Биомаркеры цервиковагинальной жидкости для диагностики заболеваний шейки матки, ассоциированных с вирусом папилломы человека (обзор литературы)
Биомаркеры цервиковагинальной жидкости для диагностики заболеваний шейки матки, ассоциированных с вирусом папилломы человека (обзор литературы)
Прилепская В.Н., Мгерян А.Н., Акопян А.С. и др. Биомаркеры цервиковагинальной жидкости для диагностики заболеваний шейки матки, ассоциированных с вирусом папилломы человека (обзор литературы). Гинекология. 2019; 21 (6): 6–11.
DOI: 10.26442/20795696.2019.6.190756
________________________________________________
Prilepskaya V.N., Mheryan A.N., Akopian A.S. et al. Biomarkers of cervicovaginal fluid for the diagnosis of cervical diseases associated with human papilloma virus (literature review). Gynecology. 2019; 21 (6): 6–11.
DOI: 10.26442/20795696.2019.6.190756
Биомаркеры цервиковагинальной жидкости для диагностики заболеваний шейки матки, ассоциированных с вирусом папилломы человека (обзор литературы)
Прилепская В.Н., Мгерян А.Н., Акопян А.С. и др. Биомаркеры цервиковагинальной жидкости для диагностики заболеваний шейки матки, ассоциированных с вирусом папилломы человека (обзор литературы). Гинекология. 2019; 21 (6): 6–11.
DOI: 10.26442/20795696.2019.6.190756
________________________________________________
Prilepskaya V.N., Mheryan A.N., Akopian A.S. et al. Biomarkers of cervicovaginal fluid for the diagnosis of cervical diseases associated with human papilloma virus (literature review). Gynecology. 2019; 21 (6): 6–11.
DOI: 10.26442/20795696.2019.6.190756
Вирус папилломы человека (ВПЧ) – один из основных возбудителей инфекций половых путей, способный приводить к злокачественной трансформации клеток шейки матки, влагалища, вульвы и ануса. Примерно в 90% случаев цервикальной интраэпителиальной неоплазии и 99% случаев рака шейки матки возникают у ВПЧ-позитивных пациенток. Однако наличие ВПЧ в организме больной не может рассматриваться как маркер прогрессирования или регресса патологического процесса. Необходимость определения дальнейшей тактики обследования и ведения женщин с ВПЧ-ассоциированными заболеваниями шейки матки заявляет о поиске молекулярно-генетических маркеров неопластической трансформации с целью прогноза риска развития цервикальных неоплазий и рака шейки матки. Удобными для применения в клинической практике могут стать диагностические системы, основанные на определении биомаркеров в цервиковагинальной жидкости (ЦВЖ). Панель белков ЦВЖ позволяет составить точную характеристику состояния органов женской репродуктивной системы, в том числе при неопластических процессах шейки матки. Выявленные в ЦВЖ биомаркеры могут быть использованы в качестве информативных тестов для повышения точности диагностики патологических изменений шейки матки и определения критериев риска развития озлокачествления процесса.
Human papillomavirus (HPV) is one of the main pathogens of genital tract infections, which can lead to malignant transformation of cells of the cervix, vagina, vulva and anus. Approximately 90% of cervical intraepithelial neoplasia cases and 99% of cervical cancer cases occur in HPV-positive patients. However, the presence of HPV in the patient's body can not be considered as a marker of progression or regression of the pathological process. The need to determine further tactics of examination and management of women with HPV-associated diseases of the cervix States the search for molecular genetic markers of neoplastic transformation in order to predict the risk of cervical neoplasia and cervical cancer. Diagnostic systems based on determination of biomarkers in cervicovaginal fluid (CVJ) can become convenient for application in clinical practice. The panel of CVJ proteins allows to make the exact characteristic of a condition of bodies of female reproductive system, including at neoplastic processes of a cervix of a uterus. The biomarkers identified in the CVJ can be used as informative tests to improve the accuracy of diagnosis of pathological changes in the cervix and to determine the risk criteria for the development of malignancy.
Key words: human papillomavirus, cervicovaginal fluid, biomarkers of cervicovaginal fluid, a-actinin-4.
