Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Современный взгляд на регуляторную роль некодирующих РНК и экзосом в развитии воспалительных заболеваний кишечника: обзор литературы
Современный взгляд на регуляторную роль некодирующих РНК и экзосом в развитии воспалительных заболеваний кишечника: обзор литературы
Стрельникова Е.А., Мардамшина Г.Р., Тихонова А.В., Шокурова Е.П., Мерзахмедова К.Х., Камалова Р.Ф., Мингазов Д. Р., Хабибуллина С.Р., Магомедов М.А., Магомедова А.О., Муртузова Ж.М., Карабекова М.Б., Амирханова Р.Р., Апряткина Т.А. Современный взгляд на регуляторную роль некодирующих РНК и экзосом в развитии воспалительных заболеваний кишечника: обзор литературы. Consilium Medicum. 2026;28(5):1–7. DOI: 10.26442/20751753.2026.5.203441
© ООО «КОНСИЛИУМ МЕДИКУМ», 2026 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2026 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Обзор литературы посвящен систематизации современных данных о регуляторной роли некодирующих РНК (нкРНК) и экзосом в патогенезе воспалительных заболеваний кишечника (ВЗК). Для подготовки обзора проведен поиск в базах данных PubMed, OVID MEDLINE, Google Scholar и ScienceDirect за период с 2018 по 2025 г. с использованием ключевых слов, соответствующих тематике. Критериями включения стали оригинальные исследования, изучающие молекулярные механизмы ВЗК, с акцентом на роль нкРНК и экзосом в диагностике и терапии ВЗК. Установлено, что различные классы нкРНК являются ключевыми регуляторами иммунного ответа, воспаления и целостности кишечного барьера. Провоспалительные miRNA (такие как miR-21, miR-155) способствуют хронизации воспалительного процесса путем активации пути транскрипционного фактора, в то время как снижение противовоспалительных miRNA (miR-146a) может привести к дисфункции компонентов иммунной системы. Экзосомы, в свою очередь, выступают медиаторами межклеточной коммуникации, обладая амбивалентными эффектами: они могут как усугублять воспаление, перенося провоспалительные факторы, так и оказывать выраженный терапевтический эффект, доставляя противовоспалительные агенты. Экзосомы из мезенхимальных стволовых клеток показали наиболее высокую эффективность благодаря своей способности к поляризации макрофагов в противовоспалительный фенотип М2, восстановлению барьерной функции и модуляции цитокинов. Полученные данные открывают новые перспективы для разработки неинвазивных диагностических биомаркеров на основе нкРНК и инновационных терапевтических стратегий, таких как ингибирование патогенных нкРНК антисмысловыми олигонуклеотидами и применение противовоспалительных экзосом для таргетной терапии. Однако для внедрения в клиническую практику необходимы стандартизация методов выделения, валидация биомаркеров и решение вопросов безопасности их применения и производства.
Ключевые слова: воспалительные заболевания кишечника, некодирующие РНК, болезнь Крона, язвенный колит, эпигенетическая регуляция, иммунная регуляция, воспаление, кишечный барьер, экзосомальные везикулы, аутоиммунные процессы
Keywords: inflammatory bowel disease, non-coding RNAs, Crohn’s disease, ulcerative colitis, epigenetic regulation, immune regulation, inflammation, intestinal barrier, exosomal vesicles, autoimmune processes
Ключевые слова: воспалительные заболевания кишечника, некодирующие РНК, болезнь Крона, язвенный колит, эпигенетическая регуляция, иммунная регуляция, воспаление, кишечный барьер, экзосомальные везикулы, аутоиммунные процессы
________________________________________________
Keywords: inflammatory bowel disease, non-coding RNAs, Crohn’s disease, ulcerative colitis, epigenetic regulation, immune regulation, inflammation, intestinal barrier, exosomal vesicles, autoimmune processes
Полный текст
Список литературы
1. Осипенко М.Ф., Валуйских Е.Ю., Светлова И.О., и др. Значение регистра воспалительных заболеваний кишечника для оценки качества лечебно-диагностических мероприятий. Экспериментальная и клиническая гастроэнтерология. 2016;9(133):42-7 [Osipenko MF, Valuyskikh EYu, Svetlova IO, et al. The value of the register of inflammatory bowel diseases for assessing the quality of diagnostic and treatment measures. Eksperimentalnaia i klinicheskaia gastroenterologia. 2016;9(133):42-7 (in Russian)].
2. Князев О.В., Шкурко Т.В., Фадеева Н.А., и др. Эпидемиология хронических воспалительных заболеваний кишечника. Вчера, сегодня, завтра. Экспериментальная и клиническая гастроэнтерология. 2017;3(139):4-12 [Knyazev OV, Shkurko TV, Fadeeva NA, et al. Epidemiology of chronic inflammatory bowel diseases. Yesterday, today, tomorrow. Eksperimentalnaia i klinicheskaia gastroenterologia. 2017;3(139):4-12 (in Russian)].
