В обзоре представлены современные данные о профилактическом действии антиагрегантной и антикоагулянтной терапии плацента-ассоциированных заболеваний. Включена информация из зарубежных и отечественных статей, опубликованных за последние 15 лет в базах данных Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, CyberLeninka, Pubmed. В последние годы появились сообщения об эффективности низкомолекулярных гепаринов (НМГ) в профилактике плацента-ассоциированных осложнений (ПАО). M. Rodger и соавт. в своем исследовании (2016 г.) рассматривают влияние НМГ на развитие ПАО. Пациентки, предыдущая беременность которых осложнилась преэклампсией или задержкой роста плода, были рандомизированы на 2 группы. 1-я группа беременных начала получать инъекции НМГ на раннем сроке беременности (до 12 нед), 2-я группа – не принимала. Таким образом, только у 19% женщин, получающих терапию НМГ, и у 43% женщин, не принимающих препарат, развились ПАО, что может свидетельствовать об эффективности НМГ. Представленные данные подтверждают актуальность проблемы ПАО, а разработка эффективных методов своевременно начатой профилактики этих заболеваний позволяет улучшить исходы беременности.
The review presents modern data on the preventive effect of antiplatelet and anticoagulant therapy of placenta-associated diseases. The review includes data from foreign and Russian articles published over the past 15 years on the Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, CyberLeninka, Pubmed databases. In recent years, there have been reports of the effectiveness of low molecular weight heparins in the prevention of placenta-associated complications. M. Rodger et al. In their study (2016), report on the effect of low molecular weight heparins on the development of placenta-associated complications. Patients whose previous pregnancy was complicated by preeclampsia or fetal growth restriction were randomized into 2 groups. The first group of pregnant women began to receive injections of low molecular weight heparins at an early stage of pregnancy (before 12 weeks), the second group did not receive low molecular weight heparins. Thus, only 19% of women receiving low molecular weight heparin therapy and 43% of women not receiving it developed placenta-associated complications, which may indicate the effectiveness of low molecular weight heparins. This data shows the urgency of the problem of placenta-associated complications, and the development of effective methods of early prevention of these diseases can improve the outcomes of the pregnancy.
1. Poon LC, Kametas NA, Chelemen T, et al. Maternal risk factors for hypertensive disorders in pregnancy: A multivariate approach. J Hum Hypertens. 2010;24(2):104-10.
2. Rousso D, Panidis D, Gkoutzioulis F, et al. Effect of the interval between pregnancies on the health of mother and child. Eur J Obstet Gynecol Reprod Biol. 2002;105(1):4-6.
3. Martin AS, Monsour M, Kawwass JF, et al. Risk of Preeclampsia in Pregnancies After Assisted Reproductive Technology and Ovarian Stimulation. Matern Child Health J. 2016;20(10):2050-6.
4. Cnattingius S, Bergström R, Lipworth L, Kramer MS. Prepregnancy Weight and the Risk of Adverse Pregnancy Outcomes. N Engl J Med. 1998;338(3):147-52.
5. Villa PM, Kajantie E, Räikkönen K, et al. Aspirin in the prevention of pre-eclampsia in high-risk women: A randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG. 2013;120(1):64-74.
6. Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145 Suppl. 1(Suppl. 1):1-33.
7. Miranda J, Simões RV, Paules C, et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci Rep. 2018;8(1):13614.
8. Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002;19(2):140-6.
9. Baschat AA, Kush M, Berg C, et al. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol. 2013;41(1):66-72.
10. Figueras F, Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat Diagn. 2014;34(7):655-9.
11. Snijders RJ, Sherrod C, Gosden CM, Nicolaides KH. Fetal growth retardation: Associated malformations and chromosomal abnormalities. Am J Obstet Gynecol. 1993;168(2):547-55.
12. Anandakumar C, Chew S, Wong YC, et al. Early asymmetric IUGR and aneuploidy. J Obstet Gynaecol Res. 1996;22(4):365-70.
13. Soong YK, Wang TH, Lee YS, Chen CP. Genome-Wide Detection of Uniparental Disomy in a Fetus with Intrauterine Growth Restriction Using Genotyping Microarrays. Taiwan J Obstet Gynecol. 2009;48(2):152-8.
14. ACOG Practice Bullettin No 204: Fetal growth restriction. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins – Obstetrics and the Society forMaternal-FetalMedicin. Obstet Gynecol. 2019;133(2):e97-e109.
15. Khan NA, Kazzi J. Yield and costs of screening growth-retarded infants for torch infections. Am J Perinatol. 2000;17(3):131-5.
16. Walker PG, ter Kuile FO, Garske T, et al. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: A modelling study. Lancet Glob Health. 2014;2(8):e460-7.
