Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Белок Клото и синдром апноэ
Белок Клото и синдром апноэ
Мадаева И.М., Пыткина А.А. Белок Клото и синдром апноэ. Consilium Medicum. 2025;27(9):521–524. DOI: 10.26442/20751753.2025.9.203408
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Сон и белок Клото имеют общие физиологические пути с процессом старения, так как оба играют существенную роль в работе эндокринной и иммунной систем и, следовательно, в процессах окислительного стресса и хронического воспаления, которые, в свою очередь, являются основными патогенетическими звеньями обструктивного апноэ сна и дефицита белка Клото. Улучшение количества и качества сна можно считать терапевтическим подходом против старения для предотвращения, замедления и даже обращения вспять физиологического упадка и дегенеративных патологий.
Ключевые слова: белок Клото, обструктивное апноэ, сон, старение
Keywords: Klotho protein, obstructive apnea, sleep, aging
Ключевые слова: белок Клото, обструктивное апноэ, сон, старение
________________________________________________
Keywords: Klotho protein, obstructive apnea, sleep, aging
Полный текст
Список литературы
1. Kim B, Kim T, Im H, et al. α-Klotho regulates mouse embryonic neural stem cell proliferation and differentiation. Biochem Biophys Res Commun. 2025;742:151157. DOI:10.1016/j.bbrc.2024.151157
2. Khan P, Saha N, Nidhi. Neuroprotective effect of naringin by modulation of klotho and HMGB1- TLR4 axis in PTZ-induced kindling in mice. Biochem Biophys Res Commun. 2025;742:151080. DOI:10.1016/j.bbrc.2024.151080
3. Pavlatou MG, Remaley AT, Gold PW. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry. 2016;6(8):e876. DOI:10.1038/tp.2016.135
4. Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, et al. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci. 2024;25(8):4194. DOI:10.3390/ijms25084194
5. Ge S, Dong F, Tian C, et al. Serum soluble alpha-klotho klotho and cognitive functioning in older adults aged 60 and 79: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011 to 2014. BMC Geriatr. 2024;24(1):245. DOI:10.1186/s12877-024-04661-7
6. Tang J, Xu Z, Ren L, et al. Association of serum Klotho with the severity and mortality among adults with cardiovascular-kidney-metabolic syndrome. Lipids Health Dis. 2024;23(1):408. DOI:10.1186/s12944-024-02400-w
7. Veronesi F, Borsari V, Cherubini A, Fini M. Association of Klotho with physical performance and frailty in middle-aged and older adults: A systematic review. Exp Gerontol. 2021;154:111518. DOI:10.1016/j.exger.2021.111518
8. Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, et al. Soluble klotho, a potential biomarker of chronic kidney disease-mineral bone disorders involved in healthy ageing: lights and shadows. Int J Mol Sci. 2024;25(3):1843. DOI:10.3390/ijms25031843
9. Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513-8. DOI:10.1016/j.bbrc.2010.06.110
10. Mochón-Benguigui S, Carneiro-Barrera A, Castillo MJ, Amaro-Gahete FJ. Is sleep associated with the s-klotho anti-aging protein in sedentary middle-aged adults? The FIT-AGEING study. Antioxidants (Basel). 2020;9(8):738. DOI:10.3390/antiox9080738
11. Topal M, Erkus E. Improving sleep quality is essential for enhancing soluble Klotho levels in hemodialysis patients. Int Urol Nephrol. 2023;55(12):3275-320. DOI:10.1007/s11255-023-03693-z
12. Shin EJ, Chung YH, Le HL, et al. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol. 2014;18(6):pyu105. DOI:10.1093/ijnp/pyu105
13. Мадаева И.М., Курашова Н.А., Ухинов Э.Б., и др. Изменение относительной длины теломер у пациентов с синдромом обструктивного апноэ сна на фоне СИПАП-терапии: пилотное исследование. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2022;122(5-2):52-7 [Madaeva IM, Kurashova NA, Ukhinov EB, et al. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: a pilot study. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5‑2):52‑7 (in Russian)]. DOI:10.17116/jnevro202212205252
14. Pákó J, Kunos L, Mészáros M, et al. Decreased levels of anti-aging klotho in obstructive sleep apnea. Rejuvenation Res. 2020;23(3):256-61. DOI:10.1089/rej.2019.2183
