Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Реконструктивная хирургия носа. Перспективы тканевой инженерии и трехмерной печати в ринохирургии
Реконструктивная хирургия носа. Перспективы тканевой инженерии и трехмерной печати в ринохирургии
Кокаев Р.И., Мусаева И.И., Наказова А.А., Абатаева А.С. Реконструктивная хирургия носа. Перспективы тканевой инженерии и трехмерной печати в ринохирургии. Consilium Medicum. 2025;27(9):543–548. DOI: 10.26442/20751753.2025.9.203291
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Хирургическое вмешательство на носу представляет собой комплекс операций, направленных на восстановление анатомической и физиологической структуры носа. Традиционно в хирургии носа применяются различные методы: использование собственных тканей пациента (аутопластические операции), имплантация биоматериалов, взятых у других людей (аллопластические операции), или синтетических или искусственных материалов для устранения дефектов. Однако количество аутогенных хрящей ограничено, не говоря уже о том, что при извлечении как ушных, так и реберных хрящей неизбежно возникают дополнительные разрезы, которые могут привести к осложнениям в донорской зоне. Тканевая инженерия, которая на протяжении многих лет активно развивается, представляет собой многообещающий подход к реконструкции тканей и органов, включая нос. В последнее время наблюдается повышенный интерес к созданию новых тканей и каркасов для органов с помощью технологии 3D-печати. Эта технология позволяет точно контролировать микроархитектуру и внутреннюю структуру, что создает идеальные условия для заселения клеток. Существует лишь несколько исследований, посвященных тканевой инженерии хрящевой ткани, применению стволовых клеток и факторов роста для этой цели. В этом обзоре представлены основные сведения о доступных исследованиях, посвященных стандартным хирургическим подходам, а также применению стволовых клеток, биоматериалов и трехмерной печати для реконструкции носа.
Ключевые слова: ринохирургия, тканевая инженерия, биоматериалы, стволовые клетки, трехмерная биопечать, хрящевые трансплантаты, факторы роста
Keywords: rhinosurgery, tissue engineering, biomaterials, stem cells, three-dimensional bioprinting, cartilage grafts, growth factors
Ключевые слова: ринохирургия, тканевая инженерия, биоматериалы, стволовые клетки, трехмерная биопечать, хрящевые трансплантаты, факторы роста
________________________________________________
Keywords: rhinosurgery, tissue engineering, biomaterials, stem cells, three-dimensional bioprinting, cartilage grafts, growth factors
Полный текст
Список литературы
1. Михельсон Н.М. Восстановительные операции челюстно-лицевой области. М.: Медгиз, 1962 [Mikhel'son NM. Vosstanovitel'nye operatsii cheliustno-litsevoi oblasti. Moscow: Medgiz, 1962 (in Russian)].
2. Вальтер К. Эволюция ринопластики. Российская ринология. 1996;1:5-15 [Walter С. The evolution of rhinoplasty. Russian Rhinology = Rossiyskaya Rinologiya. 1996;1:5-15 (in Russian)].
3. Kaliva M, Chatzinikolaidou M, Vamvakaki M. Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q, ed. Smart Materials for Tissue Engineering: Applications. Royal Society of Chemistry, 2017.
4. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-62. DOI:10.1016/j.addr.2007.08.027
5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. DOI:10.1038/nbt.2958
6. Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-9. DOI:10.1016/j.biomaterials.2012.09.035
7. Zarei F, Daraee H. Recent progresses in breast reconstruction: Stem cells, biomaterials, and growth factors. Drug Res (Stuttg). 2018;68(6):311-6. DOI:10.1055/s-0043-122490
8. Schmitt B, Ringe J, Häupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stemcells in high-density culture. Differentiation. 2003;71(9-10):567-77. DOI:10.1111/j.1432-0436.2003.07109003.x
9. Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondro genesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853-62. DOI:10.1089/ten.2006.12.2853
10. Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. DOI:10.1002/jcb.20546
11. Daniel RK. The conundrum of the depressor septi nasi muscle. Plast Reconstr Surg. 2014;134(3):480e-1e. DOI:10.1097/PRS.0000000000000418
12. Çakır B, Öreroğlu AR, Daniel RK. Surface aesthetics in tip rhinoplasty: A stepby-step guide. Aesthet Surg J. 2014;34(6):941-55. DOI:10.1177/1090820X14537643
13. Аlvert JW, Patel AC, Daniel RK. Reconstructive rhinoplasty: operative revision of patients with previous autologous costal cartilage grafts. Plast Reconstr Surg. 2014;133(5):1087-96. DOI:10.1097/PRS.0000000000000119
14. Магомедов М.М., Ибрагимов Ш.И., Дадаев И.М., и др. Отдаленные наблюдения применения консервированного хряща при ринопластике. Актуальные вопросы современной оториноларингологии. Сборник трудов X Республиканской научно-практической конференции оториноларингологов Республики Дагестан, посвященной 100-летию образования Дагестанской АССР, Махачкала, 10–11 июня 2021 г. Махачкала: Дагестанский государственный медицинский университет, 2021 [Magomedov MM, Ibragimov ShI, Dadaev IM, et al. Otdalennye nabliudeniia primeneniia konservirovannogo khriashcha pri rinoplastike. Aktual'nye voprosy sovremennoi otorinolaringologii. Sbornik trudov X Respublikanskoi nauchno-prakticheskoi konferentsii otorinolaringologov Respubliki Dagestan, posviashchennoi 100-letiiu obrazovaniia Dagestanskoi ASSR, Makhachkala, 10–11 iiunia 2021 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2021 (in Russian)].
