Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Влияние метформина пролонгированного высвобождения на МРТ-параметры ремоделирования левого желудочка у пациентов с предиабетом и хронической сердечной недостаточностью с сохраненной фракцией выброса
Влияние метформина пролонгированного высвобождения на МРТ-параметры ремоделирования левого желудочка у пациентов с предиабетом и хронической сердечной недостаточностью с сохраненной фракцией выброса
Цыганкова О.В., Апарцева Н.Е., Латынцева Л.Д., Никитин Н.А. Влияние метформина пролонгированного высвобождения на МРТ-параметры ремоделирования левого желудочка у пациентов с предиабетом и хронической сердечной недостаточностью с сохраненной фракцией выброса. Consilium Medicum. 2025;27(8):446–454. DOI: 10.26442/20751753.2025.8.203322
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Цель. Изучить влияние метформина пролонгированного высвобождения (XR) на параметры магнитно-резонансной томографии (МРТ) ремоделирования левого желудочка (ЛЖ) у пациентов с предиабетом, хронической сердечной недостаточностью с сохраненной фракцией выброса (ХСНсФВ) и абдоминальным ожирением (АО).
Материалы и методы. В одноцентровое открытое рандомизированное проспективное контролируемое исследование включены 64 человека (50% – мужчины, медиана возраста 58 [55,25; 59,75] лет) с ХСНсФВ, предиабетом и АО. Все пациенты (группы А и В) получали оптимальную терапию ХСНсФВ. В группе А (n=32) дополнительно к оптимальной терапии ХСНсФВ назначался метформин XR 1000–1500 мг/сут. Всем пациентам проводилось общеклиническое обследование, стандартная антропометрия, тест 6-минутной ходьбы, МРТ сердца (томограф Ingenia 3.0T, Philips, Нидерланды) с оценкой массы миокарда ЛЖ (ММЛЖ), индекса массы миокарда ЛЖ (ИММЛЖ) и толщины эпикардиального жира.
Результаты. У пациентов, получавших метформин XR на фоне стандартной терапии ХСНсФВ в течение 12 мес, зарегистрировано снижение массы тела на 4,1% (p=0,001), индекса массы тела (ИМТ) на 2,0% (p=0,001), а также уровня гликированного гемоглобина на 3,3% (p=0,008), относительно исходных значений. По данным МРТ сердца прием метформина XR в группе А привел к снижению показателей: ММЛЖ на 2,4% (p=0,002), величина изменения (Δ) показателя составила -5,3 [-12,0; 2,0] г, ИММЛЖ – на 1,7% (p=0,002), ΔИММЛЖ – -2,0 [-4,5; 0,9] г/м1,7. Не выявлено корреляции между ΔИММЛЖ и ΔИМТ (r=-0,034; p=0,857). В группе В параметры ММЛЖ и ИММЛЖ не отличались на визитах 1 и 3. Динамика толщины эпикардиального жира по данным МРТ продемонстрирована только в группе А в виде снижения на 16,7% (p=0,029).
Заключение. Прием метформина XR в течение 12 мес в дозе 1000–1500 мг/сут у пациентов с предиабетом, ХСНсФВ и АО на фоне оптимальной базовой терапии ХСНсФВ ассоциирован со снижением показателей ММЛЖ, ИММЛЖ и толщины эпикардиального жира, оцененных при помощи МРТ сердца как «золотого стандарта» неинвазивной визуализации миокарда.
Ключевые слова: метформин XR, хроническая сердечная недостаточность с сохраненной фракцией выброса, предиабет, абдоминальное ожирение, гипертрофия левого желудочка, индекс массы миокарда левого желудочка, масса миокарда левого желудочка, эпикардиальная жировая ткань, магнитно-резонансная томография сердца
Materials and methods. A single-center open-label randomized prospective controlled trial included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal therapy for HFpEF. In group A (n=32), metformin XR 1000–1500 mg/day was prescribed in addition to the optimal therapy of HFpEF. All patients underwent a general clinical examination, standard anthropometry, a 6-minute walk test, a MRI of the heart (Ingenia 3.0T scanner, Philips, the Netherlands) with an assessment of LV myocardial mass (LVM), LV myocardial mass index (LVMI) and epicardial fat thickness.