15. Tempaku PF, D'Almeida V, da Silva SMA, et al. Klotho genetic variants mediate the association between obstructive sleep apnea and short telomere length. Sleep Med. 2021;83:210-1. DOI:10.1016/j.sleep.2021.01.015
16. Turkiewicz S, Ditmer M, Sochal M, et al. Obstructive sleep apnea as an acceleration trigger of cellular senescence processes through telomere shortening. Int J Mol Sci. 2021;22(22):12536. DOI:10.3390/ijms222212536
17. Tarnoki AD, Tarnoki DL, Oláh C, et al. Lumbar spine abnormalities in patients with obstructive sleep apnoea. Sci Rep. 2021;11(1):16233. DOI:10.1038/s41598-021-95667-3
18. Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive sleep apnea and hallmarks of aging. Trends Mol Med. 2017;23(8):675-92. DOI:10.1016/j.molmed.2017.06.006
19. Madaeva IM, Kurashova NA, Berdina ON, et al. The state of the lPO-AOD system and the relative length of telomeric repeats in the chromosomes of blood leukocytes in obstructive sleep apnea syndrome. Bull Exp Biol Med. 2023;176(1):30-3. DOI:10.1007/s10517-023-05961-5
20. Madaeva IM, Kurashova NA, Titova EV, et al. Growth Differentiation Factor GDF 15 (“Protein of Senility”) under Conditions of Oxidative Stress and Intermittent Nocturnal Hypoxia in Patients with Sleep Apnea Syndrome. Adv Gerontol. 2024;14(2):61-7. DOI:10.1134/s2079057024600447
21. Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative stress markers and severity of obstructive sleep apnea. Adv Exp Med Biol. 2019;1222:27-35. DOI:10.1007/5584_2019_433
22. Stanek A, Brożyna-Tkaczyk K, Myśliński W. Oxidative stress markers among obstructive sleep apnea patients. Oxid Med Cell Longev. 2021;9681595. DOI:10.1155/2021/9681595
23. Kunos L, Horvath P, Kis A, et al. Circulating survivin levels in obstructive sleep apnoea. Lung. 2018;196(4):417-24. DOI:10.1007/s00408-018-0120-z
24. da Paz Oliveira G, Elias RM, Peres Fernandes GB, et al. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med. 2021;78:57-62. DOI:10.1016/j.sleep.2020.11.037
2. Khan P, Saha N, Nidhi. Neuroprotective effect of naringin by modulation of klotho and HMGB1- TLR4 axis in PTZ-induced kindling in mice. Biochem Biophys Res Commun. 2025;742:151080. DOI:10.1016/j.bbrc.2024.151080
3. Pavlatou MG, Remaley AT, Gold PW. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry. 2016;6(8):e876. DOI:10.1038/tp.2016.135
4. Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, et al. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci. 2024;25(8):4194. DOI:10.3390/ijms25084194
5. Ge S, Dong F, Tian C, et al. Serum soluble alpha-klotho klotho and cognitive functioning in older adults aged 60 and 79: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011 to 2014. BMC Geriatr. 2024;24(1):245. DOI:10.1186/s12877-024-04661-7
6. Tang J, Xu Z, Ren L, et al. Association of serum Klotho with the severity and mortality among adults with cardiovascular-kidney-metabolic syndrome. Lipids Health Dis. 2024;23(1):408. DOI:10.1186/s12944-024-02400-w
7. Veronesi F, Borsari V, Cherubini A, Fini M. Association of Klotho with physical performance and frailty in middle-aged and older adults: A systematic review. Exp Gerontol. 2021;154:111518. DOI:10.1016/j.exger.2021.111518
8. Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, et al. Soluble klotho, a potential biomarker of chronic kidney disease-mineral bone disorders involved in healthy ageing: lights and shadows. Int J Mol Sci. 2024;25(3):1843. DOI:10.3390/ijms25031843
9. Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513-8. DOI:10.1016/j.bbrc.2010.06.110
10. Mochón-Benguigui S, Carneiro-Barrera A, Castillo MJ, Amaro-Gahete FJ. Is sleep associated with the s-klotho anti-aging protein in sedentary middle-aged adults? The FIT-AGEING study. Antioxidants (Basel). 2020;9(8):738. DOI:10.3390/antiox9080738
11. Topal M, Erkus E. Improving sleep quality is essential for enhancing soluble Klotho levels in hemodialysis patients. Int Urol Nephrol. 2023;55(12):3275-320. DOI:10.1007/s11255-023-03693-z
12. Shin EJ, Chung YH, Le HL, et al. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol. 2014;18(6):pyu105. DOI:10.1093/ijnp/pyu105