3. Kaplan GG, Bernstein CN, Coward S, et al. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Canadian Assoc Gastroenterol. 2019;2(Supplement_1):S6-16. DOI:10.1093/jcag/gwy054
4. Белоусова Е.А., Абдулганиева Д.И., Алексеева О.П., и др. Социально-демографическая характеристика, особенности течения и варианты лечения воспалительных заболеваний кишечника в России. Результаты двух многоцентровых исследований. Альманах клинической медицины. 2018;46(5):445-63 [Belousova EA, Abdulganieva DI, Alexeeva OP, et al. Socio-demographic characteristics, disease course features and treatment options for inflammatory bowel disease in Russia: Results of two multicenter studies. Almanakh klinicheskoi meditsiny. 2018;46(5):445-63 (in Russian)]. DOI:10.18786/2072-0505-2018-46-5-445-463
5. Щиголева А.Е., Шумилов П.В., Шумилов А.П. Воспалительные заболевания кишечника с очень ранним началом. Педиатрия. Журнал им. Г.Н. Сперанского. 2018;97(6):141-6 [Shchigoleva AE, Shumilov PV, Shumilov AP. Inflammatory bowel disease with a very early onset. Pediatria. Zhurnal im. G.N. Speranskogo. 2018;97(6):141-6 (in Russian)]. DOI:10.24110/0031-403X-2018-97-6-141-146
6. Katsanos KH, Papadakis KA. Inflammatory bowel disease: updates on molecular targets for biologics. Gut Liver. 2017;11(4):455-63. DOI:10.5009/gnl16308
7. Хлынова О.В., Косарева П.В., Фадеев Д.С., и др. Роль В-лимфоцитов и плазматических клеток в патогенезе воспалительных заболеваний кишечника. Экспериментальная и клиническая гастроэнтерология. 2023;6(214):39-46 [Khlynovа OV, Kosareva PV, Fadeev DS, et al. The role of B-lymphocytes and plasma cells in the pathogenesis of inflammatory bowel diseases. Eksperimentalnaia i klinicheskaia gastroenterologia. 2023;6(214):39-46 (in Russian)]. DOI:10.31146/1682-8658-ecg-214-6-39-46
8. Saadh MJ, Allela OQB, Al-Hussainy AF, et al. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflammation. 2025;22(1):18. DOI:10.1186/s12950-025-00443-z
9. Feng F, Jiao P, Wang J, et al. Role of long noncoding RNAs in the regulation of cellular immune response and inflammatory diseases. Cells. 2022;11(22):3642. DOI:10.3390/cells11223642
10. Андреев В.П., Цыркунов В.М. Микро-РНК как потенциальные неинвазивные маркеры патологических состояний печени. Гепатология и гастроэнтерология. 2023;7(2):105-11 [Andreev VP, Tsyrkunov VM. Micro-RNA as potential non-invasive markers of pathological conditions of the liver. Gepatologia i gastroenterologia. 2023;7(2):105-11 (in Russian)]. DOI:10.25298/2616-5546-2023-7-2-105-111
11. Roulé T, Christ A, Hussain N, et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant. 2022;15(5):840-56. DOI:10.1016/j.molp.2022.02.007
12. Santos AS, Santos-Bezerra DP, Ferreira LRP, et al. Relevance of Circulating microRNA, and their Association with Islet Cell Autoantibodies in Type 1 Diabetes Pathogenesis. Arch Med Res. 2025;56(2):103114. DOI:10.1016/j.arcmed.2024.103114
13. Мудров В.П. РНК как биомаркер в клинической лабораторной диагностике. Лабораторная медицина. 2024;15(1-2):13-23 [Mudrov VP. RNA as a biomarker in clinical laboratory diagnostics. Laboratornaia meditsina. 2024;15(1-2):13-23 (in Russian)]. DOI:10.58953/15621790_2024_15_1-2_13
14. Корнилов Д.О., Тряпицын М.А., Симарзина В.М., и др. Перспективы использования микроРНК в современных методах диагностики и терапии. Вестник уральской медицинской академической науки. 2022;19(2):109-31 [Kornilov DO, Tryapitsyn MA, Simarzina VM, et al. Prospects for the use of microRNA in modern methods of diagnosis and therapy. Vestnik uralskoi meditsinskoi akademicheskoi nauki. 2022;19(2):109-31 (in Russian)]. DOI:10.22138/2500-0918-2022-19-2-109-131
15. Pan Y, Tang X, Xie Y, et al. Long non-coding RNA BCAR4 regulates osteosarcoma progression by targeting microRNA-1260a. Bulletin du Cancer. 2025;112(4):375-86. DOI:10.1016/j.bulcan.2024.09.003
16. Lopez-Noriega L, Callingham R, Martinez-Sánchez A, et al. Roles for the long non-coding RNA Pax6os1/PAX6-AS1 in pancreatic beta cell function. iScience. 2025;28(1). DOI:10.1016/j.isci.2024.111518
17. Dunn-Davies H, Dudnakova T, Nogara A, et al. Control of endothelial cell function and arteriogenesis by MEG3: EZH2 epigenetic regulation of integrin expression. Mol Ther Nucleic Acids. 2024;35(2). DOI:10.1016/j.omtn.2024.102173
18. Avci CB, Edgunlu TG, Suzek T, et al. Propofol orchestrates long non-coding RNAs in MCF7 cells, unraveling new avenues for breast cancer intervention. Eur J Med Chem Rep. 2024;12:100186. DOI:10.1016/j.ejmcr.2024.100186
19. Ma J, Zhang Y, Sun Z, et al. LncRNA PVT1 promotes cuproptosis through transcriptional activation of FDX1 in colorectal cancer. Redox Biol. 2025:103722. DOI:10.1016/j.redox.2025.103722
20. Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med. 2024;14(11):e70075. DOI:10.1002/ctm2.70075
21. Коноплянников М.А., Князев О.В., Баклаушев В.П. Применение МСК для терапии воспалительных заболеваний кишечника. Клиническая практика. 2021;12(1):53-65 [Konopliannikov MA, Knyazev OV, Baklaushev VP. Primenenie MSK dlia terapii vospalitelnykh zabolevanii kishechnika. Klinicheskaia praktika. 2021;12(1):53-65 (in Russian)]. DOI:10.17816/clinpract64530
22. Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12(1):204. DOI:10.1186/s13287-021-02244-6
23. Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther. 2021;12(1):519. DOI:10.1186/s13287-021-02591-4
24. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, et al. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. DOI:10.3389/fnut.2021.586564
25. Visnovitz T. Extracellular vesicles: biology and therapeutic applications. Int J Mol Sci. 2024;25(23):13034. DOI:10.3390/ijms252313034
26. Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19(1):160. DOI:10.1186/s12943-020-01278-3
27. Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264-74. DOI:10.1016/j.intimp.2019.04.020
28. Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 contained in extracellular vesicles promotes the activation of keratinocytes by mesoglycan effects: an autocrine loop through FPRs. Cells. 2019;8(7):753. DOI:10.3390/cells8070753
29. Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research – Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). DOI:10.1063/1.5087122
30. Wang X, Zhou G, Zhou W, et al. Exosomes as a new delivery vehicle in inflammatory bowel disease. Pharmaceutics. 2021;13(10):1644. DOI:10.3390/pharmaceutics13101644
31. Xie X, Liu P, Wu H, et al. miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Transl Med. 2022;10(7):413. DOI:10.21037/atm-22-944
32. Park EJ, Shimaoka M, Kiyono H. Functional flexibility of exosomes and microRNAs of intestinal epithelial cells in affecting inflammation. Front Mol Biosci. 2022;9:854487. DOI:10.3389/fmolb.2022.854487
33. Oliveira ECSD, Quaglio AEV, Magro DO, et al. Intestinal microbiota and miRNA in IBD: a narrative review about discoveries and perspectives for the future. Int J Mol Sci. 2023;24(8):7176. DOI:10.3390/ijms24087176
34. Biswas S. Implications of Long Non-Coding RNAs in the Pathogenesis of Diabetic Retinopathy: A Novel Epigenetic Paradigm [Doctoral dissertation]. The University of Western Ontario (Canada); 2020. Available at: https://ir.lib.uwo.ca/etd/7116. Accessed: 15.08.2025.