15. Магомедов М.М., Азизова Х.А., Салаватова К.Б., и др. Применение консервированного аллохряща в реконструктивной хирургии пирамиды носа. Новые технологии в оториноларингологии. Сборник трудов Межрегиональной научно-практической конференции оториноларингологов СКФО с международным участием, посвященной 100-летию со дня рождения Расула Гамзатова, Махачкала, 23 июня 2023 г. Махачкала: Дагестанский государственный медицинский университет, 2023 [Magomedov MM, Azizova KhA, Salavatova KB, et al. Primenenie konservirovannogo allokhriashcha v rekonstruktivnoi khirurgii piramidy nosa. Novye tekhnologii v otorinolaringologii. Sbornik trudov Mezhregional'noi nauchno-prakticheskoi konferentsii otorinolaringologov SKFO s mezhdunarodnym uchastiem, posviashchennoi 100-letiiu so dnia rozhdeniia Rasula Gamzatova, Makhachkala, 23 iiunia 2023 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2023 (in Russian)].
16. Колядич Ж.В., Порадовский А.А., Корженевич Е.И. Функциональные ринопластики при седловидных деформациях носа. Оториноларингология. Восточная Европа. 2018;8(1):90-7 [Kaliadzich Z, Poradovskii A, Karzhanevich A. Functional rhinoplasty in cases of saddle nose deformity. Otorhinolaryngology. Eastern Europe. 2018;8(1):90-7 (in Russian)].
17. Pak MW, Chan ES, van Hasselt CA. Late complications of nasal augmentation using silicone implants. J Laryngol Otol. 1998;112(11):1074-7. PMID:10197148
18. Курбанов У.А., Давлатов А.А., Джанобилова С.М., и др. Использование реберного аутохряща в реконструктивно-пластической хирургии. Вестник Авиценны. 2011;4(3):7-18 [Kurbanov UA, Davlatov AA, Dzhanobilova SM, et al. The use of costal autologous cartilage in reconstructive and plastic surgery. Vestnik Avitsenny = Avicenna Bulletin. 2011;4(3):7-18 (in Russian)]. DOI:10.25005/2074-0581-2011-13-4-7-18
19. Глушко А.В., Гаммадаева С.Ш., Лебедева Ю.В. Хирургическая коррекция короткого носа при дефиците каудальной части носовой перегородки. Пластическая хирургия и эстетическая медицина. 2023;3:18-26 [Glushko AV, Gammadaeva SSh, Lebedeva YuV. Surgical correction of a short nose with deficiency of the caudal part of the nasal septum. Plastic Surgery and Aesthetic Medicine. 2023;(3):18-26 (in Russian)]. DOI:10.17116/plast.hirurgia202303118
20. Ceratti TA, Neto AS, Vittorazzi A, et al. Use of a composite auricular graft in nasal alar reconstruction. Rev Bras Cir Plást. 2012;27(4):640-3. DOI:10.1590/S1983-51752012000400030
21. Курбанов У.А., Давлатов А.А., Джанобилова С.М., Мирзобеков Х.Ф. Использование ушного композиционного трансплантата при реконструкции крыла носа. Вестник Авиценны. 2016;3(68):22-6 [Kurbanov UA, Davlatov AA, Janobilova SM, Mirzobekov KhF. Using of composite ear graft in reconstruction of wing nose. Vestnik Avitsenny = Avicenna Bulletin. 2016;3(68):22-6 (in Russian)].
22. Murrell GL. Auricular cartilage grafts and nasal surgery. Laryngoscope. 2004;114(12):2092-102. DOI:10.1097/01.mlg.0000149440.20608.7c
23. Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406-17. DOI:10.1002/adfm.201503423
24. Аббасов ИБ. Основы трехмерного моделирования в графической системе 3 ds Max 2018. Учебное пособие. М.: ДМК Пресс, 2017 [Abbasov IB. Osnovy trekhmernogo modelirovaniia v graficheskoi sisteme 3 ds Max 2018. Uchebnoe posobie. Moscow: DMK Press, 2017 (in Russian)].