Results. Patients treated with metformin XR on the background of standard HFpEF therapy for 12 months had a decrease in body weight by 4.1% (p=0.001), body mass index (BMI) by 2.0% (p=0.001), as well as glycated hemoglobin levels by 3.3% (p=0.008), relative to baseline values. According to the MRI of the heart, taking metformin XR in group A led to a decrease in indicators: LVM by 2.4% (p=0.002), the magnitude of the change (Δ) of the indicator was -5.3 [-12.0; 2.0] g, LVMI by 1.7% (p=0.002), ΔLVMI was -2.0 [-4.5; 0.9] g/m1.7. No correlation was found between ΔLVMI and ΔBMI (r=-0.034; p=0.857). In group B, the parameters of LVM and LVMI did not differ at visits 1 and 3. The dynamics of epicardial fat thickness according to MRI data was demonstrated only in group A as a decrease of 16.7% (p=0.029).
Conclusion. Taking metformin XR for 12 months at a dose of 1000–1500 mg per day in patients with prediabetes, HFpEF and AO against the background of optimal basic HFpEF therapy was associated with a decrease LVM, LVMI and epicardial fat thickness, assessed using cardiac MRI as the gold standard for noninvasive myocardial imaging.
Keywords: metformin XR, heart failure with preserved ejection fraction, prediabetes, abdominal obesity, left ventricular hypertrophy, left ventricular myocardial mass index, left ventricular myocardial mass, epicardial adipose tissue, magnetic resonance imaging of the heart
Материалы и методы. В одноцентровое открытое рандомизированное проспективное контролируемое исследование включены 64 человека (50% – мужчины, медиана возраста 58 [55,25; 59,75] лет) с ХСНсФВ, предиабетом и АО. Все пациенты (группы А и В) получали оптимальную терапию ХСНсФВ. В группе А (n=32) дополнительно к оптимальной терапии ХСНсФВ назначался метформин XR 1000–1500 мг/сут. Всем пациентам проводилось общеклиническое обследование, стандартная антропометрия, тест 6-минутной ходьбы, МРТ сердца (томограф Ingenia 3.0T, Philips, Нидерланды) с оценкой массы миокарда ЛЖ (ММЛЖ), индекса массы миокарда ЛЖ (ИММЛЖ) и толщины эпикардиального жира.
Результаты. У пациентов, получавших метформин XR на фоне стандартной терапии ХСНсФВ в течение 12 мес, зарегистрировано снижение массы тела на 4,1% (p=0,001), индекса массы тела (ИМТ) на 2,0% (p=0,001), а также уровня гликированного гемоглобина на 3,3% (p=0,008), относительно исходных значений. По данным МРТ сердца прием метформина XR в группе А привел к снижению показателей: ММЛЖ на 2,4% (p=0,002), величина изменения (Δ) показателя составила -5,3 [-12,0; 2,0] г, ИММЛЖ – на 1,7% (p=0,002), ΔИММЛЖ – -2,0 [-4,5; 0,9] г/м1,7. Не выявлено корреляции между ΔИММЛЖ и ΔИМТ (r=-0,034; p=0,857). В группе В параметры ММЛЖ и ИММЛЖ не отличались на визитах 1 и 3. Динамика толщины эпикардиального жира по данным МРТ продемонстрирована только в группе А в виде снижения на 16,7% (p=0,029).
Заключение. Прием метформина XR в течение 12 мес в дозе 1000–1500 мг/сут у пациентов с предиабетом, ХСНсФВ и АО на фоне оптимальной базовой терапии ХСНсФВ ассоциирован со снижением показателей ММЛЖ, ИММЛЖ и толщины эпикардиального жира, оцененных при помощи МРТ сердца как «золотого стандарта» неинвазивной визуализации миокарда.
Ключевые слова: метформин XR, хроническая сердечная недостаточность с сохраненной фракцией выброса, предиабет, абдоминальное ожирение, гипертрофия левого желудочка, индекс массы миокарда левого желудочка, масса миокарда левого желудочка, эпикардиальная жировая ткань, магнитно-резонансная томография сердца
________________________________________________
Materials and methods. A single-center open-label randomized prospective controlled trial included 64 people (50% men, median age 58 [55.25; 59.75] years) with HFpEF, prediabetes and AO. All patients (groups A and B) received optimal therapy for HFpEF. In group A (n=32), metformin XR 1000–1500 mg/day was prescribed in addition to the optimal therapy of HFpEF. All patients underwent a general clinical examination, standard anthropometry, a 6-minute walk test, a MRI of the heart (Ingenia 3.0T scanner, Philips, the Netherlands) with an assessment of LV myocardial mass (LVM), LV myocardial mass index (LVMI) and epicardial fat thickness.