35. Li M, Zhao J, Cao M, et al. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res. 2020;53(1):12. DOI:10.1186/s40659-020-00279-2
36. Inciuraite R, Ramonaite R, Kupcinskas J, et al. The microRNA expression in crypt-top and crypt-bottom colonic epithelial cell populations demonstrates cell-type specificity and correlates with endoscopic activity in ulcerative colitis. J Crohn's Colitis. 2024;18(12):2033-44. DOI:10.1093/ecco-jcc/jjae108
37. Appiah MG, Park EJ, Darkwah S, et al. Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-α and IL-17A Expression in Mucosal Inflammation. Int J Mol Sci. 2020;21(22):8445. DOI:10.3390/ijms21228445
38. Guo Y, Xu C, Gong R, et al. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathogens. 2022;14(1):13. DOI:10.1186/s13099-022-00486-0
39. Larabi A, Dalmasso G, Delmas J, et al. Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn’s disease-associated adherent-invasive E. coli. Gut Microbes. 2020;11(6):1677-94. DOI:10.1080/19490976.2020.1771985
40. Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12(1):315. DOI:10.1186/s13287-021-02404-8
41. Wohnhaas CT, Schmid R, Rolser M, et al. Fecal MicroRNAs show promise as noninvasive Crohn’s disease biomarkers. Crohn's Colitis 360. 2020;2(1):otaa003. DOI:10.1093/crocol/otaa003
42. Lima JF, Cerqueira L, Figueiredo C, et al. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018;15(3):338-52. DOI:10.1080/15476286.2018.1445959
43. Wang H, Ye X, Spanos M, et al. Exosomal non-coding RNA mediates macrophage polarization: roles in cardiovascular diseases. Biology. 2023;12(5):745. DOI:10.3390/biology12050745
44. Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903-13. DOI:10.3892/ijmm.2018.3829
45. Ma F, Zhang S, Akanyibah FA, et al. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res. 2023;15(12):6970.
46. Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protocols. 2019;4(1):bpz017. DOI:10.1093/biomethods/bpz017
47. Yan B, Liang Y. New therapeutics for extracellular vesicles: delivering CRISPR for cancer treatment. Int J Mol Sci. 2022;23(24):15758. DOI:10.3390/ijms232415758
2. Knyazev OV, Shkurko TV, Fadeeva NA, et al. Epidemiology of chronic inflammatory bowel diseases. Yesterday, today, tomorrow. Eksperimentalnaia i klinicheskaia gastroenterologia. 2017;3(139):4-12 (in Russian).