13. Madaeva IM, Kurashova NA, Ukhinov EB, et al. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: a pilot study. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5‑2):52‑7 (in Russian). DOI:10.17116/jnevro202212205252
14. Pákó J, Kunos L, Mészáros M, et al. Decreased levels of anti-aging klotho in obstructive sleep apnea. Rejuvenation Res. 2020;23(3):256-61. DOI:10.1089/rej.2019.2183
15. Tempaku PF, D'Almeida V, da Silva SMA, et al. Klotho genetic variants mediate the association between obstructive sleep apnea and short telomere length. Sleep Med. 2021;83:210-1. DOI:10.1016/j.sleep.2021.01.015
16. Turkiewicz S, Ditmer M, Sochal M, et al. Obstructive sleep apnea as an acceleration trigger of cellular senescence processes through telomere shortening. Int J Mol Sci. 2021;22(22):12536. DOI:10.3390/ijms222212536
17. Tarnoki AD, Tarnoki DL, Oláh C, et al. Lumbar spine abnormalities in patients with obstructive sleep apnoea. Sci Rep. 2021;11(1):16233. DOI:10.1038/s41598-021-95667-3
18. Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive sleep apnea and hallmarks of aging. Trends Mol Med. 2017;23(8):675-92. DOI:10.1016/j.molmed.2017.06.006
19. Madaeva IM, Kurashova NA, Berdina ON, et al. The state of the lPO-AOD system and the relative length of telomeric repeats in the chromosomes of blood leukocytes in obstructive sleep apnea syndrome. Bull Exp Biol Med. 2023;176(1):30-3. DOI:10.1007/s10517-023-05961-5
20. Madaeva IM, Kurashova NA, Titova EV, et al. Growth Differentiation Factor GDF 15 (“Protein of Senility”) under Conditions of Oxidative Stress and Intermittent Nocturnal Hypoxia in Patients with Sleep Apnea Syndrome. Adv Gerontol. 2024;14(2):61-7. DOI:10.1134/s2079057024600447
21. Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative stress markers and severity of obstructive sleep apnea. Adv Exp Med Biol. 2019;1222:27-35. DOI:10.1007/5584_2019_433
22. Stanek A, Brożyna-Tkaczyk K, Myśliński W. Oxidative stress markers among obstructive sleep apnea patients. Oxid Med Cell Longev. 2021;9681595. DOI:10.1155/2021/9681595
23. Kunos L, Horvath P, Kis A, et al. Circulating survivin levels in obstructive sleep apnoea. Lung. 2018;196(4):417-24. DOI:10.1007/s00408-018-0120-z
24. da Paz Oliveira G, Elias RM, Peres Fernandes GB, et al. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med. 2021;78:57-62. DOI:10.1016/j.sleep.2020.11.037
2. Khan P, Saha N, Nidhi. Neuroprotective effect of naringin by modulation of klotho and HMGB1- TLR4 axis in PTZ-induced kindling in mice. Biochem Biophys Res Commun. 2025;742:151080. DOI:10.1016/j.bbrc.2024.151080
3. Pavlatou MG, Remaley AT, Gold PW. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry. 2016;6(8):e876. DOI:10.1038/tp.2016.135
4. Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, et al. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci. 2024;25(8):4194. DOI:10.3390/ijms25084194
5. Ge S, Dong F, Tian C, et al. Serum soluble alpha-klotho klotho and cognitive functioning in older adults aged 60 and 79: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011 to 2014. BMC Geriatr. 2024;24(1):245. DOI:10.1186/s12877-024-04661-7
6. Tang J, Xu Z, Ren L, et al. Association of serum Klotho with the severity and mortality among adults with cardiovascular-kidney-metabolic syndrome. Lipids Health Dis. 2024;23(1):408. DOI:10.1186/s12944-024-02400-w
7. Veronesi F, Borsari V, Cherubini A, Fini M. Association of Klotho with physical performance and frailty in middle-aged and older adults: A systematic review. Exp Gerontol. 2021;154:111518. DOI:10.1016/j.exger.2021.111518
8. Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, et al. Soluble klotho, a potential biomarker of chronic kidney disease-mineral bone disorders involved in healthy ageing: lights and shadows. Int J Mol Sci. 2024;25(3):1843. DOI:10.3390/ijms25031843
9. Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513-8. DOI:10.1016/j.bbrc.2010.06.110
