellj.2016.3980
        16. Cho YH, Kim JW, Kim N, et al. Lactobacillus brevis-Derived Exosomes Enhance Skin Barrier Integrity by Upregulating Key Barrier-Related Proteins. Clin Cosmet Ivestig Dermatol. 2025;18:1151-62. DOI:10.2147/CCID.S512793
        17. Ferrara F, Yan X, Pecorelli A, et al. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol. 2024;23(8):2644-56. DOI:10.1111/jocd.16321
        18. Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124(1):36-43. DOI:10.1016/j.anai.2019.10.008
        19. Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol. 2024;132(2):187-95. DOI:10.1016/j.anai.2023.09.009
        20. Kalankariyan S, Thottapillil A, Saxena A, et al. An in silico approach deciphering the commensal dynamics in the cutaneous milieu. NPJ Syst Biol Applications. 2025;11(1):42. DOI:10.1038/s41540-025-00524-y
        21. Barthe M, Clerbaux LA, Thénot JP, et al. Systematic characterization of the barrier function of diverse ex vivo models of damaged human skin. Front Med. 2024;11:1481645. DOI:10.3389/fmed.2024.1481645
        22. Seguchi T, Cui CY, Kusuda S, et al. Decreased expression of filaggrin in atopic skin. Arch Dermatol Res. 1996;288:442-6.
        23. Bak SG, Lim HJ, Won YS, et al. Regulatory effects of Ishige okamurae extract and Diphlorethohydroxycarmalol on skin barrier function. Heliyon. 2024;10(23):e40227. DOI:10.1016/j.heliyon.2024.e40227
        24. Tamrazova OB, Glukhova EA. Unique molecule filaggrin in epidermal structure and its role in the xerosis development and atopic dermatitis pathogenesis. Russian Journal of Clinical Dermatology and Venereology. 2021;20(6):102-10 (in Russian). DOI:10.17116/klinderma202120061102
        25. Kobiela A, Hovhannisyan L, Jurkowska P, et al. Excess filaggrin in keratinocytes is removed by extracellular vesicles to prevent premature death and this mechanism can be hijacked by Staphylococcus aureus in a TLR2–dependent fashion. J Extracell Vesicles. 2023;12(6):e12335. DOI:10.1002/jev2.12335. 
        26. Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci. 2021;22(15):7912. DOI:10.3390/ijms22157912
        27. Kruglova LS, Pereverzina NO. Filaggrin: from history of discovery to clinical usage (literature review). Medical alphabet. 2021;27:8-12 (in Russian). DOI:10.33667/2078-5631-2021-27-8-12
        28. Watabe A, Sugawara T, Kikuchi K, et al. Sweat constitutes several natural moisturizing factors, lactate, urea, sodium, and potassium. J Dermatol Sci. 2013;72(2):177-82. DOI:10.1016/j.jdermsci.2013.06.005
        29. Presland RB, Fleckman P, Haydock PV, et al. Characterization of the human epidermal profilaggrin gene: Genomic organization and identification of an S-100- like calcium binding domain at the amino terminus. J Biol Chem. 1992;267(33):23772-81. 
        30. Seykora J, Dentchev T, Margolis DJ. Filaggrin-2 barrier protein inversely varies with skin inflammation. Experimental dermatology. 2015;24(9):720-2. DOI:10.1111/exd.12749
        31. Donovan M, Salamito M, Thomas-Collignon A, et al. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation. PloS One. 2020;15(5):e0232679. DOI:10.1371/journal.pone.0232679
        32. Wu Z, Hansmann B, Meyer-Hoffert U, et al. Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. PLoS One. 2009;4:e5227. DOI:10.1371/journal.pone.0005227
        33. Pendaries V, Le Lamer M, Cau L, et al. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Dis. 2015;6:e1656. DOI:10.1038/cddis.2015.29
        34. Mohamad J, Sarig O, Godsel LM, et al. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome Type A. J Investig Dermatol. 2018;138:1736-43. DOI:10.1016/j.jid.2018.04.032
        35. Levasheva SV, Etkina EI, Gur’eva LL, et al. Filaggrin gene mutations as a factor in dysregulation of the epidermal barrier in children. Attending Physician. 2016;(1):24-6 (in Russian). 
        36. Makowska K, Nowaczyk J, Blicharz L, et al. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int J Mol Sci. 2023;24(1):781. DOI:10.3390/ijms24010781
        37. Rasheed Z, Zedan K, Saif GB, et al. Markers of atopic dermatitis, allergic rhinitis and bronchial asthma in pediatric patients: correlation with filaggrin, eosinophil major basic protein and immunoglobulin E. Clin Mol Allergy. 2018;16:23. DOI:10.1186/s12948-018-0102-y
        38. Kandrashkina YuA, Orlova EA, Levashova OA, Kostina EM. Filaggrin as a biomarker of exacerbation of atopic dermatitis during pregnancy. Pharmateca. 2024;31(1):183-7 (in Russian). DOI:10.18565/pharmateca.2024.1.183-187
        39. Bao L, Alexander JB, Zhang H, et al. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein. J Interferon Cytokine Res. 2016;36(6):374-81. DOI:10.1089/jir.2015.0056
        40. Eckert RL, Yaffe MB, Crish JF, et al. Involucrin – structure and role in envelope assembly. J Invest Dermatol. 1993;100(5):613-7. DOI:10.1111/1523-1747.ep12472288