25. Lee JY, Park JH, Ahn MJ, et al. Long-term study on off-the-shelf tracheal graft: A conceptual approach for urgent implantation. Mater Des. 2020;185:108-19. DOI:10.1016/J.MATDES.2019.10821
26. Xiaohong W. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12):814. DOI:10.3390/mi10120814
27. Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):5360. DOI:10.1007/s10856-014-5360-8
28. Wang MO, Piard CM, Melchiorri A, et al. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A. 2015;21(9-10):1642-53. DOI:10.1089/ten.tea.2014.0495
29. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. DOI:10.1038/ncomms4935
30. Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97. DOI:10.1002/term.1682
31. Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. DOI:10.1007/s10529-015-1921-2
32. Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-12. DOI:10.1089/ten.TEA.2011.0543
33. Urlić I, Ivković A. Cell sources for cartilage repair-biological and clinical perspective. Cells. 2021;10(9):2496. DOI:10.3390/cells10092496
34. Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel). 2020;13(14):3210. DOI:10.3390/ma13143210
35. Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718. DOI:10.1155/2012/461718
36. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. DOI:10.1186/s13287-018-0914-1
37. Tang Y, Pan ZY, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med. 2017;21(9):2153-62. DOI:10.1111/jcmm.13138
38. Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clinic Proceedings. 2015;90(1):148-58. DOI:10.1016/j.mayocp.2014.10.002
39. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200. DOI:10.1006/excr.2001.5278
40. Zarei F, Abbaszadeh A. Stem cell and skin rejuvenation. J Cosmet Laser Ther. 2018;20(3):193-7. DOI:10.1080/14764172.2017.1383615
41. Mendelson A, Ahn JM, Paluch K, et al. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg. 2014;133(6):1344-53. DOI:10.1097/PRS.0000000000000232
42. Planas J. Use of integraTM in rhinoplasty. In: Shiffman MA, Di Giuseppe A. Advanced Aesthetic Rhinoplasty: Art, Science, and New Clinical Techniques. Berlin, Heidelberg: Springer, 2013. DOI:10.1007/978-3-642-28053-5_47
43. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659-64. DOI:10.1054/bjps.2001.3684
44. Tiengo C, Amabile A, Azzena B. The contribution of a dermal substitute in the three-layers reconstruction of a nose tipavulsion. J Plast Reconstr Aesthetic Surg. 2012;65(1):114-7. DOI:10.1016/j.bjps.2011.06.030
45. Vahabi S, Rafieian Y. Abbas Zadeh A. The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Investig Surg. 2018;31(2):82-8. DOI:10.1080/08941939.2016.1278288
46. Liu J, Zhao B, Zhang Y, et al. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A. 2010;94(2):603-10. DOI:10.1002/jbm.a.32730
47. Wu J, Xue K, Li H, et al. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 2013;8(8):e71563. DOI:10.1371/journal.pone.0071563
48. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47-56. DOI:10.1016/j.jmbbm.2014.01.019
2. Walter С. The evolution of rhinoplasty. Russian Rhinology = Rossiyskaya Rinologiya. 1996;1:5-15 (in Russian).
3. Kaliva M, Chatzinikolaidou M, Vamvakaki M. Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q, ed. Smart Materials for Tissue Engineering: Applications. Royal Society of Chemistry, 2017.
4. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-62. DOI:10.1016/j.addr.2007.08.027
5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. DOI:10.1038/nbt.2958
6. Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-9. DOI:10.1016/j.biomaterials.2012.09.035
7. Zarei F, Daraee H. Recent progresses in breast reconstruction: Stem cells, biomaterials, and growth factors. Drug Res (Stuttg). 2018;68(6):311-6. DOI:10.1055/s-0043-122490
8. Schmitt B, Ringe J, Häupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stemcells in high-density culture. Differentiation. 2003;71(9-10):567-77. DOI:10.1111/j.1432-0436.2003.07109003.x
9. Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondro genesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853-62. DOI:10.1089/ten.2006.12.2853
10. Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. DOI:10.1002/jcb.20546
11. Daniel RK. The conundrum of the depressor septi nasi muscle. Plast Reconstr Surg. 2014;134(3):480e-1e. DOI:10.1097/PRS.0000000000000418
12. Çakır B, Öreroğlu AR, Daniel RK. Surface aesthetics in tip rhinoplasty: A stepby-step guide. Aesthet Surg J. 2014;34(6):941-55. DOI:10.1177/1090820X14537643
13. Аlvert JW, Patel AC, Daniel RK. Reconstructive rhinoplasty: operative revision of patients with previous autologous costal cartilage grafts. Plast Reconstr Surg. 2014;133(5):1087-96. DOI:10.1097/PRS.0000000000000119
14. Magomedov MM, Ibragimov ShI, Dadaev IM, et al. Otdalennye nabliudeniia primeneniia konservirovannogo khriashcha pri rinoplastike. Aktual'nye voprosy sovremennoi otorinolaringologii. Sbornik trudov X Respublikanskoi nauchno-prakticheskoi konferentsii otorinolaringologov Respubliki Dagestan, posviashchennoi 100-letiiu obrazovaniia Dagestanskoi ASSR, Makhachkala, 10–11 iiunia 2021 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2021 (in Russian).