Results. Patients treated with metformin XR on the background of standard HFpEF therapy for 12 months had a decrease in body weight by 4.1% (p=0.001), body mass index (BMI) by 2.0% (p=0.001), as well as glycated hemoglobin levels by 3.3% (p=0.008), relative to baseline values. According to the MRI of the heart, taking metformin XR in group A led to a decrease in indicators: LVM by 2.4% (p=0.002), the magnitude of the change (Δ) of the indicator was -5.3 [-12.0; 2.0] g, LVMI by 1.7% (p=0.002), ΔLVMI was -2.0 [-4.5; 0.9] g/m1.7. No correlation was found between ΔLVMI and ΔBMI (r=-0.034; p=0.857). In group B, the parameters of LVM and LVMI did not differ at visits 1 and 3. The dynamics of epicardial fat thickness according to MRI data was demonstrated only in group A as a decrease of 16.7% (p=0.029).
Conclusion. Taking metformin XR for 12 months at a dose of 1000–1500 mg per day in patients with prediabetes, HFpEF and AO against the background of optimal basic HFpEF therapy was associated with a decrease LVM, LVMI and epicardial fat thickness, assessed using cardiac MRI as the gold standard for noninvasive myocardial imaging.
Keywords: metformin XR, heart failure with preserved ejection fraction, prediabetes, abdominal obesity, left ventricular hypertrophy, left ventricular myocardial mass index, left ventricular myocardial mass, epicardial adipose tissue, magnetic resonance imaging of the heart
Полный текст
Список литературы
1. Xanthopoulos A, Triposkiadis F, Starling RC. Heart failure with preserved ejection fraction: Classification based upon phenotype is essential for diagnosis and treatment. Trends Cardiovasc Med. 2018;28(6):392-400. DOI:10.1016/j.tcm.2018.01.001
2. Агеев Ф.Т., Арутюнов Г.П., Беграмбекова Ю.Л., и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083 [Ageev FT, Arutyunov GP, Begrambekova YuL, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian)]. DOI:10.15829/1560-4071-2020-4083
3. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2021;42(36):3599-726. DOI:10.1093/eurheartj/ehab368
4. Цыганкова О.В., Веретюк В.В. Фенотипические кластеры пациентов с хронической сердечной недостаточностью с сохраненной и промежуточной фракцией выброса: новые данные и перспективы. Российский кардиологический журнал. 2021;26(4):4436 [Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: New data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436 (in Russian)]. DOI:10.15829/1560-4071-2021-4436
5. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598-617. DOI:10.1161/CIRCRESAHA.119.313572
6. Мкртумян А.М. Сравнительный анализ эффективности препаратов для лечения ранних нарушений углеводного обмена (предиабета). Терапевтический архив. 2024;96(4):419-28 [Mkrtumyan AM. Comparative analysis of the drugs efficacy for carbohydrate metabolism early disorders (prediabetes) treatment: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(4):419-28 (in Russian)]. DOI:10.26442/00403660.2024.04.202709
7. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130(12):155160. DOI:10.1016/j.metabol.2022.155160
8. Цыганкова О.В., Евдокимова Н.Е., Веретюк В.В., и др. Инсулинорезистентность и хроническая сердечная недостаточность с сохраненной фракцией выброса. Патогенетические и терапевтические перекрестки. Сахарный диабет. 2022;25(6):535-47 [Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-47 (in Russian)]. DOI:10.14341/DM12916
9. Курманбекова Б.Т., Норузбаева А.М. Кардиоваскулярные эффекты метформина. Рациональная фармакотерапия в кардиологии. 2022;18(1):97-102 [Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. Rational Pharmacotherapy in Cardiology. 2022;18(1):97-102 (in Russian)]. DOI:10.20996/1819-6446-2022-02-12
10. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: A systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. DOI:10.1186/s12933-020-01100-w
11. Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: A meta-analysis of randomized clinical trials. BMC Cardiovasc Disord. 2022;22(1):405. DOI:10.1186/s12872-022-02845-w
12. Мкртумян А.М., Маркова Т.Н., Кичигин В.А., и др. Эффективность применения метформина при абдоминальном ожирении. Терапевтический архив. 2014;86(8):80-4 [Mkrtumian AM, Markova TN, Kichigin VA, et al. Efficacy of metformin in abdominal obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(8):80-4 (in Russian)].
13. Shah AM, Cikes M, Prasad N, et al.; PARAGON-HF Investigators. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019;74(23):2858-73. DOI:10.1016/j.jacc.2019.09.063
14. Сахарный диабет 2-го типа у взрослых. Клинические рекомендации РФ, 2022. Режим доступа: https://cr.minzdrav.gov.ru/schema/290_2. Ссылка активна 13.08.2024 [Sakharnyi diabet 2-go tipa u vzroslykh. Klinicheskie rekomendatsii RF, 2022. Available at: https://cr.minzdrav.gov.ru/schema/290_2. Accessed: 13.08.2024 (in Russian)].