1. Xaveer Van Ostade. Candidate biomarkers in the cervical vaginal fluid for the (self-) diagnosis of cervical precancer. Arch Gynecol Obstet 2018; 297 (2): 295–311.
2. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018.
3. Lyu Z, Feng X, Li N, Zhao W et al. Human papillomavirus in semen and the risk for male infertility: A systematic review and meta-analysis. BMC Infect Dis 2017; 17: 714.
4. Chabeda A, Yanez RJR, Lamprecht R et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5: 46–58.
5. Dürst M, Gissmann L, Ikenberg H et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983.
6. Clifford GM, Smith JS, Plummer M et al. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br J Cancer 2003; 88: 63–73.
7. Mühr LSA, Eklund C, Dillner J. Towards quality and order in human papillomavirus research. Virology 2018; 519: 74–6.
8. Xi LF, Schiffman M, Koutsky LA et al. Variant-specific persistence of infections with human papillomavirus Types 31, 33, 45, 56 and 58 and risk of cervical intraepithelial neoplasia. Int J Cancer 2016; 139: 1098–105.
9. Halec G, Alemany L, Lloveras B et al. Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol 2014; 234: 441–51.
10. Chabeda A, Yanez RJR, Lamprecht R et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5: 46–58.
11. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017; 123: 2219–29.
12. Ermel A, Shew ML, Imburgia TM et al. Redetection of human papillomavirus type 16 infections of the cervix in mid-adult life. Papillomavirus Res 2018; 5: 75–9.
13. Прилепская В.Н. Заболевания шейки матки, влагалища, вульвы. М.: МЕДпресс-информ, 2005.
[Prilepskaya V.N. Diseases of the cervix, vagina, vulva. Moscow: MEDpress-inform, 2005 (in Russian).]
14. Фоляк Е.М., Соколова Т.М., Макаров К.Ю. Папилломавирусная инфекция урогенитального тракта женщин. Эпидемиология, клинико-патогенетические особенности, методы диагностики, лечение, профилактика. Информационно-методическое пособие.
2010 г., с. 6–11.
[Folyak E.M., Sokolova T.M., Makarov K.Yu. Papillomavirus infection of the urogenital tract of women. Epidemiology, clinical and pathogenetic features, diagnostic methods, treatment, prevention. Informational manual. 2010, p. 6–11 (in Russian).]
15. Роговская С.И. Папилломавирусная инфекция у женщин и патология шейки матки: в помощь практикующему врачу. 2-е изд. М.: ГЭОТАР-Медиа, 2014.
[Rogovskaya S.I. Papillomavirus infection in women and cervical pathology: to help a practitioner. 2nd ed. Moscow: GEOTAR-Media, 2014 (in Russian).]
16. Cummings MC, Marquart L, Pelecanos AM et al. Which are more correctly diagnosed: conventional Papanicolaou smears or Thinprep samples? A comparative study of 9 years of external quality-assurance testing. Cancer Cytopathol 2015; 123 (2): 108–16.
17. Zhou H, Mody RR, Luna E et al. Clinical performance of the Food and Drug Administration-Approved high-risk HPV test for the detection of high-grade cervicovaginal lesions. Cancer Cytopathol 2016; 124 (5): 317–23.
18. Arbyn M, Verdoodt F, Snijders PJ et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol 2014; 15 (2): 172–83.
19. Karjalainen L, Anttila A, Nieminen P et al. Self-sampling in cervical cancer screening: comparison of a brush-based and a lavage-based cervicovaginal self-sampling device. BMC Cancer 2016; 16: 221.
20. Cheng JY, Feng MJ, Wu CC et al. Development of a sampling collection device with diagnostic procedures. Anal Chem 2016; 88 (15): 7591–6.
21. Lo JO, Reddy AP, Wilmarth PA et al. Proteomic analysis of cervical vaginal fluid proteins among women in recurrent preterm labor. J Matern Fetal Neonatal Med 2014; 27 (12): 1183–8.
22. Van Raemdonck G, Zegels G, Coen E et al. Increased Serpin A5 levels in the cervicovaginal fluid of HIV-1 exposed seronegatives suggest that a subtle balance between serine proteases and their inhibitors may determine susceptibility to HIV-1 infection. Virology 2014; 458–9.