15. Magomedov MM, Azizova KhA, Salavatova KB, et al. Primenenie konservirovannogo allokhriashcha v rekonstruktivnoi khirurgii piramidy nosa. Novye tekhnologii v otorinolaringologii. Sbornik trudov Mezhregional'noi nauchno-prakticheskoi konferentsii otorinolaringologov SKFO s mezhdunarodnym uchastiem, posviashchennoi 100-letiiu so dnia rozhdeniia Rasula Gamzatova, Makhachkala, 23 iiunia 2023 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2023 (in Russian).
16. Kaliadzich Z, Poradovskii A, Karzhanevich A. Functional rhinoplasty in cases of saddle nose deformity. Otorhinolaryngology. Eastern Europe. 2018;8(1):90-7 (in Russian).
17. Pak MW, Chan ES, van Hasselt CA. Late complications of nasal augmentation using silicone implants. J Laryngol Otol. 1998;112(11):1074-7. PMID:10197148
18. Kurbanov UA, Davlatov AA, Dzhanobilova SM, et al. The use of costal autologous cartilage in reconstructive and plastic surgery. Vestnik Avitsenny = Avicenna Bulletin. 2011;4(3):7-18 (in Russian). DOI:10.25005/2074-0581-2011-13-4-7-18
19. Glushko AV, Gammadaeva SSh, Lebedeva YuV. Surgical correction of a short nose with deficiency of the caudal part of the nasal septum. Plastic Surgery and Aesthetic Medicine. 2023;(3):18-26 (in Russian). DOI:10.17116/plast.hirurgia202303118
20. Ceratti TA, Neto AS, Vittorazzi A, et al. Use of a composite auricular graft in nasal alar reconstruction. Rev Bras Cir Plást. 2012;27(4):640-3. DOI:10.1590/S1983-51752012000400030
21. Kurbanov UA, Davlatov AA, Janobilova SM, Mirzobekov KhF. Using of composite ear graft in reconstruction of wing nose. Vestnik Avitsenny = Avicenna Bulletin. 2016;3(68):22-6 (in Russian).
22. Murrell GL. Auricular cartilage grafts and nasal surgery. Laryngoscope. 2004;114(12):2092-102. DOI:10.1097/01.mlg.0000149440.20608.7c
23. Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406-17. DOI:10.1002/adfm.201503423
24. Abbasov IB. Osnovy trekhmernogo modelirovaniia v graficheskoi sisteme 3 ds Max 2018. Uchebnoe posobie. Moscow: DMK Press, 2017 (in Russian).
25. Lee JY, Park JH, Ahn MJ, et al. Long-term study on off-the-shelf tracheal graft: A conceptual approach for urgent implantation. Mater Des. 2020;185:108-19. DOI:10.1016/J.MATDES.2019.10821
26. Xiaohong W. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12):814. DOI:10.3390/mi10120814
27. Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):5360. DOI:10.1007/s10856-014-5360-8
28. Wang MO, Piard CM, Melchiorri A, et al. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A. 2015;21(9-10):1642-53. DOI:10.1089/ten.tea.2014.0495
29. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. DOI:10.1038/ncomms4935
30. Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97. DOI:10.1002/term.1682
31. Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. DOI:10.1007/s10529-015-1921-2
32. Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-12. DOI:10.1089/ten.TEA.2011.0543
33. Urlić I, Ivković A. Cell sources for cartilage repair-biological and clinical perspective. Cells. 2021;10(9):2496. DOI:10.3390/cells10092496
34. Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel). 2020;13(14):3210. DOI:10.3390/ma13143210
35. Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718. DOI:10.1155/2012/461718
36. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. DOI:10.1186/s13287-018-0914-1
37. Tang Y, Pan ZY, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med. 2017;21(9):2153-62. DOI:10.1111/jcmm.13138
38. Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clinic Proceedings. 2015;90(1):148-58. DOI:10.1016/j.mayocp.2014.10.002
39. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200. DOI:10.1006/excr.2001.5278
40. Zarei F, Abbaszadeh A. Stem cell and skin rejuvenation. J Cosmet Laser Ther. 2018;20(3):193-7. DOI:10.1080/14764172.2017.1383615
41. Mendelson A, Ahn JM, Paluch K, et al. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg. 2014;133(6):1344-53. DOI:10.1097/PRS.0000000000000232
42. Planas J. Use of integraTM in rhinoplasty. In: Shiffman MA, Di Giuseppe A. Advanced Aesthetic Rhinoplasty: Art, Science, and New Clinical Techniques. Berlin, Heidelberg: Springer, 2013. DOI:10.1007/978-3-642-28053-5_47
43. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659-64. DOI:10.1054/bjps.2001.3684
44. Tiengo C, Amabile A, Azzena B. The contribution of a dermal substitute in the three-layers reconstruction of a nose tipavulsion. J Plast Reconstr Aesthetic Surg. 2012;65(1):114-7. DOI:10.1016/j.bjps.2011.06.030
45. Vahabi S, Rafieian Y. Abbas Zadeh A. The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Investig Surg. 2018;31(2):82-8. DOI:10.1080/08941939.2016.1278288
46. Liu J, Zhao B, Zhang Y, et al. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A. 2010;94(2):603-10. DOI:10.1002/jbm.a.32730
47. Wu J, Xue K, Li H, et al. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 2013;8(8):e71563. DOI:10.1371/journal.pone.0071563
48. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47-56. DOI:10.1016/j.jmbbm.2014.01.019
2. Вальтер К. Эволюция ринопластики. Российская ринология. 1996;1:5-15 [Walter С. The evolution of rhinoplasty. Russian Rhinology = Rossiyskaya Rinologiya. 1996;1:5-15 (in Russian)].