3. Kaplan GG, Bernstein CN, Coward S, et al. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Canadian Assoc Gastroenterol. 2019;2(Supplement_1):S6-16. DOI:10.1093/jcag/gwy054
4. Belousova EA, Abdulganieva DI, Alexeeva OP, et al. Socio-demographic characteristics, disease course features and treatment options for inflammatory bowel disease in Russia: Results of two multicenter studies. Almanakh klinicheskoi meditsiny. 2018;46(5):445-63 (in Russian). DOI:10.18786/2072-0505-2018-46-5-445-463
5. Shchigoleva AE, Shumilov PV, Shumilov AP. Inflammatory bowel disease with a very early onset. Pediatria. Zhurnal im. G.N. Speranskogo. 2018;97(6):141-6 (in Russian). DOI:10.24110/0031-403X-2018-97-6-141-146
6. Katsanos KH, Papadakis KA. Inflammatory bowel disease: updates on molecular targets for biologics. Gut Liver. 2017;11(4):455-63. DOI:10.5009/gnl16308
7. Khlynovа OV, Kosareva PV, Fadeev DS, et al. The role of B-lymphocytes and plasma cells in the pathogenesis of inflammatory bowel diseases. Eksperimentalnaia i klinicheskaia gastroenterologia. 2023;6(214):39-46 (in Russian). DOI:10.31146/1682-8658-ecg-214-6-39-46
8. Saadh MJ, Allela OQB, Al-Hussainy AF, et al. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflammation. 2025;22(1):18. DOI:10.1186/s12950-025-00443-z
9. Feng F, Jiao P, Wang J, et al. Role of long noncoding RNAs in the regulation of cellular immune response and inflammatory diseases. Cells. 2022;11(22):3642. DOI:10.3390/cells11223642
10. Andreev VP, Tsyrkunov VM. Micro-RNA as potential non-invasive markers of pathological conditions of the liver. Gepatologia i gastroenterologia. 2023;7(2):105-11 (in Russian). DOI:10.25298/2616-5546-2023-7-2-105-111
11. Roulé T, Christ A, Hussain N, et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant. 2022;15(5):840-56. DOI:10.1016/j.molp.2022.02.007
12. Santos AS, Santos-Bezerra DP, Ferreira LRP, et al. Relevance of Circulating microRNA, and their Association with Islet Cell Autoantibodies in Type 1 Diabetes Pathogenesis. Arch Med Res. 2025;56(2):103114. DOI:10.1016/j.arcmed.2024.103114
13. Mudrov VP. RNA as a biomarker in clinical laboratory diagnostics. Laboratornaia meditsina. 2024;15(1-2):13-23 (in Russian). DOI:10.58953/15621790_2024_15_1-2_13
14. Kornilov DO, Tryapitsyn MA, Simarzina VM, et al. Prospects for the use of microRNA in modern methods of diagnosis and therapy. Vestnik uralskoi meditsinskoi akademicheskoi nauki. 2022;19(2):109-31 (in Russian). DOI:10.22138/2500-0918-2022-19-2-109-131
15. Pan Y, Tang X, Xie Y, et al. Long non-coding RNA BCAR4 regulates osteosarcoma progression by targeting microRNA-1260a. Bulletin du Cancer. 2025;112(4):375-86. DOI:10.1016/j.bulcan.2024.09.003
16. Lopez-Noriega L, Callingham R, Martinez-Sánchez A, et al. Roles for the long non-coding RNA Pax6os1/PAX6-AS1 in pancreatic beta cell function. iScience. 2025;28(1). DOI:10.1016/j.isci.2024.111518
17. Dunn-Davies H, Dudnakova T, Nogara A, et al. Control of endothelial cell function and arteriogenesis by MEG3: EZH2 epigenetic regulation of integrin expression. Mol Ther Nucleic Acids. 2024;35(2). DOI:10.1016/j.omtn.2024.102173
18. Avci CB, Edgunlu TG, Suzek T, et al. Propofol orchestrates long non-coding RNAs in MCF7 cells, unraveling new avenues for breast cancer intervention. Eur J Med Chem Rep. 2024;12:100186. DOI:10.1016/j.ejmcr.2024.100186
19. Ma J, Zhang Y, Sun Z, et al. LncRNA PVT1 promotes cuproptosis through transcriptional activation of FDX1 in colorectal cancer. Redox Biol. 2025:103722. DOI:10.1016/j.redox.2025.103722
20. Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med. 2024;14(11):e70075. DOI:10.1002/ctm2.70075
21. Konopliannikov MA, Knyazev OV, Baklaushev VP. Primenenie MSK dlia terapii vospalitelnykh zabolevanii kishechnika. Klinicheskaia praktika. 2021;12(1):53-65 (in Russian). DOI:10.17816/clinpract64530
22. Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12(1):204. DOI:10.1186/s13287-021-02244-6
23. Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther. 2021;12(1):519. DOI:10.1186/s13287-021-02591-4
24. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, et al. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. DOI:10.3389/fnut.2021.586564
25. Visnovitz T. Extracellular vesicles: biology and therapeutic applications. Int J Mol Sci. 2024;25(23):13034. DOI:10.3390/ijms252313034
26. Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19(1):160. DOI:10.1186/s12943-020-01278-3
27. Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264-74. DOI:10.1016/j.intimp.2019.04.020
28. Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 contained in extracellular vesicles promotes the activation of keratinocytes by mesoglycan effects: an autocrine loop through FPRs. Cells. 2019;8(7):753. DOI:10.3390/cells8070753
29. Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research – Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). DOI:10.1063/1.5087122
30. Wang X, Zhou G, Zhou W, et al. Exosomes as a new delivery vehicle in inflammatory bowel disease. Pharmaceutics. 2021;13(10):1644. DOI:10.3390/pharmaceutics13101644
31. Xie X, Liu P, Wu H, et al. miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Transl Med. 2022;10(7):413. DOI:10.21037/atm-22-944
32. Park EJ, Shimaoka M, Kiyono H. Functional flexibility of exosomes and microRNAs of intestinal epithelial cells in affecting inflammation. Front Mol Biosci. 2022;9:854487. DOI:10.3389/fmolb.2022.854487
33. Oliveira ECSD, Quaglio AEV, Magro DO, et al. Intestinal microbiota and miRNA in IBD: a narrative review about discoveries and perspectives for the future. Int J Mol Sci. 2023;24(8):7176. DOI:10.3390/ijms24087176
34. Biswas S. Implications of Long Non-Coding RNAs in the Pathogenesis of Diabetic Retinopathy: A Novel Epigenetic Paradigm [Doctoral dissertation]. The University of Western Ontario (Canada); 2020. Available at: https://ir.lib.uwo.ca/etd/7116. Accessed: 15.08.2025.