17. Lewi L, Gucciardo L, Huber A, et al. Clinical outcome and placental characteristics of monochorionic diamniotic twin pairs with early- and late-onset discordant growth. Am J Obstet Gynecol. 2008;199(5):511.e1-7.
18. Whigham CA, MacDonald TM, Walker SP, et al. The untapped potential of placenta-enriched molecules for diagnostic and therapeutic development. Placenta. 2019;84:28-31.
19. Zhong Y, Zhu F, Ding Y. Serum screening in first trimester to predict pre-eclampsia, small for gestational age and preterm delivery: Systematic review and meta-analysis. BMC Pregnancy Childbirth. 2015;15:191.
20. Proctor LK, Toal M, Keating S, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2009;34(3):274-82.
21. Gaccioli F, Sovio U, Cook E, et al. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women:
a prospective cohort study. Lancet Child Adolesc Health. 2018;2(8):569-81.
22. Method for predicting the risk of development of pre-eclampsia in women of different somatotypes 2018;19:1-16.
23. Наволоцкая В.К., Ляшко Е.С., Шифман Е.М., и др. Возможности прогнозирования осложнений преэклампсии (обзор литературы). Проблемы репродукции. 2019;25(1):87-96 [Navolotskaia VK, Liashko ES, Shifman EM, et al. Vozmozhnosti prognozirovaniia oslozhnenii preeklampsii (obzor literatury). Problemy reproduktsii. 2019;25(1):87-96 (in Russian)].
24. Berbets A, Koval H, Barbe A, et al. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Neonatal Med. 2021;34(3):373-8.
25. Berbets A, Barbe AM, Andriiets OA, et al. Melatonin Levels Decrease in the Umbilical Cord in Case of Intrauterine Growth Restriction. Med Life. 2020;13(4):548-53.
26. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127(5):515-26.
27. Carver TD, Anderson SM, Aldoretta PW, et al. Glucose suppression of insulin secretion in chronically hyperglycemic fetal sheep. Pediatr Res. 1995;38(5):754-62.
28. Hill JM, Agoston DV, Gressens P, McCune SK. Distribution of VIP mRNA and two distinct VIP binding sites in the developing rat brain: Relation to ontogenic events. J Comp Neurol. 1994;342(2):186-205.
29. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141-69.
30. Wat JM, Audette MC, Kingdom JC. Molecular actions of heparin and their implications in preventing pre-eclampsia. J Thromb Haemost. 2018;16(8):1510-22.
31. Medvedev BI, Syundyukova EG, Sashenkov SL. Possibilities of preeclampsia prevention. Modern problems of science and education. 2017;2.
32. Rodger MA, Gris JC, de Vries JIP, et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet. 2016;388(10060):2629-41.
33. Mello G, Parretti E, Fatini C, et al. Low-molecular-weight heparin lowers the recurrence rate of preeclampsia and restores the physiological vascular changes in angiotensin-converting enzyme DD women. Hypertension. 2005;45(1):86-91.
34. Haddad B, Winer N, Chitrit Y, et al. Enoxaparin and Aspirin Compared with Aspirin Alone to Prevent Placenta-Mediated Pregnancy Complications. Obstet Gynecol. 2016;128(5):1053-63.
35. Groom KM, McCowan LM, Mackay LK, et al. Enoxaparin for the prevention of preeclampsia and intrauterine growth restriction in women with a history: a randomized trial. Am J Obstet Gynecol. 2017;216(3):296.e1-296.e14.
36. Costantine MM, Cleary K. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet Gynecol. 2013;121(2 Pt 1):349-53.
37. Yu CKH, Sykes L, Sethi M, et al. Vitamin D deficiency and supplementation during pregnancy. Clin Endocrinol (Oxf). 2009;70(5):685-90.
38. Owens NJ. Vitamin D supplementation for women during pregnancy: Summary of a Cochrane review. Explore (NY). 2020;16(1):73-4.
39. Achamrah N, Ditisheim A. Nutritional approach to preeclampsia prevention. Curr Opin Clin Nutr Metab Care. 2018;21(3):168-73.
40. Lausman A, McCarthy FP, Walker M, Kingdom J. Screening, Diagnosis, and Management of Intrauterine Growth Restriction. J Obstet Gynaecol Can. 2012;34(1):17-28.
41. Stockley EL, Ting JY, Kingdom JC, et al. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am J Obstet Gynecol. 2018;219(6):606.e1-606.e8.
________________________________________________
1. Poon LC, Kametas NA, Chelemen T, et al. Maternal risk factors for hypertensive disorders in pregnancy: A multivariate approach. J Hum Hypertens. 2010;24(2):104-10.