3. Kaliva M, Chatzinikolaidou M, Vamvakaki M. Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q, ed. Smart Materials for Tissue Engineering: Applications. Royal Society of Chemistry, 2017.
4. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-62. DOI:10.1016/j.addr.2007.08.027
5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. DOI:10.1038/nbt.2958
6. Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-9. DOI:10.1016/j.biomaterials.2012.09.035
7. Zarei F, Daraee H. Recent progresses in breast reconstruction: Stem cells, biomaterials, and growth factors. Drug Res (Stuttg). 2018;68(6):311-6. DOI:10.1055/s-0043-122490
8. Schmitt B, Ringe J, Häupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stemcells in high-density culture. Differentiation. 2003;71(9-10):567-77. DOI:10.1111/j.1432-0436.2003.07109003.x
9. Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondro genesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853-62. DOI:10.1089/ten.2006.12.2853
10. Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. DOI:10.1002/jcb.20546
11. Daniel RK. The conundrum of the depressor septi nasi muscle. Plast Reconstr Surg. 2014;134(3):480e-1e. DOI:10.1097/PRS.0000000000000418
12. Çakır B, Öreroğlu AR, Daniel RK. Surface aesthetics in tip rhinoplasty: A stepby-step guide. Aesthet Surg J. 2014;34(6):941-55. DOI:10.1177/1090820X14537643
13. Аlvert JW, Patel AC, Daniel RK. Reconstructive rhinoplasty: operative revision of patients with previous autologous costal cartilage grafts. Plast Reconstr Surg. 2014;133(5):1087-96. DOI:10.1097/PRS.0000000000000119
14. Магомедов М.М., Ибрагимов Ш.И., Дадаев И.М., и др. Отдаленные наблюдения применения консервированного хряща при ринопластике. Актуальные вопросы современной оториноларингологии. Сборник трудов X Республиканской научно-практической конференции оториноларингологов Республики Дагестан, посвященной 100-летию образования Дагестанской АССР, Махачкала, 10–11 июня 2021 г. Махачкала: Дагестанский государственный медицинский университет, 2021 [Magomedov MM, Ibragimov ShI, Dadaev IM, et al. Otdalennye nabliudeniia primeneniia konservirovannogo khriashcha pri rinoplastike. Aktual'nye voprosy sovremennoi otorinolaringologii. Sbornik trudov X Respublikanskoi nauchno-prakticheskoi konferentsii otorinolaringologov Respubliki Dagestan, posviashchennoi 100-letiiu obrazovaniia Dagestanskoi ASSR, Makhachkala, 10–11 iiunia 2021 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2021 (in Russian)].
15. Магомедов М.М., Азизова Х.А., Салаватова К.Б., и др. Применение консервированного аллохряща в реконструктивной хирургии пирамиды носа. Новые технологии в оториноларингологии. Сборник трудов Межрегиональной научно-практической конференции оториноларингологов СКФО с международным участием, посвященной 100-летию со дня рождения Расула Гамзатова, Махачкала, 23 июня 2023 г. Махачкала: Дагестанский государственный медицинский университет, 2023 [Magomedov MM, Azizova KhA, Salavatova KB, et al. Primenenie konservirovannogo allokhriashcha v rekonstruktivnoi khirurgii piramidy nosa. Novye tekhnologii v otorinolaringologii. Sbornik trudov Mezhregional'noi nauchno-prakticheskoi konferentsii otorinolaringologov SKFO s mezhdunarodnym uchastiem, posviashchennoi 100-letiiu so dnia rozhdeniia Rasula Gamzatova, Makhachkala, 23 iiunia 2023 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2023 (in Russian)].
16. Колядич Ж.В., Порадовский А.А., Корженевич Е.И. Функциональные ринопластики при седловидных деформациях носа. Оториноларингология. Восточная Европа. 2018;8(1):90-7 [Kaliadzich Z, Poradovskii A, Karzhanevich A. Functional rhinoplasty in cases of saddle nose deformity. Otorhinolaryngology. Eastern Europe. 2018;8(1):90-7 (in Russian)].