23. Zegels G, Van Raemdonck GA, Tjalma WA et al. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci 2010; 8: 63.
24. Зардиашвили М.Д., Назарова Н.М., Стародубцева Н.Л. и др. Молекулярные маркеры цервиковагинальной жидкости: новое в диагностике и прогнозировании заболеваний, ассоциированных с вирусом папилломы человека. Акушерство и гинекология. 2016; 1: 16–21.
[Zardiashvili M.D., Nazarova N.M., Starodubtseva N.L. et al. Molekuliarnye markery tservikovaginal'noi zhidkosti: novoe v diagnostike i prognozirovanii zabolevanii, assotsiirovannykh s virusom papillomy cheloveka. Akusherstvo i ginekologiia. 2016; 1: 16–21 (in Russian).]
25. Jentschke M, Soergel P, Hillemanns P. Evaluation of a multiplex real time PCR assay for the detection of human papillomavirus infections on self-collected cervicovaginal lavage samples. J Virol Methods 2013; 193 (1): 131–4.
26. Kottaridi C, Leventakou D, Pouliakis A et al. Searching HPV genome for methylation sites involved in molecular progression to cervical precancer. J Cancer 2019; 10 (19): 4588–95.
27. Widschwendter A, Gattringer C, Ivarsson L et al. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 2004; 10 (10): 3396–400.
28. Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 2011; 121 (1): 59–63.
29. Doufekas K, Zheng SC, Ghazali S et al. DNA methylation signatures in vaginal fluid samples for detection of cervical and endometrial cancer. Int J Gynecol Cancer 2016.
30. Finch ML, Marquardt JU, Yeoh GC et al. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014; 54: 288–303.
31. Hilda J-W, Oscar P-Z, Gloria F-T. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 2014; 31 (6): 2467–76.
32. Zavesky L, Jandakova E, Turyna R et al. New perspectives in diagnosis of gynaecological cancers: emerging role of circulating microRNAs as novel biomarkers. Neoplasma 2015; 62 (4): 509–20.
33. Verhoef VM, Bosgraaf RP, van Kemenade FJ et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): a randomised controlled non-inferiority trial. Lancet Oncol 2014; 15 (3): 315–22.
34. De Strooper LM, Verhoef VM, Berkhof J et al. Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women. Gynecol Oncol 2016; 141 (2): 341–7.
35. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200 (4): 373–83.
36. Console L, Scalise M, Indiveri C. Exosomes in inflammation and roles as biomarkers. Clinica Chimica Acta 2019; 488: 165–71.
37. Chung IM, Rajakumar G, Venkidasamy B et al. Exosomes: Current Use and Future Applications. Clin Chim Acta 2019; p. 1–7.
38. Liu J, Sun H, Wang X et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci 2014; 15 (1): 758–73.
39. Zhang J, Liu SC, Luo XH et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 2016; 30 (6): 1116–21.
40. Nanbu Y, Fujii S, Konishi I et al. Immunohistochemical localization of CA130 in fetal tissues, and in normal and neoplastic tissues of the female genital tract. Asia Oceania J Obstet Gynaecol 1990; 16 (4):
379–87.
41. Calis P, Yuce K, Basaran D. Assessment of cervicovaginal cancer antigen 125 levels: a preliminary study for endometrial cancer screening. Gynecol Obstet Invest 2016; 81 (6): 518–22.
42. Tjiong MY, Zumbach K, Schegget JT et al. Antibodies against human papillomavirus type 16 and 18 E6 and E7 proteins in cervicovaginal washings and serum of patients with cervical neoplasia. Viral Immunol 2001; 14 (4): 415–24.
43. Tjiong MY, van der Vange N, ter Schegget JS et al. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine 2001; 14 (6): 357–60.
44. Honda K, Yamada T, Endo R et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140 (6): 1383–93.
45. Hegmans JP, Bard MP, Hemmes A et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 2004; 164 (5): 1807–15.
46. Welsch T, Keleg S, Bergmann F. Actinin-4 expression in primary and metastasized pancreatic ductal adenocarcinoma. Pancreas 2009;
38 (8): 968–76.
47. Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci 2015; 5: 41.