15. Цыганкова О.В., Евдокимова Н.Е., Латынцева Л.Д. Хроническая сердечная недостаточность с сохраненной фракцией выброса на фоне предиабета и абдоминального ожирения: компартменты жировых депо и кардиометаболические маркеры. РМЖ. Медицинское обозрение. 2023;7(1):22-9 [Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22-9 (in Russian)]. DOI:10.32364/2587-6821-2023-7-1-22-29
16. Chirinos JA, Segers P, De Buyzere ML, et al. Left ventricular mass: Allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91-8. DOI:10.1161/HYPERTENSIONAHA.110.150250
17. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. DOI:10.1186/s12968-020-00607-1
18. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of trustees task force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19. DOI:10.1186/s12968-020-00610-6
19. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-17. DOI:10.1093/eurheartj/ehz203
20. Grajewski KG, Stojanovska J, Ibrahim EH, et al. Left ventricular hypertrophy: Evaluation with cardiac MRI. Curr Probl Diagn Radiol. 2020;49(6):460-75. DOI:10.1067/j.cpradiol.2019.09.005
21. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. DOI:10.1016/s0002-9149(02)02381-0
22. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-69. DOI:10.1016/j.numecd.2017.04.009
23. Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55-62. DOI:10.1111/j.1440-1681.2010.05461.x
24. Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504-13. DOI:10.1093/cvr/cvq066
25. Wang XF, Zhang JY, Li L, Zhao XY. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase. Chin Med J (Engl). 2011;124(12):1876-84. PMID:21740847
26. Stakos DA, Schuster DP, Sparks EA, et al. Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart. 2005;91(5):589-94. DOI:10.1136/hrt.2003.027722
27. Velázquez H, Meaney A, Galeana C, et al. Metformin enhances left ventricular function in patients with metabolic syndrome. Rev Mex Cardiol. 2016;27(1):16-25.
28. Ladeiras-Lopes R, Sampaio F, Leite S, et al. Metformin in non-diabetic patients with metabolic syndrome and diastolic dysfunction: The MET-DIME randomized trial. Endocrine. 2021;72(3):699-710. DOI:10.1007/s12020-021-02687-0
29. Lexis CP, van der Horst IC, Lipsic E., et al.; GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: The GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526-35. DOI:10.1001/jama.2014.3315
30. Sardu C, Trotta MC, Pieretti G, et al. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol. 2021;58(10):1381-93. DOI:10.1007/s00592-021-01743-5
31. Larsen AH, Jessen N, Nørrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628-37. DOI:10.1002/ejhf.1656
32. Kamel AM, Ismail B, Abdel Hafiz G, et al. Effect of metformin on oxidative stress and left ventricular geometry in nondiabetic heart failure patients: A randomized controlled trial. Metab Syndr Relat Disord. 2024;22(1):49-58. DOI:10.1089/met.2023.0164
33. DANHEART (H-HeFT and Met-HeFT). Available at: https://clinicaltrials.gov/study/NCT03514108. Accessed: 13.08.2024.
34. Investigation of Metformin in Pre-Diabetes on Atherosclerotic Cardiovascular OuTcomes. Available at: https://clinicaltrials.gov/study/NCT02915198. Accessed: 13.08.2024.
35. Paternostro G, Pagano D, Gnecchi-Ruscone T, et al. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res. 1999;42(1):246-53. DOI:10.1016/s0008-6363(98)00233-8
36. Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun. 2017;486(2):329-35. DOI:10.1016/j.bbrc.2017.03.036
37. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci. 2018;19(10):2869. DOI:10.3390/ijms19102869
38. Salvatore T, Galiero R, Caturano A, et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules. 2021;11(12):1834. DOI:10.3390/biom11121834
2. Ageev FT, Arutyunov GP, Begrambekova YuL, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian). DOI:10.15829/1560-4071-2020-4083
3. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2021;42(36):3599-726. DOI:10.1093/eurheartj/ehab368
4. Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: New data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436 (in Russian). DOI:10.15829/1560-4071-2021-4436
5. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598-617. DOI:10.1161/CIRCRESAHA.119.313572
6. Mkrtumyan AM. Comparative analysis of the drugs efficacy for carbohydrate metabolism early disorders (prediabetes) treatment: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(4):419-28 (in Russian). DOI:10.26442/00403660.2024.04.202709
7. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130(12):155160. DOI:10.1016/j.metabol.2022.155160
8. Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-47 (in Russian). DOI:10.14341/DM12916
9. Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. Rational Pharmacotherapy in Cardiology. 2022;18(1):97-102 (in Russian). DOI:10.20996/1819-6446-2022-02-12
10. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: A systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. DOI:10.1186/s12933-020-01100-w
11. Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: A meta-analysis of randomized clinical trials. BMC Cardiovasc Disord. 2022;22(1):405. DOI:10.1186/s12872-022-02845-w
12. Mkrtumian AM, Markova TN, Kichigin VA, et al. Efficacy of metformin in abdominal obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(8):80-4 (in Russian).