10. Mochón-Benguigui S, Carneiro-Barrera A, Castillo MJ, Amaro-Gahete FJ. Is sleep associated with the s-klotho anti-aging protein in sedentary middle-aged adults? The FIT-AGEING study. Antioxidants (Basel). 2020;9(8):738. DOI:10.3390/antiox9080738
11. Topal M, Erkus E. Improving sleep quality is essential for enhancing soluble Klotho levels in hemodialysis patients. Int Urol Nephrol. 2023;55(12):3275-320. DOI:10.1007/s11255-023-03693-z
12. Shin EJ, Chung YH, Le HL, et al. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol. 2014;18(6):pyu105. DOI:10.1093/ijnp/pyu105
13. Мадаева И.М., Курашова Н.А., Ухинов Э.Б., и др. Изменение относительной длины теломер у пациентов с синдромом обструктивного апноэ сна на фоне СИПАП-терапии: пилотное исследование. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2022;122(5-2):52-7 [Madaeva IM, Kurashova NA, Ukhinov EB, et al. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: a pilot study. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5‑2):52‑7 (in Russian)]. DOI:10.17116/jnevro202212205252
14. Pákó J, Kunos L, Mészáros M, et al. Decreased levels of anti-aging klotho in obstructive sleep apnea. Rejuvenation Res. 2020;23(3):256-61. DOI:10.1089/rej.2019.2183
15. Tempaku PF, D'Almeida V, da Silva SMA, et al. Klotho genetic variants mediate the association between obstructive sleep apnea and short telomere length. Sleep Med. 2021;83:210-1. DOI:10.1016/j.sleep.2021.01.015
16. Turkiewicz S, Ditmer M, Sochal M, et al. Obstructive sleep apnea as an acceleration trigger of cellular senescence processes through telomere shortening. Int J Mol Sci. 2021;22(22):12536. DOI:10.3390/ijms222212536
17. Tarnoki AD, Tarnoki DL, Oláh C, et al. Lumbar spine abnormalities in patients with obstructive sleep apnoea. Sci Rep. 2021;11(1):16233. DOI:10.1038/s41598-021-95667-3
18. Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive sleep apnea and hallmarks of aging. Trends Mol Med. 2017;23(8):675-92. DOI:10.1016/j.molmed.2017.06.006
19. Madaeva IM, Kurashova NA, Berdina ON, et al. The state of the lPO-AOD system and the relative length of telomeric repeats in the chromosomes of blood leukocytes in obstructive sleep apnea syndrome. Bull Exp Biol Med. 2023;176(1):30-3. DOI:10.1007/s10517-023-05961-5
20. Madaeva IM, Kurashova NA, Titova EV, et al. Growth Differentiation Factor GDF 15 (“Protein of Senility”) under Conditions of Oxidative Stress and Intermittent Nocturnal Hypoxia in Patients with Sleep Apnea Syndrome. Adv Gerontol. 2024;14(2):61-7. DOI:10.1134/s2079057024600447
21. Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative stress markers and severity of obstructive sleep apnea. Adv Exp Med Biol. 2019;1222:27-35. DOI:10.1007/5584_2019_433
22. Stanek A, Brożyna-Tkaczyk K, Myśliński W. Oxidative stress markers among obstructive sleep apnea patients. Oxid Med Cell Longev. 2021;9681595. DOI:10.1155/2021/9681595
23. Kunos L, Horvath P, Kis A, et al. Circulating survivin levels in obstructive sleep apnoea. Lung. 2018;196(4):417-24. DOI:10.1007/s00408-018-0120-z
24. da Paz Oliveira G, Elias RM, Peres Fernandes GB, et al. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med. 2021;78:57-62. DOI:10.1016/j.sleep.2020.11.037
________________________________________________
2. Khan P, Saha N, Nidhi. Neuroprotective effect of naringin by modulation of klotho and HMGB1- TLR4 axis in PTZ-induced kindling in mice. Biochem Biophys Res Commun. 2025;742:151080. DOI:10.1016/j.bbrc.2024.151080
3. Pavlatou MG, Remaley AT, Gold PW. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry. 2016;6(8):e876. DOI:10.1038/tp.2016.135
4. Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, et al. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci. 2024;25(8):4194. DOI:10.3390/ijms25084194
5. Ge S, Dong F, Tian C, et al. Serum soluble alpha-klotho klotho and cognitive functioning in older adults aged 60 and 79: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011 to 2014. BMC Geriatr. 2024;24(1):245. DOI:10.1186/s12877-024-04661-7
6. Tang J, Xu Z, Ren L, et al. Association of serum Klotho with the severity and mortality among adults with cardiovascular-kidney-metabolic syndrome. Lipids Health Dis. 2024;23(1):408. DOI:10.1186/s12944-024-02400-w