48. Van Raemdonck GA, Tjalma WA, Coen EP et al. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS One 2014; 9 (9).
49. Van Ostade X, Dom M, Van Raemdonck G. IPA analysis of cervicovaginal fluid from precancerous women points to the presence of biomarkers for the precancerous state of cervical carcinoma. Proteomes 2014; 2: 426–50.
50. Berven LA, Crouch MF. Cellular function of p70S6K: a role in regulating cell motility. Immunol Cell Biol 2000; 78 (4): 447–51.
51. Benczik M, Galamb A, Koiss R et al. Claudin-1 as a biomarker of cervical cytology and histology. Pathol Oncol Res 2015.
52. Gonzalez AM, Otey C, Edlund M et al. Interactions of a hemidesmosome component and actinin family members. J Cell Sci 2001; 114 (Pt 23): 4197–206.
53. Gao W, Weng J, Gao Y et al. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis 2013; 13: 271.
54. Mitra A, MacIntyre DA, Lee YS et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep 2015; 5.
55. Dasari S, Rajendra W, Valluru L. Evaluation of microbial enzymes in normal and abnormal cervicovaginal fluids of cervical dysplasia: a case control study. Biomed Res 2014.
56. Ma Y, Madupu R, Karaoz U et al. Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 2014; 88 (9):
4786–97.
57. Vorsters A, Van Damme P, Clifford G. Urine testing for HPV: rationale for using first void. BMJ 2014; 349: g6252.
58. Leeman A, Del Pino M, Molijn A et al. HPV testing in first-void urine provides sensitivity for CIN2+ detection comparable to a physician-taken smear or brush-based self-sample: cross-sectional data from a triage population. BJOG 2017; 124: 1356–63.
59. Guerrero-Preston R, Valle BL, Jedlicka A et al. Molecular triage of premalignant lesions in liquid-based cervical cytology and circulating cell-free DNA from urine, using a panel of methylated human papilloma virus and host genes. Cancer Prev Res (Phila) 2016; 9 (12): 915–24.
60. Morris BJ, Lee C, Nightingale BN et al. Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens. Gynecol Oncol 1995; 56 (2): 245–9.
61. Cricca M, Marasco E, Alessandrini F et al. High-throughput genotyping of high-risk human Papillomavirus by MALDI-TOF mass spectrometry-based method. New Microbiol 2015; 38 (2): 211–23.
________________________________________________
1. Xaveer Van Ostade. Candidate biomarkers in the cervical vaginal fluid for the (self-) diagnosis of cervical precancer. Arch Gynecol Obstet 2018; 297 (2): 295–311.
2. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018.
3. Lyu Z, Feng X, Li N, Zhao W et al. Human papillomavirus in semen and the risk for male infertility: A systematic review and meta-analysis. BMC Infect Dis 2017; 17: 714.
4. Chabeda A, Yanez RJR, Lamprecht R et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5: 46–58.
5. Dürst M, Gissmann L, Ikenberg H et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983.
6. Clifford GM, Smith JS, Plummer M et al. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br J Cancer 2003; 88: 63–73.
7. Mühr LSA, Eklund C, Dillner J. Towards quality and order in human papillomavirus research. Virology 2018; 519: 74–6.
8. Xi LF, Schiffman M, Koutsky LA et al. Variant-specific persistence of infections with human papillomavirus Types 31, 33, 45, 56 and 58 and risk of cervical intraepithelial neoplasia. Int J Cancer 2016; 139: 1098–105.
9. Halec G, Alemany L, Lloveras B et al. Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol 2014; 234: 441–51.
10. Chabeda A, Yanez RJR, Lamprecht R et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5: 46–58.
11. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017; 123: 2219–29.
12. Ermel A, Shew ML, Imburgia TM et al. Redetection of human papillomavirus type 16 infections of the cervix in mid-adult life. Papillomavirus Res 2018; 5: 75–9.
13. Prilepskaya V.N. Diseases of the cervix, vagina, vulva. Moscow: MEDpress-inform, 2005 (in Russian).
14. Folyak E.M., Sokolova T.M., Makarov K.Yu. Papillomavirus infection of the urogenital tract of women. Epidemiology, clinical and pathogenetic features, diagnostic methods, treatment, prevention. Informational manual. 2010, p. 6–11 (in Russian).