13. Shah AM, Cikes M, Prasad N, et al.; PARAGON-HF Investigators. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019;74(23):2858-73. DOI:10.1016/j.jacc.2019.09.063
14. Sakharnyi diabet 2-go tipa u vzroslykh. Klinicheskie rekomendatsii RF, 2022. Available at: https://cr.minzdrav.gov.ru/schema/290_2. Accessed: 13.08.2024 (in Russian).
15. Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22-9 (in Russian). DOI:10.32364/2587-6821-2023-7-1-22-29
16. Chirinos JA, Segers P, De Buyzere ML, et al. Left ventricular mass: Allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91-8. DOI:10.1161/HYPERTENSIONAHA.110.150250
17. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. DOI:10.1186/s12968-020-00607-1
18. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of trustees task force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19. DOI:10.1186/s12968-020-00610-6
19. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-17. DOI:10.1093/eurheartj/ehz203
20. Grajewski KG, Stojanovska J, Ibrahim EH, et al. Left ventricular hypertrophy: Evaluation with cardiac MRI. Curr Probl Diagn Radiol. 2020;49(6):460-75. DOI:10.1067/j.cpradiol.2019.09.005
21. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. DOI:10.1016/s0002-9149(02)02381-0
22. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-69. DOI:10.1016/j.numecd.2017.04.009
23. Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55-62. DOI:10.1111/j.1440-1681.2010.05461.x
24. Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504-13. DOI:10.1093/cvr/cvq066
25. Wang XF, Zhang JY, Li L, Zhao XY. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase. Chin Med J (Engl). 2011;124(12):1876-84. PMID:21740847
26. Stakos DA, Schuster DP, Sparks EA, et al. Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart. 2005;91(5):589-94. DOI:10.1136/hrt.2003.027722
27. Velázquez H, Meaney A, Galeana C, et al. Metformin enhances left ventricular function in patients with metabolic syndrome. Rev Mex Cardiol. 2016;27(1):16-25.
28. Ladeiras-Lopes R, Sampaio F, Leite S, et al. Metformin in non-diabetic patients with metabolic syndrome and diastolic dysfunction: The MET-DIME randomized trial. Endocrine. 2021;72(3):699-710. DOI:10.1007/s12020-021-02687-0
29. Lexis CP, van der Horst IC, Lipsic E., et al.; GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: The GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526-35. DOI:10.1001/jama.2014.3315
30. Sardu C, Trotta MC, Pieretti G, et al. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol. 2021;58(10):1381-93. DOI:10.1007/s00592-021-01743-5
31. Larsen AH, Jessen N, Nørrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628-37. DOI:10.1002/ejhf.1656
32. Kamel AM, Ismail B, Abdel Hafiz G, et al. Effect of metformin on oxidative stress and left ventricular geometry in nondiabetic heart failure patients: A randomized controlled trial. Metab Syndr Relat Disord. 2024;22(1):49-58. DOI:10.1089/met.2023.0164
33. DANHEART (H-HeFT and Met-HeFT). Available at: https://clinicaltrials.gov/study/NCT03514108. Accessed: 13.08.2024.
34. Investigation of Metformin in Pre-Diabetes on Atherosclerotic Cardiovascular OuTcomes. Available at: https://clinicaltrials.gov/study/NCT02915198. Accessed: 13.08.2024.