35. Li M, Zhao J, Cao M, et al. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res. 2020;53(1):12. DOI:10.1186/s40659-020-00279-2
36. Inciuraite R, Ramonaite R, Kupcinskas J, et al. The microRNA expression in crypt-top and crypt-bottom colonic epithelial cell populations demonstrates cell-type specificity and correlates with endoscopic activity in ulcerative colitis. J Crohn's Colitis. 2024;18(12):2033-44. DOI:10.1093/ecco-jcc/jjae108
37. Appiah MG, Park EJ, Darkwah S, et al. Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-α and IL-17A Expression in Mucosal Inflammation. Int J Mol Sci. 2020;21(22):8445. DOI:10.3390/ijms21228445
38. Guo Y, Xu C, Gong R, et al. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathogens. 2022;14(1):13. DOI:10.1186/s13099-022-00486-0
39. Larabi A, Dalmasso G, Delmas J, et al. Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn’s disease-associated adherent-invasive E. coli. Gut Microbes. 2020;11(6):1677-94. DOI:10.1080/19490976.2020.1771985
40. Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12(1):315. DOI:10.1186/s13287-021-02404-8
41. Wohnhaas CT, Schmid R, Rolser M, et al. Fecal MicroRNAs show promise as noninvasive Crohn’s disease biomarkers. Crohn's Colitis 360. 2020;2(1):otaa003. DOI:10.1093/crocol/otaa003
42. Lima JF, Cerqueira L, Figueiredo C, et al. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018;15(3):338-52. DOI:10.1080/15476286.2018.1445959
43. Wang H, Ye X, Spanos M, et al. Exosomal non-coding RNA mediates macrophage polarization: roles in cardiovascular diseases. Biology. 2023;12(5):745. DOI:10.3390/biology12050745
44. Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903-13. DOI:10.3892/ijmm.2018.3829
45. Ma F, Zhang S, Akanyibah FA, et al. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res. 2023;15(12):6970.
46. Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protocols. 2019;4(1):bpz017. DOI:10.1093/biomethods/bpz017
47. Yan B, Liang Y. New therapeutics for extracellular vesicles: delivering CRISPR for cancer treatment. Int J Mol Sci. 2022;23(24):15758. DOI:10.3390/ijms232415758
2. Князев О.В., Шкурко Т.В., Фадеева Н.А., и др. Эпидемиология хронических воспалительных заболеваний кишечника. Вчера, сегодня, завтра. Экспериментальная и клиническая гастроэнтерология. 2017;3(139):4-12 [Knyazev OV, Shkurko TV, Fadeeva NA, et al. Epidemiology of chronic inflammatory bowel diseases. Yesterday, today, tomorrow. Eksperimentalnaia i klinicheskaia gastroenterologia. 2017;3(139):4-12 (in Russian)].
3. Kaplan GG, Bernstein CN, Coward S, et al. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Canadian Assoc Gastroenterol. 2019;2(Supplement_1):S6-16. DOI:10.1093/jcag/gwy054
4. Белоусова Е.А., Абдулганиева Д.И., Алексеева О.П., и др. Социально-демографическая характеристика, особенности течения и варианты лечения воспалительных заболеваний кишечника в России. Результаты двух многоцентровых исследований. Альманах клинической медицины. 2018;46(5):445-63 [Belousova EA, Abdulganieva DI, Alexeeva OP, et al. Socio-demographic characteristics, disease course features and treatment options for inflammatory bowel disease in Russia: Results of two multicenter studies. Almanakh klinicheskoi meditsiny. 2018;46(5):445-63 (in Russian)]. DOI:10.18786/2072-0505-2018-46-5-445-463
5. Щиголева А.Е., Шумилов П.В., Шумилов А.П. Воспалительные заболевания кишечника с очень ранним началом. Педиатрия. Журнал им. Г.Н. Сперанского. 2018;97(6):141-6 [Shchigoleva AE, Shumilov PV, Shumilov AP. Inflammatory bowel disease with a very early onset. Pediatria. Zhurnal im. G.N. Speranskogo. 2018;97(6):141-6 (in Russian)]. DOI:10.24110/0031-403X-2018-97-6-141-146
6. Katsanos KH, Papadakis KA. Inflammatory bowel disease: updates on molecular targets for biologics. Gut Liver. 2017;11(4):455-63. DOI:10.5009/gnl16308
7. Хлынова О.В., Косарева П.В., Фадеев Д.С., и др. Роль В-лимфоцитов и плазматических клеток в патогенезе воспалительных заболеваний кишечника. Экспериментальная и клиническая гастроэнтерология. 2023;6(214):39-46 [Khlynovа OV, Kosareva PV, Fadeev DS, et al. The role of B-lymphocytes and plasma cells in the pathogenesis of inflammatory bowel diseases. Eksperimentalnaia i klinicheskaia gastroenterologia. 2023;6(214):39-46 (in Russian)]. DOI:10.31146/1682-8658-ecg-214-6-39-46
8. Saadh MJ, Allela OQB, Al-Hussainy AF, et al. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflammation. 2025;22(1):18. DOI:10.1186/s12950-025-00443-z
9. Feng F, Jiao P, Wang J, et al. Role of long noncoding RNAs in the regulation of cellular immune response and inflammatory diseases. Cells. 2022;11(22):3642. DOI:10.3390/cells11223642
10. Андреев В.П., Цыркунов В.М. Микро-РНК как потенциальные неинвазивные маркеры патологических состояний печени. Гепатология и гастроэнтерология. 2023;7(2):105-11 [Andreev VP, Tsyrkunov VM. Micro-RNA as potential non-invasive markers of pathological conditions of the liver. Gepatologia i gastroenterologia. 2023;7(2):105-11 (in Russian)]. DOI:10.25298/2616-5546-2023-7-2-105-111
11. Roulé T, Christ A, Hussain N, et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant. 2022;15(5):840-56. DOI:10.1016/j.molp.2022.02.007
12. Santos AS, Santos-Bezerra DP, Ferreira LRP, et al. Relevance of Circulating microRNA, and their Association with Islet Cell Autoantibodies in Type 1 Diabetes Pathogenesis. Arch Med Res. 2025;56(2):103114. DOI:10.1016/j.arcmed.2024.103114
13. Мудров В.П. РНК как биомаркер в клинической лабораторной диагностике. Лабораторная медицина. 2024;15(1-2):13-23 [Mudrov VP. RNA as a biomarker in clinical laboratory diagnostics. Laboratornaia meditsina. 2024;15(1-2):13-23 (in Russian)]. DOI:10.58953/15621790_2024_15_1-2_13