7. Veronesi F, Borsari V, Cherubini A, Fini M. Association of Klotho with physical performance and frailty in middle-aged and older adults: A systematic review. Exp Gerontol. 2021;154:111518. DOI:10.1016/j.exger.2021.111518
8. Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, et al. Soluble klotho, a potential biomarker of chronic kidney disease-mineral bone disorders involved in healthy ageing: lights and shadows. Int J Mol Sci. 2024;25(3):1843. DOI:10.3390/ijms25031843
9. Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513-8. DOI:10.1016/j.bbrc.2010.06.110
10. Mochón-Benguigui S, Carneiro-Barrera A, Castillo MJ, Amaro-Gahete FJ. Is sleep associated with the s-klotho anti-aging protein in sedentary middle-aged adults? The FIT-AGEING study. Antioxidants (Basel). 2020;9(8):738. DOI:10.3390/antiox9080738
11. Topal M, Erkus E. Improving sleep quality is essential for enhancing soluble Klotho levels in hemodialysis patients. Int Urol Nephrol. 2023;55(12):3275-320. DOI:10.1007/s11255-023-03693-z
12. Shin EJ, Chung YH, Le HL, et al. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol. 2014;18(6):pyu105. DOI:10.1093/ijnp/pyu105
13. Madaeva IM, Kurashova NA, Ukhinov EB, et al. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: a pilot study. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5‑2):52‑7 (in Russian). DOI:10.17116/jnevro202212205252
14. Pákó J, Kunos L, Mészáros M, et al. Decreased levels of anti-aging klotho in obstructive sleep apnea. Rejuvenation Res. 2020;23(3):256-61. DOI:10.1089/rej.2019.2183
15. Tempaku PF, D'Almeida V, da Silva SMA, et al. Klotho genetic variants mediate the association between obstructive sleep apnea and short telomere length. Sleep Med. 2021;83:210-1. DOI:10.1016/j.sleep.2021.01.015
16. Turkiewicz S, Ditmer M, Sochal M, et al. Obstructive sleep apnea as an acceleration trigger of cellular senescence processes through telomere shortening. Int J Mol Sci. 2021;22(22):12536. DOI:10.3390/ijms222212536
17. Tarnoki AD, Tarnoki DL, Oláh C, et al. Lumbar spine abnormalities in patients with obstructive sleep apnoea. Sci Rep. 2021;11(1):16233. DOI:10.1038/s41598-021-95667-3
18. Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive sleep apnea and hallmarks of aging. Trends Mol Med. 2017;23(8):675-92. DOI:10.1016/j.molmed.2017.06.006
19. Madaeva IM, Kurashova NA, Berdina ON, et al. The state of the lPO-AOD system and the relative length of telomeric repeats in the chromosomes of blood leukocytes in obstructive sleep apnea syndrome. Bull Exp Biol Med. 2023;176(1):30-3. DOI:10.1007/s10517-023-05961-5
20. Madaeva IM, Kurashova NA, Titova EV, et al. Growth Differentiation Factor GDF 15 (“Protein of Senility”) under Conditions of Oxidative Stress and Intermittent Nocturnal Hypoxia in Patients with Sleep Apnea Syndrome. Adv Gerontol. 2024;14(2):61-7. DOI:10.1134/s2079057024600447
21. Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative stress markers and severity of obstructive sleep apnea. Adv Exp Med Biol. 2019;1222:27-35. DOI:10.1007/5584_2019_433
22. Stanek A, Brożyna-Tkaczyk K, Myśliński W. Oxidative stress markers among obstructive sleep apnea patients. Oxid Med Cell Longev. 2021;9681595. DOI:10.1155/2021/9681595
23. Kunos L, Horvath P, Kis A, et al. Circulating survivin levels in obstructive sleep apnoea. Lung. 2018;196(4):417-24. DOI:10.1007/s00408-018-0120-z
24. da Paz Oliveira G, Elias RM, Peres Fernandes GB, et al. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med. 2021;78:57-62. DOI:10.1016/j.sleep.2020.11.037
Авторы
И.М. Мадаева*, А.А. Пыткина
ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека», Иркутск, Россия
*nightchild@mail.ru
Scientific Сentre for Family Health and Human Reproduction Problems, Irkutsk, Russia
*nightchild@mail.ru
ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека», Иркутск, Россия
*nightchild@mail.ru
________________________________________________
Scientific Сentre for Family Health and Human Reproduction Problems, Irkutsk, Russia
*nightchild@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