17. Pak MW, Chan ES, van Hasselt CA. Late complications of nasal augmentation using silicone implants. J Laryngol Otol. 1998;112(11):1074-7. PMID:10197148
18. Курбанов У.А., Давлатов А.А., Джанобилова С.М., и др. Использование реберного аутохряща в реконструктивно-пластической хирургии. Вестник Авиценны. 2011;4(3):7-18 [Kurbanov UA, Davlatov AA, Dzhanobilova SM, et al. The use of costal autologous cartilage in reconstructive and plastic surgery. Vestnik Avitsenny = Avicenna Bulletin. 2011;4(3):7-18 (in Russian)]. DOI:10.25005/2074-0581-2011-13-4-7-18
19. Глушко А.В., Гаммадаева С.Ш., Лебедева Ю.В. Хирургическая коррекция короткого носа при дефиците каудальной части носовой перегородки. Пластическая хирургия и эстетическая медицина. 2023;3:18-26 [Glushko AV, Gammadaeva SSh, Lebedeva YuV. Surgical correction of a short nose with deficiency of the caudal part of the nasal septum. Plastic Surgery and Aesthetic Medicine. 2023;(3):18-26 (in Russian)]. DOI:10.17116/plast.hirurgia202303118
20. Ceratti TA, Neto AS, Vittorazzi A, et al. Use of a composite auricular graft in nasal alar reconstruction. Rev Bras Cir Plást. 2012;27(4):640-3. DOI:10.1590/S1983-51752012000400030
21. Курбанов У.А., Давлатов А.А., Джанобилова С.М., Мирзобеков Х.Ф. Использование ушного композиционного трансплантата при реконструкции крыла носа. Вестник Авиценны. 2016;3(68):22-6 [Kurbanov UA, Davlatov AA, Janobilova SM, Mirzobekov KhF. Using of composite ear graft in reconstruction of wing nose. Vestnik Avitsenny = Avicenna Bulletin. 2016;3(68):22-6 (in Russian)].
22. Murrell GL. Auricular cartilage grafts and nasal surgery. Laryngoscope. 2004;114(12):2092-102. DOI:10.1097/01.mlg.0000149440.20608.7c
23. Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406-17. DOI:10.1002/adfm.201503423
24. Аббасов ИБ. Основы трехмерного моделирования в графической системе 3 ds Max 2018. Учебное пособие. М.: ДМК Пресс, 2017 [Abbasov IB. Osnovy trekhmernogo modelirovaniia v graficheskoi sisteme 3 ds Max 2018. Uchebnoe posobie. Moscow: DMK Press, 2017 (in Russian)].
25. Lee JY, Park JH, Ahn MJ, et al. Long-term study on off-the-shelf tracheal graft: A conceptual approach for urgent implantation. Mater Des. 2020;185:108-19. DOI:10.1016/J.MATDES.2019.10821
26. Xiaohong W. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12):814. DOI:10.3390/mi10120814
27. Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):5360. DOI:10.1007/s10856-014-5360-8
28. Wang MO, Piard CM, Melchiorri A, et al. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A. 2015;21(9-10):1642-53. DOI:10.1089/ten.tea.2014.0495
29. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. DOI:10.1038/ncomms4935
30. Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97. DOI:10.1002/term.1682
31. Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. DOI:10.1007/s10529-015-1921-2
32. Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-12. DOI:10.1089/ten.TEA.2011.0543
33. Urlić I, Ivković A. Cell sources for cartilage repair-biological and clinical perspective. Cells. 2021;10(9):2496. DOI:10.3390/cells10092496
34. Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel). 2020;13(14):3210. DOI:10.3390/ma13143210
35. Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718. DOI:10.1155/2012/461718
36. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. DOI:10.1186/s13287-018-0914-1
37. Tang Y, Pan ZY, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med. 2017;21(9):2153-62. DOI:10.1111/jcmm.13138
38. Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clinic Proceedings. 2015;90(1):148-58. DOI:10.1016/j.mayocp.2014.10.002
39. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200. DOI:10.1006/excr.2001.5278
40. Zarei F, Abbaszadeh A. Stem cell and skin rejuvenation. J Cosmet Laser Ther. 2018;20(3):193-7. DOI:10.1080/14764172.2017.1383615
41. Mendelson A, Ahn JM, Paluch K, et al. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg. 2014;133(6):1344-53. DOI:10.1097/PRS.0000000000000232
42. Planas J. Use of integraTM in rhinoplasty. In: Shiffman MA, Di Giuseppe A. Advanced Aesthetic Rhinoplasty: Art, Science, and New Clinical Techniques. Berlin, Heidelberg: Springer, 2013. DOI:10.1007/978-3-642-28053-5_47
43. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659-64. DOI:10.1054/bjps.2001.3684
44. Tiengo C, Amabile A, Azzena B. The contribution of a dermal substitute in the three-layers reconstruction of a nose tipavulsion. J Plast Reconstr Aesthetic Surg. 2012;65(1):114-7. DOI:10.1016/j.bjps.2011.06.030
45. Vahabi S, Rafieian Y. Abbas Zadeh A. The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Investig Surg. 2018;31(2):82-8. DOI:10.1080/08941939.2016.1278288
46. Liu J, Zhao B, Zhang Y, et al. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A. 2010;94(2):603-10. DOI:10.1002/jbm.a.32730
47. Wu J, Xue K, Li H, et al. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 2013;8(8):e71563. DOI:10.1371/journal.pone.0071563
48. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47-56. DOI:10.1016/j.jmbbm.2014.01.019