35. Paternostro G, Pagano D, Gnecchi-Ruscone T, et al. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res. 1999;42(1):246-53. DOI:10.1016/s0008-6363(98)00233-8
36. Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun. 2017;486(2):329-35. DOI:10.1016/j.bbrc.2017.03.036
37. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci. 2018;19(10):2869. DOI:10.3390/ijms19102869
38. Salvatore T, Galiero R, Caturano A, et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules. 2021;11(12):1834. DOI:10.3390/biom11121834
2. Агеев Ф.Т., Арутюнов Г.П., Беграмбекова Ю.Л., и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083 [Ageev FT, Arutyunov GP, Begrambekova YuL, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian)]. DOI:10.15829/1560-4071-2020-4083
3. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2021;42(36):3599-726. DOI:10.1093/eurheartj/ehab368
4. Цыганкова О.В., Веретюк В.В. Фенотипические кластеры пациентов с хронической сердечной недостаточностью с сохраненной и промежуточной фракцией выброса: новые данные и перспективы. Российский кардиологический журнал. 2021;26(4):4436 [Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: New data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436 (in Russian)]. DOI:10.15829/1560-4071-2021-4436
5. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598-617. DOI:10.1161/CIRCRESAHA.119.313572
6. Мкртумян А.М. Сравнительный анализ эффективности препаратов для лечения ранних нарушений углеводного обмена (предиабета). Терапевтический архив. 2024;96(4):419-28 [Mkrtumyan AM. Comparative analysis of the drugs efficacy for carbohydrate metabolism early disorders (prediabetes) treatment: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(4):419-28 (in Russian)]. DOI:10.26442/00403660.2024.04.202709
7. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130(12):155160. DOI:10.1016/j.metabol.2022.155160
8. Цыганкова О.В., Евдокимова Н.Е., Веретюк В.В., и др. Инсулинорезистентность и хроническая сердечная недостаточность с сохраненной фракцией выброса. Патогенетические и терапевтические перекрестки. Сахарный диабет. 2022;25(6):535-47 [Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-47 (in Russian)]. DOI:10.14341/DM12916
9. Курманбекова Б.Т., Норузбаева А.М. Кардиоваскулярные эффекты метформина. Рациональная фармакотерапия в кардиологии. 2022;18(1):97-102 [Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. Rational Pharmacotherapy in Cardiology. 2022;18(1):97-102 (in Russian)]. DOI:10.20996/1819-6446-2022-02-12
10. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: A systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. DOI:10.1186/s12933-020-01100-w
11. Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: A meta-analysis of randomized clinical trials. BMC Cardiovasc Disord. 2022;22(1):405. DOI:10.1186/s12872-022-02845-w
12. Мкртумян А.М., Маркова Т.Н., Кичигин В.А., и др. Эффективность применения метформина при абдоминальном ожирении. Терапевтический архив. 2014;86(8):80-4 [Mkrtumian AM, Markova TN, Kichigin VA, et al. Efficacy of metformin in abdominal obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(8):80-4 (in Russian)].
13. Shah AM, Cikes M, Prasad N, et al.; PARAGON-HF Investigators. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019;74(23):2858-73. DOI:10.1016/j.jacc.2019.09.063
14. Сахарный диабет 2-го типа у взрослых. Клинические рекомендации РФ, 2022. Режим доступа: https://cr.minzdrav.gov.ru/schema/290_2. Ссылка активна 13.08.2024 [Sakharnyi diabet 2-go tipa u vzroslykh. Klinicheskie rekomendatsii RF, 2022. Available at: https://cr.minzdrav.gov.ru/schema/290_2. Accessed: 13.08.2024 (in Russian)].
15. Цыганкова О.В., Евдокимова Н.Е., Латынцева Л.Д. Хроническая сердечная недостаточность с сохраненной фракцией выброса на фоне предиабета и абдоминального ожирения: компартменты жировых депо и кардиометаболические маркеры. РМЖ. Медицинское обозрение. 2023;7(1):22-9 [Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22-9 (in Russian)]. DOI:10.32364/2587-6821-2023-7-1-22-29
16. Chirinos JA, Segers P, De Buyzere ML, et al. Left ventricular mass: Allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91-8. DOI:10.1161/HYPERTENSIONAHA.110.150250
17. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. DOI:10.1186/s12968-020-00607-1
18. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of trustees task force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19. DOI:10.1186/s12968-020-00610-6
19. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-17. DOI:10.1093/eurheartj/ehz203
20. Grajewski KG, Stojanovska J, Ibrahim EH, et al. Left ventricular hypertrophy: Evaluation with cardiac MRI. Curr Probl Diagn Radiol. 2020;49(6):460-75. DOI:10.1067/j.cpradiol.2019.09.005
21. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. DOI:10.1016/s0002-9149(02)02381-0
22. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-69. DOI:10.1016/j.numecd.2017.04.009
23. Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55-62. DOI:10.1111/j.1440-1681.2010.05461.x
24. Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504-13. DOI:10.1093/cvr/cvq066
25. Wang XF, Zhang JY, Li L, Zhao XY. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase. Chin Med J (Engl). 2011;124(12):1876-84. PMID:21740847
26. Stakos DA, Schuster DP, Sparks EA, et al. Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart. 2005;91(5):589-94. DOI:10.1136/hrt.2003.027722
27. Velázquez H, Meaney A, Galeana C, et al. Metformin enhances left ventricular function in patients with metabolic syndrome. Rev Mex Cardiol. 2016;27(1):16-25.