15. Rogovskaya S.I. Papillomavirus infection in women and cervical pathology: to help a practitioner. 2nd ed. Moscow: GEOTAR-Media, 2014 (in Russian).
16. Cummings MC, Marquart L, Pelecanos AM et al. Which are more correctly diagnosed: conventional Papanicolaou smears or Thinprep samples? A comparative study of 9 years of external quality-assurance testing. Cancer Cytopathol 2015; 123 (2): 108–16.
17. Zhou H, Mody RR, Luna E et al. Clinical performance of the Food and Drug Administration-Approved high-risk HPV test for the detection of high-grade cervicovaginal lesions. Cancer Cytopathol 2016; 124 (5): 317–23.
18. Arbyn M, Verdoodt F, Snijders PJ et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol 2014; 15 (2): 172–83.
19. Karjalainen L, Anttila A, Nieminen P et al. Self-sampling in cervical cancer screening: comparison of a brush-based and a lavage-based cervicovaginal self-sampling device. BMC Cancer 2016; 16: 221.
20. Cheng JY, Feng MJ, Wu CC et al. Development of a sampling collection device with diagnostic procedures. Anal Chem 2016; 88 (15): 7591–6.
21. Lo JO, Reddy AP, Wilmarth PA et al. Proteomic analysis of cervical vaginal fluid proteins among women in recurrent preterm labor. J Matern Fetal Neonatal Med 2014; 27 (12): 1183–8.
22. Van Raemdonck G, Zegels G, Coen E et al. Increased Serpin A5 levels in the cervicovaginal fluid of HIV-1 exposed seronegatives suggest that a subtle balance between serine proteases and their inhibitors may determine susceptibility to HIV-1 infection. Virology 2014; 458–9.
23. Zegels G, Van Raemdonck GA, Tjalma WA et al. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci 2010; 8: 63.
24. Zardiashli M.D., Nazarova N.M., Starodubtseva N.L. et al. Molekuliarnye markery tservikovaginal'noi zhidkosti: novoe v diagnostike i prognozirovanii zabolevanii, assotsiirovannykh s virusom papillomy cheloveka. Akusherstvo i ginekologiia. 2016; 1: 16–21 (in Russian).
25. Jentschke M, Soergel P, Hillemanns P. Evaluation of a multiplex real time PCR assay for the detection of human papillomavirus infections on self-collected cervicovaginal lavage samples. J Virol Methods 2013; 193 (1): 131–4.
26. Kottaridi C, Leventakou D, Pouliakis A et al. Searching HPV genome for methylation sites involved in molecular progression to cervical precancer. J Cancer 2019; 10 (19): 4588–95.
27. Widschwendter A, Gattringer C, Ivarsson L et al. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 2004; 10 (10): 3396–400.
28. Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 2011; 121 (1): 59–63.
29. Doufekas K, Zheng SC, Ghazali S et al. DNA methylation signatures in vaginal fluid samples for detection of cervical and endometrial cancer. Int J Gynecol Cancer 2016.
30. Finch ML, Marquardt JU, Yeoh GC et al. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014; 54: 288–303.
31. Hilda J-W, Oscar P-Z, Gloria F-T. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 2014; 31 (6): 2467–76.
32. Zavesky L, Jandakova E, Turyna R et al. New perspectives in diagnosis of gynaecological cancers: emerging role of circulating microRNAs as novel biomarkers. Neoplasma 2015; 62 (4): 509–20.
33. Verhoef VM, Bosgraaf RP, van Kemenade FJ et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): a randomised controlled non-inferiority trial. Lancet Oncol 2014; 15 (3): 315–22.
34. De Strooper LM, Verhoef VM, Berkhof J et al. Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women. Gynecol Oncol 2016; 141 (2): 341–7.
35. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200 (4): 373–83.
36. Console L, Scalise M, Indiveri C. Exosomes in inflammation and roles as biomarkers. Clinica Chimica Acta 2019; 488: 165–71.
37. Chung IM, Rajakumar G, Venkidasamy B et al. Exosomes: Current Use and Future Applications. Clin Chim Acta 2019; p. 1–7.