________________________________________________
2. Walter С. The evolution of rhinoplasty. Russian Rhinology = Rossiyskaya Rinologiya. 1996;1:5-15 (in Russian).
3. Kaliva M, Chatzinikolaidou M, Vamvakaki M. Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q, ed. Smart Materials for Tissue Engineering: Applications. Royal Society of Chemistry, 2017.
4. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-62. DOI:10.1016/j.addr.2007.08.027
5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. DOI:10.1038/nbt.2958
6. Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-9. DOI:10.1016/j.biomaterials.2012.09.035
7. Zarei F, Daraee H. Recent progresses in breast reconstruction: Stem cells, biomaterials, and growth factors. Drug Res (Stuttg). 2018;68(6):311-6. DOI:10.1055/s-0043-122490
8. Schmitt B, Ringe J, Häupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stemcells in high-density culture. Differentiation. 2003;71(9-10):567-77. DOI:10.1111/j.1432-0436.2003.07109003.x
9. Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondro genesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853-62. DOI:10.1089/ten.2006.12.2853
10. Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. DOI:10.1002/jcb.20546
11. Daniel RK. The conundrum of the depressor septi nasi muscle. Plast Reconstr Surg. 2014;134(3):480e-1e. DOI:10.1097/PRS.0000000000000418
12. Çakır B, Öreroğlu AR, Daniel RK. Surface aesthetics in tip rhinoplasty: A stepby-step guide. Aesthet Surg J. 2014;34(6):941-55. DOI:10.1177/1090820X14537643
13. Аlvert JW, Patel AC, Daniel RK. Reconstructive rhinoplasty: operative revision of patients with previous autologous costal cartilage grafts. Plast Reconstr Surg. 2014;133(5):1087-96. DOI:10.1097/PRS.0000000000000119
14. Magomedov MM, Ibragimov ShI, Dadaev IM, et al. Otdalennye nabliudeniia primeneniia konservirovannogo khriashcha pri rinoplastike. Aktual'nye voprosy sovremennoi otorinolaringologii. Sbornik trudov X Respublikanskoi nauchno-prakticheskoi konferentsii otorinolaringologov Respubliki Dagestan, posviashchennoi 100-letiiu obrazovaniia Dagestanskoi ASSR, Makhachkala, 10–11 iiunia 2021 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2021 (in Russian).
15. Magomedov MM, Azizova KhA, Salavatova KB, et al. Primenenie konservirovannogo allokhriashcha v rekonstruktivnoi khirurgii piramidy nosa. Novye tekhnologii v otorinolaringologii. Sbornik trudov Mezhregional'noi nauchno-prakticheskoi konferentsii otorinolaringologov SKFO s mezhdunarodnym uchastiem, posviashchennoi 100-letiiu so dnia rozhdeniia Rasula Gamzatova, Makhachkala, 23 iiunia 2023 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2023 (in Russian).
16. Kaliadzich Z, Poradovskii A, Karzhanevich A. Functional rhinoplasty in cases of saddle nose deformity. Otorhinolaryngology. Eastern Europe. 2018;8(1):90-7 (in Russian).
17. Pak MW, Chan ES, van Hasselt CA. Late complications of nasal augmentation using silicone implants. J Laryngol Otol. 1998;112(11):1074-7. PMID:10197148
18. Kurbanov UA, Davlatov AA, Dzhanobilova SM, et al. The use of costal autologous cartilage in reconstructive and plastic surgery. Vestnik Avitsenny = Avicenna Bulletin. 2011;4(3):7-18 (in Russian). DOI:10.25005/2074-0581-2011-13-4-7-18
19. Glushko AV, Gammadaeva SSh, Lebedeva YuV. Surgical correction of a short nose with deficiency of the caudal part of the nasal septum. Plastic Surgery and Aesthetic Medicine. 2023;(3):18-26 (in Russian). DOI:10.17116/plast.hirurgia202303118
20. Ceratti TA, Neto AS, Vittorazzi A, et al. Use of a composite auricular graft in nasal alar reconstruction. Rev Bras Cir Plást. 2012;27(4):640-3. DOI:10.1590/S1983-51752012000400030
21. Kurbanov UA, Davlatov AA, Janobilova SM, Mirzobekov KhF. Using of composite ear graft in reconstruction of wing nose. Vestnik Avitsenny = Avicenna Bulletin. 2016;3(68):22-6 (in Russian).