14. Корнилов Д.О., Тряпицын М.А., Симарзина В.М., и др. Перспективы использования микроРНК в современных методах диагностики и терапии. Вестник уральской медицинской академической науки. 2022;19(2):109-31 [Kornilov DO, Tryapitsyn MA, Simarzina VM, et al. Prospects for the use of microRNA in modern methods of diagnosis and therapy. Vestnik uralskoi meditsinskoi akademicheskoi nauki. 2022;19(2):109-31 (in Russian)]. DOI:10.22138/2500-0918-2022-19-2-109-131
15. Pan Y, Tang X, Xie Y, et al. Long non-coding RNA BCAR4 regulates osteosarcoma progression by targeting microRNA-1260a. Bulletin du Cancer. 2025;112(4):375-86. DOI:10.1016/j.bulcan.2024.09.003
16. Lopez-Noriega L, Callingham R, Martinez-Sánchez A, et al. Roles for the long non-coding RNA Pax6os1/PAX6-AS1 in pancreatic beta cell function. iScience. 2025;28(1). DOI:10.1016/j.isci.2024.111518
17. Dunn-Davies H, Dudnakova T, Nogara A, et al. Control of endothelial cell function and arteriogenesis by MEG3: EZH2 epigenetic regulation of integrin expression. Mol Ther Nucleic Acids. 2024;35(2). DOI:10.1016/j.omtn.2024.102173
18. Avci CB, Edgunlu TG, Suzek T, et al. Propofol orchestrates long non-coding RNAs in MCF7 cells, unraveling new avenues for breast cancer intervention. Eur J Med Chem Rep. 2024;12:100186. DOI:10.1016/j.ejmcr.2024.100186
19. Ma J, Zhang Y, Sun Z, et al. LncRNA PVT1 promotes cuproptosis through transcriptional activation of FDX1 in colorectal cancer. Redox Biol. 2025:103722. DOI:10.1016/j.redox.2025.103722
20. Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med. 2024;14(11):e70075. DOI:10.1002/ctm2.70075
21. Коноплянников М.А., Князев О.В., Баклаушев В.П. Применение МСК для терапии воспалительных заболеваний кишечника. Клиническая практика. 2021;12(1):53-65 [Konopliannikov MA, Knyazev OV, Baklaushev VP. Primenenie MSK dlia terapii vospalitelnykh zabolevanii kishechnika. Klinicheskaia praktika. 2021;12(1):53-65 (in Russian)]. DOI:10.17816/clinpract64530
22. Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12(1):204. DOI:10.1186/s13287-021-02244-6
23. Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther. 2021;12(1):519. DOI:10.1186/s13287-021-02591-4
24. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, et al. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. DOI:10.3389/fnut.2021.586564
25. Visnovitz T. Extracellular vesicles: biology and therapeutic applications. Int J Mol Sci. 2024;25(23):13034. DOI:10.3390/ijms252313034
26. Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19(1):160. DOI:10.1186/s12943-020-01278-3
27. Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264-74. DOI:10.1016/j.intimp.2019.04.020
28. Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 contained in extracellular vesicles promotes the activation of keratinocytes by mesoglycan effects: an autocrine loop through FPRs. Cells. 2019;8(7):753. DOI:10.3390/cells8070753
29. Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research – Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). DOI:10.1063/1.5087122
30. Wang X, Zhou G, Zhou W, et al. Exosomes as a new delivery vehicle in inflammatory bowel disease. Pharmaceutics. 2021;13(10):1644. DOI:10.3390/pharmaceutics13101644
31. Xie X, Liu P, Wu H, et al. miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Transl Med. 2022;10(7):413. DOI:10.21037/atm-22-944
32. Park EJ, Shimaoka M, Kiyono H. Functional flexibility of exosomes and microRNAs of intestinal epithelial cells in affecting inflammation. Front Mol Biosci. 2022;9:854487. DOI:10.3389/fmolb.2022.854487
33. Oliveira ECSD, Quaglio AEV, Magro DO, et al. Intestinal microbiota and miRNA in IBD: a narrative review about discoveries and perspectives for the future. Int J Mol Sci. 2023;24(8):7176. DOI:10.3390/ijms24087176
34. Biswas S. Implications of Long Non-Coding RNAs in the Pathogenesis of Diabetic Retinopathy: A Novel Epigenetic Paradigm [Doctoral dissertation]. The University of Western Ontario (Canada); 2020. Available at: https://ir.lib.uwo.ca/etd/7116. Accessed: 15.08.2025.
35. Li M, Zhao J, Cao M, et al. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res. 2020;53(1):12. DOI:10.1186/s40659-020-00279-2
36. Inciuraite R, Ramonaite R, Kupcinskas J, et al. The microRNA expression in crypt-top and crypt-bottom colonic epithelial cell populations demonstrates cell-type specificity and correlates with endoscopic activity in ulcerative colitis. J Crohn's Colitis. 2024;18(12):2033-44. DOI:10.1093/ecco-jcc/jjae108
37. Appiah MG, Park EJ, Darkwah S, et al. Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-α and IL-17A Expression in Mucosal Inflammation. Int J Mol Sci. 2020;21(22):8445. DOI:10.3390/ijms21228445
38. Guo Y, Xu C, Gong R, et al. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathogens. 2022;14(1):13. DOI:10.1186/s13099-022-00486-0
39. Larabi A, Dalmasso G, Delmas J, et al. Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn’s disease-associated adherent-invasive E. coli. Gut Microbes. 2020;11(6):1677-94. DOI:10.1080/19490976.2020.1771985
40. Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12(1):315. DOI:10.1186/s13287-021-02404-8
41. Wohnhaas CT, Schmid R, Rolser M, et al. Fecal MicroRNAs show promise as noninvasive Crohn’s disease biomarkers. Crohn's Colitis 360. 2020;2(1):otaa003. DOI:10.1093/crocol/otaa003
42. Lima JF, Cerqueira L, Figueiredo C, et al. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018;15(3):338-52. DOI:10.1080/15476286.2018.1445959
43. Wang H, Ye X, Spanos M, et al. Exosomal non-coding RNA mediates macrophage polarization: roles in cardiovascular diseases. Biology. 2023;12(5):745. DOI:10.3390/biology12050745
44. Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903-13. DOI:10.3892/ijmm.2018.3829