38. Liu J, Sun H, Wang X et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci 2014; 15 (1): 758–73.
39. Zhang J, Liu SC, Luo XH et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 2016; 30 (6): 1116–21.
40. Nanbu Y, Fujii S, Konishi I et al. Immunohistochemical localization of CA130 in fetal tissues, and in normal and neoplastic tissues of the female genital tract. Asia Oceania J Obstet Gynaecol 1990; 16 (4):
379–87.
41. Calis P, Yuce K, Basaran D. Assessment of cervicovaginal cancer antigen 125 levels: a preliminary study for endometrial cancer screening. Gynecol Obstet Invest 2016; 81 (6): 518–22.
42. Tjiong MY, Zumbach K, Schegget JT et al. Antibodies against human papillomavirus type 16 and 18 E6 and E7 proteins in cervicovaginal washings and serum of patients with cervical neoplasia. Viral Immunol 2001; 14 (4): 415–24.
43. Tjiong MY, van der Vange N, ter Schegget JS et al. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine 2001; 14 (6): 357–60.
44. Honda K, Yamada T, Endo R et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140 (6): 1383–93.
45. Hegmans JP, Bard MP, Hemmes A et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 2004; 164 (5): 1807–15.
46. Welsch T, Keleg S, Bergmann F. Actinin-4 expression in primary and metastasized pancreatic ductal adenocarcinoma. Pancreas 2009;
38 (8): 968–76.
47. Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci 2015; 5: 41.
48. Van Raemdonck GA, Tjalma WA, Coen EP et al. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS One 2014; 9 (9).
49. Van Ostade X, Dom M, Van Raemdonck G. IPA analysis of cervicovaginal fluid from precancerous women points to the presence of biomarkers for the precancerous state of cervical carcinoma. Proteomes 2014; 2: 426–50.
50. Berven LA, Crouch MF. Cellular function of p70S6K: a role in regulating cell motility. Immunol Cell Biol 2000; 78 (4): 447–51.
51. Benczik M, Galamb A, Koiss R et al. Claudin-1 as a biomarker of cervical cytology and histology. Pathol Oncol Res 2015.
52. Gonzalez AM, Otey C, Edlund M et al. Interactions of a hemidesmosome component and actinin family members. J Cell Sci 2001; 114 (Pt 23): 4197–206.
53. Gao W, Weng J, Gao Y et al. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis 2013; 13: 271.
54. Mitra A, MacIntyre DA, Lee YS et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep 2015; 5.
55. Dasari S, Rajendra W, Valluru L. Evaluation of microbial enzymes in normal and abnormal cervicovaginal fluids of cervical dysplasia: a case control study. Biomed Res 2014.
56. Ma Y, Madupu R, Karaoz U et al. Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 2014; 88 (9):
4786–97.
57. Vorsters A, Van Damme P, Clifford G. Urine testing for HPV: rationale for using first void. BMJ 2014; 349: g6252.
58. Leeman A, Del Pino M, Molijn A et al. HPV testing in first-void urine provides sensitivity for CIN2+ detection comparable to a physician-taken smear or brush-based self-sample: cross-sectional data from a triage population. BJOG 2017; 124: 1356–63.
59. Guerrero-Preston R, Valle BL, Jedlicka A et al. Molecular triage of premalignant lesions in liquid-based cervical cytology and circulating cell-free DNA from urine, using a panel of methylated human papilloma virus and host genes. Cancer Prev Res (Phila) 2016; 9 (12): 915–24.
60. Morris BJ, Lee C, Nightingale BN et al. Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens. Gynecol Oncol 1995; 56 (2): 245–9.
61. Cricca M, Marasco E, Alessandrini F et al. High-throughput genotyping of high-risk human Papillomavirus by MALDI-TOF mass spectrometry-based method. New Microbiol 2015; 38 (2): 211–23.
1. ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова» Минздрава России, Москва, Россия;
2. ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*VPrilepskaya@mail.ru
________________________________________________
Vera N. Prilepskaya*1, Anna N. Mheryan1, Aida S. Akopian2, Niso M. Nazarova1, Elmira R. Dovletkhanova1, Patimat R. Abakarova1, Natalia L. Starodubtseva1
1. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia;
2. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*VPrilepskaya@mail.ru