22. Murrell GL. Auricular cartilage grafts and nasal surgery. Laryngoscope. 2004;114(12):2092-102. DOI:10.1097/01.mlg.0000149440.20608.7c
23. Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406-17. DOI:10.1002/adfm.201503423
24. Abbasov IB. Osnovy trekhmernogo modelirovaniia v graficheskoi sisteme 3 ds Max 2018. Uchebnoe posobie. Moscow: DMK Press, 2017 (in Russian).
25. Lee JY, Park JH, Ahn MJ, et al. Long-term study on off-the-shelf tracheal graft: A conceptual approach for urgent implantation. Mater Des. 2020;185:108-19. DOI:10.1016/J.MATDES.2019.10821
26. Xiaohong W. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12):814. DOI:10.3390/mi10120814
27. Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):5360. DOI:10.1007/s10856-014-5360-8
28. Wang MO, Piard CM, Melchiorri A, et al. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A. 2015;21(9-10):1642-53. DOI:10.1089/ten.tea.2014.0495
29. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. DOI:10.1038/ncomms4935
30. Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97. DOI:10.1002/term.1682
31. Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. DOI:10.1007/s10529-015-1921-2
32. Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-12. DOI:10.1089/ten.TEA.2011.0543
33. Urlić I, Ivković A. Cell sources for cartilage repair-biological and clinical perspective. Cells. 2021;10(9):2496. DOI:10.3390/cells10092496
34. Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel). 2020;13(14):3210. DOI:10.3390/ma13143210
35. Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718. DOI:10.1155/2012/461718
36. Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. DOI:10.1186/s13287-018-0914-1
37. Tang Y, Pan ZY, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med. 2017;21(9):2153-62. DOI:10.1111/jcmm.13138
38. Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clinic Proceedings. 2015;90(1):148-58. DOI:10.1016/j.mayocp.2014.10.002
39. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200. DOI:10.1006/excr.2001.5278
40. Zarei F, Abbaszadeh A. Stem cell and skin rejuvenation. J Cosmet Laser Ther. 2018;20(3):193-7. DOI:10.1080/14764172.2017.1383615
41. Mendelson A, Ahn JM, Paluch K, et al. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg. 2014;133(6):1344-53. DOI:10.1097/PRS.0000000000000232
42. Planas J. Use of integraTM in rhinoplasty. In: Shiffman MA, Di Giuseppe A. Advanced Aesthetic Rhinoplasty: Art, Science, and New Clinical Techniques. Berlin, Heidelberg: Springer, 2013. DOI:10.1007/978-3-642-28053-5_47
43. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659-64. DOI:10.1054/bjps.2001.3684
44. Tiengo C, Amabile A, Azzena B. The contribution of a dermal substitute in the three-layers reconstruction of a nose tipavulsion. J Plast Reconstr Aesthetic Surg. 2012;65(1):114-7. DOI:10.1016/j.bjps.2011.06.030
45. Vahabi S, Rafieian Y. Abbas Zadeh A. The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Investig Surg. 2018;31(2):82-8. DOI:10.1080/08941939.2016.1278288
46. Liu J, Zhao B, Zhang Y, et al. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A. 2010;94(2):603-10. DOI:10.1002/jbm.a.32730
47. Wu J, Xue K, Li H, et al. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 2013;8(8):e71563. DOI:10.1371/journal.pone.0071563
48. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47-56. DOI:10.1016/j.jmbbm.2014.01.019
Авторы
Р.И. Кокаев1,2, И.И. Мусаева*2, А.А. Наказова2, А.С. Абатаева2
1Институт биомедицинских исследований – филиал ФГБУН ФНЦ «Владикавказский научный центр Российской академии наук», Владикавказ, Россия;
2ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России, Владикавказ, Россия
*musaevaiman2002@mail.ru
1Institute of Biomedical Investigations – branch of Vladikavkaz Scientific Centre of Russian Academy of Sciences, Vladikavkaz, Russia;
2North Ossetian State Medical Academy, Vladikavkaz, Russia
*musaevaiman2002@mail.ru
1Институт биомедицинских исследований – филиал ФГБУН ФНЦ «Владикавказский научный центр Российской академии наук», Владикавказ, Россия;
2ФГБОУ ВО «Северо-Осетинская государственная медицинская академия» Минздрава России, Владикавказ, Россия
*musaevaiman2002@mail.ru
________________________________________________
1Institute of Biomedical Investigations – branch of Vladikavkaz Scientific Centre of Russian Academy of Sciences, Vladikavkaz, Russia;
2North Ossetian State Medical Academy, Vladikavkaz, Russia
*musaevaiman2002@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