45. Ma F, Zhang S, Akanyibah FA, et al. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res. 2023;15(12):6970.
46. Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protocols. 2019;4(1):bpz017. DOI:10.1093/biomethods/bpz017
47. Yan B, Liang Y. New therapeutics for extracellular vesicles: delivering CRISPR for cancer treatment. Int J Mol Sci. 2022;23(24):15758. DOI:10.3390/ijms232415758
________________________________________________
2. Knyazev OV, Shkurko TV, Fadeeva NA, et al. Epidemiology of chronic inflammatory bowel diseases. Yesterday, today, tomorrow. Eksperimentalnaia i klinicheskaia gastroenterologia. 2017;3(139):4-12 (in Russian).
3. Kaplan GG, Bernstein CN, Coward S, et al. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Canadian Assoc Gastroenterol. 2019;2(Supplement_1):S6-16. DOI:10.1093/jcag/gwy054
4. Belousova EA, Abdulganieva DI, Alexeeva OP, et al. Socio-demographic characteristics, disease course features and treatment options for inflammatory bowel disease in Russia: Results of two multicenter studies. Almanakh klinicheskoi meditsiny. 2018;46(5):445-63 (in Russian). DOI:10.18786/2072-0505-2018-46-5-445-463
5. Shchigoleva AE, Shumilov PV, Shumilov AP. Inflammatory bowel disease with a very early onset. Pediatria. Zhurnal im. G.N. Speranskogo. 2018;97(6):141-6 (in Russian). DOI:10.24110/0031-403X-2018-97-6-141-146
6. Katsanos KH, Papadakis KA. Inflammatory bowel disease: updates on molecular targets for biologics. Gut Liver. 2017;11(4):455-63. DOI:10.5009/gnl16308
7. Khlynovа OV, Kosareva PV, Fadeev DS, et al. The role of B-lymphocytes and plasma cells in the pathogenesis of inflammatory bowel diseases. Eksperimentalnaia i klinicheskaia gastroenterologia. 2023;6(214):39-46 (in Russian). DOI:10.31146/1682-8658-ecg-214-6-39-46
8. Saadh MJ, Allela OQB, Al-Hussainy AF, et al. Exosomal non-coding RNAs: gatekeepers of inflammation in autoimmune disease. J Inflammation. 2025;22(1):18. DOI:10.1186/s12950-025-00443-z
9. Feng F, Jiao P, Wang J, et al. Role of long noncoding RNAs in the regulation of cellular immune response and inflammatory diseases. Cells. 2022;11(22):3642. DOI:10.3390/cells11223642
10. Andreev VP, Tsyrkunov VM. Micro-RNA as potential non-invasive markers of pathological conditions of the liver. Gepatologia i gastroenterologia. 2023;7(2):105-11 (in Russian). DOI:10.25298/2616-5546-2023-7-2-105-111
11. Roulé T, Christ A, Hussain N, et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant. 2022;15(5):840-56. DOI:10.1016/j.molp.2022.02.007
12. Santos AS, Santos-Bezerra DP, Ferreira LRP, et al. Relevance of Circulating microRNA, and their Association with Islet Cell Autoantibodies in Type 1 Diabetes Pathogenesis. Arch Med Res. 2025;56(2):103114. DOI:10.1016/j.arcmed.2024.103114
13. Mudrov VP. RNA as a biomarker in clinical laboratory diagnostics. Laboratornaia meditsina. 2024;15(1-2):13-23 (in Russian). DOI:10.58953/15621790_2024_15_1-2_13
14. Kornilov DO, Tryapitsyn MA, Simarzina VM, et al. Prospects for the use of microRNA in modern methods of diagnosis and therapy. Vestnik uralskoi meditsinskoi akademicheskoi nauki. 2022;19(2):109-31 (in Russian). DOI:10.22138/2500-0918-2022-19-2-109-131
15. Pan Y, Tang X, Xie Y, et al. Long non-coding RNA BCAR4 regulates osteosarcoma progression by targeting microRNA-1260a. Bulletin du Cancer. 2025;112(4):375-86. DOI:10.1016/j.bulcan.2024.09.003
16. Lopez-Noriega L, Callingham R, Martinez-Sánchez A, et al. Roles for the long non-coding RNA Pax6os1/PAX6-AS1 in pancreatic beta cell function. iScience. 2025;28(1). DOI:10.1016/j.isci.2024.111518
17. Dunn-Davies H, Dudnakova T, Nogara A, et al. Control of endothelial cell function and arteriogenesis by MEG3: EZH2 epigenetic regulation of integrin expression. Mol Ther Nucleic Acids. 2024;35(2). DOI:10.1016/j.omtn.2024.102173
18. Avci CB, Edgunlu TG, Suzek T, et al. Propofol orchestrates long non-coding RNAs in MCF7 cells, unraveling new avenues for breast cancer intervention. Eur J Med Chem Rep. 2024;12:100186. DOI:10.1016/j.ejmcr.2024.100186
19. Ma J, Zhang Y, Sun Z, et al. LncRNA PVT1 promotes cuproptosis through transcriptional activation of FDX1 in colorectal cancer. Redox Biol. 2025:103722. DOI:10.1016/j.redox.2025.103722
20. Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med. 2024;14(11):e70075. DOI:10.1002/ctm2.70075
21. Konopliannikov MA, Knyazev OV, Baklaushev VP. Primenenie MSK dlia terapii vospalitelnykh zabolevanii kishechnika. Klinicheskaia praktika. 2021;12(1):53-65 (in Russian). DOI:10.17816/clinpract64530
22. Dong B, Wang C, Zhang J, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12(1):204. DOI:10.1186/s13287-021-02244-6
23. Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther. 2021;12(1):519. DOI:10.1186/s13287-021-02591-4
24. Díez-Sainz E, Lorente-Cebrián S, Aranaz P, et al. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. DOI:10.3389/fnut.2021.586564
25. Visnovitz T. Extracellular vesicles: biology and therapeutic applications. Int J Mol Sci. 2024;25(23):13034. DOI:10.3390/ijms252313034
26. Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19(1):160. DOI:10.1186/s12943-020-01278-3
27. Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264-74. DOI:10.1016/j.intimp.2019.04.020
28. Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 contained in extracellular vesicles promotes the activation of keratinocytes by mesoglycan effects: an autocrine loop through FPRs. Cells. 2019;8(7):753. DOI:10.3390/cells8070753
29. Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research – Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1). DOI:10.1063/1.5087122
30. Wang X, Zhou G, Zhou W, et al. Exosomes as a new delivery vehicle in inflammatory bowel disease. Pharmaceutics. 2021;13(10):1644. DOI:10.3390/pharmaceutics13101644
31. Xie X, Liu P, Wu H, et al. miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Transl Med. 2022;10(7):413. DOI:10.21037/atm-22-944
32. Park EJ, Shimaoka M, Kiyono H. Functional flexibility of exosomes and microRNAs of intestinal epithelial cells in affecting inflammation. Front Mol Biosci. 2022;9:854487. DOI:10.3389/fmolb.2022.854487
33. Oliveira ECSD, Quaglio AEV, Magro DO, et al. Intestinal microbiota and miRNA in IBD: a narrative review about discoveries and perspectives for the future. Int J Mol Sci. 2023;24(8):7176. DOI:10.3390/ijms24087176
34. Biswas S. Implications of Long Non-Coding RNAs in the Pathogenesis of Diabetic Retinopathy: A Novel Epigenetic Paradigm [Doctoral dissertation]. The University of Western Ontario (Canada); 2020. Available at: https://ir.lib.uwo.ca/etd/7116. Accessed: 15.08.2025.
35. Li M, Zhao J, Cao M, et al. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res. 2020;53(1):12. DOI:10.1186/s40659-020-00279-2
36. Inciuraite R, Ramonaite R, Kupcinskas J, et al. The microRNA expression in crypt-top and crypt-bottom colonic epithelial cell populations demonstrates cell-type specificity and correlates with endoscopic activity in ulcerative colitis. J Crohn's Colitis. 2024;18(12):2033-44. DOI:10.1093/ecco-jcc/jjae108
37. Appiah MG, Park EJ, Darkwah S, et al. Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-α and IL-17A Expression in Mucosal Inflammation. Int J Mol Sci. 2020;21(22):8445. DOI:10.3390/ijms21228445
38. Guo Y, Xu C, Gong R, et al. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathogens. 2022;14(1):13. DOI:10.1186/s13099-022-00486-0
39. Larabi A, Dalmasso G, Delmas J, et al. Exosomes transfer miRNAs from cell-to-cell to inhibit autophagy during infection with Crohn’s disease-associated adherent-invasive E. coli. Gut Microbes. 2020;11(6):1677-94. DOI:10.1080/19490976.2020.1771985
40. Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12(1):315. DOI:10.1186/s13287-021-02404-8
41. Wohnhaas CT, Schmid R, Rolser M, et al. Fecal MicroRNAs show promise as noninvasive Crohn’s disease biomarkers. Crohn's Colitis 360. 2020;2(1):otaa003. DOI:10.1093/crocol/otaa003
42. Lima JF, Cerqueira L, Figueiredo C, et al. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018;15(3):338-52. DOI:10.1080/15476286.2018.1445959
43. Wang H, Ye X, Spanos M, et al. Exosomal non-coding RNA mediates macrophage polarization: roles in cardiovascular diseases. Biology. 2023;12(5):745. DOI:10.3390/biology12050745
44. Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903-13. DOI:10.3892/ijmm.2018.3829
45. Ma F, Zhang S, Akanyibah FA, et al. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res. 2023;15(12):6970.
46. Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protocols. 2019;4(1):bpz017. DOI:10.1093/biomethods/bpz017
47. Yan B, Liang Y. New therapeutics for extracellular vesicles: delivering CRISPR for cancer treatment. Int J Mol Sci. 2022;23(24):15758. DOI:10.3390/ijms232415758
Авторы
Е.А. Стрельникова*1, Г.Р. Мардамшина1, А.В. Тихонова1, Е.П. Шокурова1, К.Х. Мерзахмедова1, Р.Ф. Камалова1, Д.Р. Мингазов1, С.Р. Хабибуллина1, М.А. Магомедов2, А.О. Магомедова2, Ж.М. Муртузова2, М.Б. Карабекова2, Р.Р. Амирханова2, Т.А. Апряткина3
1ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, Уфа, Россия;
2ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала, Россия;
3ФГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко» Минздрава России, Воронеж,
*krios.gip.14@mail.ru
1Bashkir State Medical University, Ufa, Russia;
2Dagestan State Medical University, Makhachkala, Russia;
3Burdenko Voronezh State Medical University, Voronezh, Russia
*krios.gip.14@mail.ru
1ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, Уфа, Россия;
2ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала, Россия;
3ФГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко» Минздрава России, Воронеж,
*krios.gip.14@mail.ru
________________________________________________
1Bashkir State Medical University, Ufa, Russia;
2Dagestan State Medical University, Makhachkala, Russia;
3Burdenko Voronezh State Medical University, Voronezh, Russia
*krios.gip.14@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