28. Ladeiras-Lopes R, Sampaio F, Leite S, et al. Metformin in non-diabetic patients with metabolic syndrome and diastolic dysfunction: The MET-DIME randomized trial. Endocrine. 2021;72(3):699-710. DOI:10.1007/s12020-021-02687-0
29. Lexis CP, van der Horst IC, Lipsic E., et al.; GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: The GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526-35. DOI:10.1001/jama.2014.3315
30. Sardu C, Trotta MC, Pieretti G, et al. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol. 2021;58(10):1381-93. DOI:10.1007/s00592-021-01743-5
31. Larsen AH, Jessen N, Nørrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628-37. DOI:10.1002/ejhf.1656
32. Kamel AM, Ismail B, Abdel Hafiz G, et al. Effect of metformin on oxidative stress and left ventricular geometry in nondiabetic heart failure patients: A randomized controlled trial. Metab Syndr Relat Disord. 2024;22(1):49-58. DOI:10.1089/met.2023.0164
33. DANHEART (H-HeFT and Met-HeFT). Available at: https://clinicaltrials.gov/study/NCT03514108. Accessed: 13.08.2024.
34. Investigation of Metformin in Pre-Diabetes on Atherosclerotic Cardiovascular OuTcomes. Available at: https://clinicaltrials.gov/study/NCT02915198. Accessed: 13.08.2024.
35. Paternostro G, Pagano D, Gnecchi-Ruscone T, et al. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res. 1999;42(1):246-53. DOI:10.1016/s0008-6363(98)00233-8
36. Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun. 2017;486(2):329-35. DOI:10.1016/j.bbrc.2017.03.036
37. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci. 2018;19(10):2869. DOI:10.3390/ijms19102869
38. Salvatore T, Galiero R, Caturano A, et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules. 2021;11(12):1834. DOI:10.3390/biom11121834
________________________________________________
2. Ageev FT, Arutyunov GP, Begrambekova YuL, et al. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083 (in Russian). DOI:10.15829/1560-4071-2020-4083
3. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2021;42(36):3599-726. DOI:10.1093/eurheartj/ehab368
4. Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: New data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436 (in Russian). DOI:10.15829/1560-4071-2021-4436
5. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598-617. DOI:10.1161/CIRCRESAHA.119.313572
6. Mkrtumyan AM. Comparative analysis of the drugs efficacy for carbohydrate metabolism early disorders (prediabetes) treatment: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(4):419-28 (in Russian). DOI:10.26442/00403660.2024.04.202709
7. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130(12):155160. DOI:10.1016/j.metabol.2022.155160
8. Tsygankova OV, Evdokimova NE, Veretyuk VV, et al. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus. 2022;25(6):535-47 (in Russian). DOI:10.14341/DM12916
9. Kurmanbekova BT, Noruizbaeva AM. Cardiovascular Effects of Metformin. Rational Pharmacotherapy in Cardiology. 2022;18(1):97-102 (in Russian). DOI:10.20996/1819-6446-2022-02-12
10. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: A systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124. DOI:10.1186/s12933-020-01100-w
11. Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: A meta-analysis of randomized clinical trials. BMC Cardiovasc Disord. 2022;22(1):405. DOI:10.1186/s12872-022-02845-w
12. Mkrtumian AM, Markova TN, Kichigin VA, et al. Efficacy of metformin in abdominal obesity. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(8):80-4 (in Russian).
13. Shah AM, Cikes M, Prasad N, et al.; PARAGON-HF Investigators. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019;74(23):2858-73. DOI:10.1016/j.jacc.2019.09.063
14. Sakharnyi diabet 2-go tipa u vzroslykh. Klinicheskie rekomendatsii RF, 2022. Available at: https://cr.minzdrav.gov.ru/schema/290_2. Accessed: 13.08.2024 (in Russian).