        41. Rusanov AL, Kozhin PM, Romashin DD, et al. The effect of p53 activity modulation on the interaction of p53 family members during differentiation of HaCaT keratinocytes. Vestnik RGMU. 2020;(6):60-7 (in Russian). DOI:10.24075/vrgmu.2020.082
        42. Rawlings AV, Matts PJ. Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol. 2005;124:1099-110.
        43. Tamrazova OB. Skin xerosis: symptom, syndrome or disease? Russian Journal of Clinical Dermatology and Venereology. 2019;18(2):193-202 (in Russian). DOI:10.17116/klinderma201918021193
        44. Ishida-Yamamoto A. Loricrin keratoderma: a novel disease entity characterized by nuclear accumulation of mutant loricrin. J Dermatolog Sci. 2003;31(1):3-8. DOI:10.1016/S0923-1811(02)00143-3.
        45. Ishitsuka Y, Roop DR. Loricrin at the Boundary between Inside and Outside. Biomolecules. 2022;12(5):673. DOI:10.3390/biom12050673
        46. Moreno AS, McPhee R, Arruda LK, Howell MD. Targeting the T Helper 2 Inflammatory Axis in Atopic Dermatitis. Int Arch Allergy Immunol. 2016;171(2):71-80. DOI:10.1159/000451083
        47. Furue M. T helper type 2 signatures in atopic dermatitis. J Cutan Immunol Allergy. 2018;1:93-9. DOI:10.1002/cia2.12023
        48. Makino T, Mizawa M, Takemoto K, et al. Effect of tumour necrotic factor-α, interleukin-17 and interleukin-22 on the expression of filaggerin-2 and hornerin: Analysis of a three-dimensional psoriatic skin model. Skin Health Dis. 2024;4(6):e440. DOI:10.1002/ski2.440
        49. Combarros D, Brahmi R, Musaefendic E, et al. Reconstructed Epidermis Produced with Atopic Dog Keratinocytes Only Exhibit Skin Barrier Defects after the Addition of Proinflammatory and Allergic Cytokines. JID Innovations. 2024;5(2):100330. DOI:10.1016/j.xjidi.2024.100330
        50. Sharafian Z, Littlejohn PT, Michalski C, et al. Crosstalk with infant-derived Th17 cells, as well as exposure to IL-22 promotes maturation of intestinal epithelial cells in an enteroid model. Frontiers Immunol. 2025;16:1582688. DOI:10.3389/fimmu.2025.1582688
        51. Boniface K, Bernard FX, Garcia M, et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174:3695-702. DOI:10.4049/jimmunol.174.6.3695
        52. Muromoto R, Hirao T, Tawa K, et al. IL-17A plays a central role in the expression of psoriasis signature genes through the induction of IκB-ζ in keratinocytes. Int Immunol. 2016;28(9):443-52. DOI:10.1093/intimm/dxw011
        53. Lai X, Li X, Chang L, et al. IL-19 up-regulates mucin 5AC production in patients with chronic rhinosinusitis via STAT3 pathway. Front Immunol. 2019;10:1682. DOI:10.3389/fimmu.2019.01682
        54. Keller KE, Yang YF, Sun YY, et al. Analysis of interleukin-20 receptor complexes in trabecular meshwork cells and effects of cytokine signaling in anterior segment perfusion culture. Mol Vision. 2019;25:266-82.
        55. Dai X, Shiraishi K, Muto J, et al. Nuclear IL-33 Plays an Important Role in IL-31 – Mediated Downregulation of FLG, Keratin 1, and Keratin 10 by Regulating Signal Transducer and Activator of Transcription 3 Activation in Human Keratinocytes. J Investig Dermatol. 2022;142(1):136-44.e3. DOI:10.1016/j.jid.2021.05.033
        56. Rizzo JM, Oyelakin A, Min S, et al. ΔNp63 regulates IL-33 and IL-31 signaling in atopic dermatitis. Cell Death Differentiation. 2016;23(6):1073-85. DOI:10.1038/cdd.2015.162
        57. Toskas A, Milias S, Papamitsou T, et al. The role of IL-19, IL-24, IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: A narrative review. Arab J Gastroenterol. 2025;26(1):9-17. DOI:10.1016/j.ajg.2024.01.002

        Авторы
        Ю.А. Кандрашкина*1, Е.А. Орлова2

        1ФГБОУ ВО «Пензенский государственный университет», Пенза, Россия;
        2Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Пенза, Россия
        *novikova10l@mail.ru

        ________________________________________________

        Julia A. Kandrashkina*1, Ekaterina A. Orlova2

        1Penza State University, Penza, Russia;
        2Penza Institute for Advanced Medical Studies – branch of the Russian Medical Academy of Continuous Professional Education, Penza, Russia
        *novikova10l@mail.ru


        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания хроническая сердечная недостаточность рак молочной железы факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких качество жизни профилактика сахарный диабет 2-го типа фибрилляция предсердий инфаркт миокарда бесплодие антигипертензивная терапия прогноз сердечная недостаточность химиотерапия атеросклероз бронхиальная астма неалкогольная жировая болезнь печени таргетная терапия эффективность амлодипин нестероидные противовоспалительные препараты витамин D бактериальный вагиноз ревматоидный артрит гастроэзофагеальная рефлюксная болезнь реабилитация вирус папилломы человека безопасность коморбидность болезнь Крона атопический дерматит эндометриоз пробиотики язвенный колит инсулинорезистентность эндотелиальная дисфункция инсульт
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)