15. Tsygankova OV, Evdokimova NE, Latyntseva LD. Chronic heart failure with preserved ejection fraction amid prediabetes and abdominal obesity: fat depot compartments and cardiometabolic risk markers. Russian Medical Inquiry. 2023;7(1):22-9 (in Russian). DOI:10.32364/2587-6821-2023-7-1-22-29
16. Chirinos JA, Segers P, De Buyzere ML, et al. Left ventricular mass: Allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56(1):91-8. DOI:10.1161/HYPERTENSIONAHA.110.150250
17. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. DOI:10.1186/s12968-020-00607-1
18. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of trustees task force on standardized post-processing. J Cardiovasc Magn Reson. 2020;22(1):19. DOI:10.1186/s12968-020-00610-6
19. Mohan M, Al-Talabany S, McKinnie A, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur Heart J. 2019;40(41):3409-17. DOI:10.1093/eurheartj/ehz203
20. Grajewski KG, Stojanovska J, Ibrahim EH, et al. Left ventricular hypertrophy: Evaluation with cardiac MRI. Curr Probl Diagn Radiol. 2020;49(6):460-75. DOI:10.1067/j.cpradiol.2019.09.005
21. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29-34. DOI:10.1016/s0002-9149(02)02381-0
22. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-69. DOI:10.1016/j.numecd.2017.04.009
23. Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55-62. DOI:10.1111/j.1440-1681.2010.05461.x
24. Xiao H, Ma X, Feng W, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504-13. DOI:10.1093/cvr/cvq066
25. Wang XF, Zhang JY, Li L, Zhao XY. Beneficial effects of metformin on primary cardiomyocytes via activation of adenosine monophosphate-activated protein kinase. Chin Med J (Engl). 2011;124(12):1876-84. PMID:21740847
26. Stakos DA, Schuster DP, Sparks EA, et al. Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart. 2005;91(5):589-94. DOI:10.1136/hrt.2003.027722
27. Velázquez H, Meaney A, Galeana C, et al. Metformin enhances left ventricular function in patients with metabolic syndrome. Rev Mex Cardiol. 2016;27(1):16-25.
28. Ladeiras-Lopes R, Sampaio F, Leite S, et al. Metformin in non-diabetic patients with metabolic syndrome and diastolic dysfunction: The MET-DIME randomized trial. Endocrine. 2021;72(3):699-710. DOI:10.1007/s12020-021-02687-0
29. Lexis CP, van der Horst IC, Lipsic E., et al.; GIPS-III Investigators. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: The GIPS-III randomized clinical trial. JAMA. 2014;311(15):1526-35. DOI:10.1001/jama.2014.3315
30. Sardu C, Trotta MC, Pieretti G, et al. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol. 2021;58(10):1381-93. DOI:10.1007/s00592-021-01743-5
31. Larsen AH, Jessen N, Nørrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628-37. DOI:10.1002/ejhf.1656
32. Kamel AM, Ismail B, Abdel Hafiz G, et al. Effect of metformin on oxidative stress and left ventricular geometry in nondiabetic heart failure patients: A randomized controlled trial. Metab Syndr Relat Disord. 2024;22(1):49-58. DOI:10.1089/met.2023.0164
33. DANHEART (H-HeFT and Met-HeFT). Available at: https://clinicaltrials.gov/study/NCT03514108. Accessed: 13.08.2024.
34. Investigation of Metformin in Pre-Diabetes on Atherosclerotic Cardiovascular OuTcomes. Available at: https://clinicaltrials.gov/study/NCT02915198. Accessed: 13.08.2024.
35. Paternostro G, Pagano D, Gnecchi-Ruscone T, et al. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res. 1999;42(1):246-53. DOI:10.1016/s0008-6363(98)00233-8
36. Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun. 2017;486(2):329-35. DOI:10.1016/j.bbrc.2017.03.036
37. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci. 2018;19(10):2869. DOI:10.3390/ijms19102869
38. Salvatore T, Galiero R, Caturano A, et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules. 2021;11(12):1834. DOI:10.3390/biom11121834
Авторы
О.В. Цыганкова1,2, Н.Е. Апарцева*1, Л.Д. Латынцева1, Н.А. Никитин3
1Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения РАН», Новосибирск, Россия;
2ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия;
3ФГБУ «Национальный медицинский исследовательский центр им. акад. Е.Н. Мешалкина» Минздрава России, Новосибирск, Россия
*evdokimova1735.nsk@gmail.com
1Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Novosibirsk, Russia;
2Novosibirsk State Medical University, Novosibirsk, Russia;
3Meshalkin National Medical Research Center, Novosibirsk, Russia
*evdokimova1735.nsk@gmail.com
1Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения РАН», Новосибирск, Россия;
2ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Новосибирск, Россия;
3ФГБУ «Национальный медицинский исследовательский центр им. акад. Е.Н. Мешалкина» Минздрава России, Новосибирск, Россия
*evdokimova1735.nsk@gmail.com
________________________________________________
1Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Novosibirsk, Russia;
2Novosibirsk State Medical University, Novosibirsk, Russia;
3Meshalkin National Medical Research Center, Novosibirsk, Russia
*evdokimova1735.nsk@gmail.com
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