2. Rousso D, Panidis D, Gkoutzioulis F, et al. Effect of the interval between pregnancies on the health of mother and child. Eur J Obstet Gynecol Reprod Biol. 2002;105(1):4-6.
3. Martin AS, Monsour M, Kawwass JF, et al. Risk of Preeclampsia in Pregnancies After Assisted Reproductive Technology and Ovarian Stimulation. Matern Child Health J. 2016;20(10):2050-6.
4. Cnattingius S, Bergström R, Lipworth L, Kramer MS. Prepregnancy Weight and the Risk of Adverse Pregnancy Outcomes. N Engl J Med. 1998;338(3):147-52.
5. Villa PM, Kajantie E, Räikkönen K, et al. Aspirin in the prevention of pre-eclampsia in high-risk women: A randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG. 2013;120(1):64-74.
6. Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145 Suppl. 1(Suppl. 1):1-33.
7. Miranda J, Simões RV, Paules C, et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci Rep. 2018;8(1):13614.
8. Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002;19(2):140-6.
9. Baschat AA, Kush M, Berg C, et al. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol. 2013;41(1):66-72.
10. Figueras F, Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat Diagn. 2014;34(7):655-9.
11. Snijders RJ, Sherrod C, Gosden CM, Nicolaides KH. Fetal growth retardation: Associated malformations and chromosomal abnormalities. Am J Obstet Gynecol. 1993;168(2):547-55.
12. Anandakumar C, Chew S, Wong YC, et al. Early asymmetric IUGR and aneuploidy. J Obstet Gynaecol Res. 1996;22(4):365-70.
13. Soong YK, Wang TH, Lee YS, Chen CP. Genome-Wide Detection of Uniparental Disomy in a Fetus with Intrauterine Growth Restriction Using Genotyping Microarrays. Taiwan J Obstet Gynecol. 2009;48(2):152-8.
14. ACOG Practice Bullettin No 204: Fetal growth restriction. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins – Obstetrics and the Society forMaternal-FetalMedicin. Obstet Gynecol. 2019;133(2):e97-e109.
15. Khan NA, Kazzi J. Yield and costs of screening growth-retarded infants for torch infections. Am J Perinatol. 2000;17(3):131-5.
16. Walker PG, ter Kuile FO, Garske T, et al. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: A modelling study. Lancet Glob Health. 2014;2(8):e460-7.
17. Lewi L, Gucciardo L, Huber A, et al. Clinical outcome and placental characteristics of monochorionic diamniotic twin pairs with early- and late-onset discordant growth. Am J Obstet Gynecol. 2008;199(5):511.e1-7.
18. Whigham CA, MacDonald TM, Walker SP, et al. The untapped potential of placenta-enriched molecules for diagnostic and therapeutic development. Placenta. 2019;84:28-31.
19. Zhong Y, Zhu F, Ding Y. Serum screening in first trimester to predict pre-eclampsia, small for gestational age and preterm delivery: Systematic review and meta-analysis. BMC Pregnancy Childbirth. 2015;15:191.
20. Proctor LK, Toal M, Keating S, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2009;34(3):274-82.
21. Gaccioli F, Sovio U, Cook E, et al. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women:
a prospective cohort study. Lancet Child Adolesc Health. 2018;2(8):569-81.
22. Method for predicting the risk of development of pre-eclampsia in women of different somatotypes 2018;19:1-16.
23. Navolotskaia VK, Liashko ES, Shifman EM, et al. Vozmozhnosti prognozirovaniia oslozhnenii preeklampsii (obzor literatury). Problemy reproduktsii. 2019;25(1):87-96 (in Russian)
24. Berbets A, Koval H, Barbe A, et al. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Neonatal Med. 2021;34(3):373-8.
25. Berbets A, Barbe AM, Andriiets OA, et al. Melatonin Levels Decrease in the Umbilical Cord in Case of Intrauterine Growth Restriction. Med Life. 2020;13(4):548-53.
26. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127(5):515-26.
27. Carver TD, Anderson SM, Aldoretta PW, et al. Glucose suppression of insulin secretion in chronically hyperglycemic fetal sheep. Pediatr Res. 1995;38(5):754-62.
28. Hill JM, Agoston DV, Gressens P, McCune SK. Distribution of VIP mRNA and two distinct VIP binding sites in the developing rat brain: Relation to ontogenic events. J Comp Neurol. 1994;342(2):186-205.
29. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141-69.
30. Wat JM, Audette MC, Kingdom JC. Molecular actions of heparin and their implications in preventing pre-eclampsia. J Thromb Haemost. 2018;16(8):1510-22.
31. Medvedev BI, Syundyukova EG, Sashenkov SL. Possibilities of preeclampsia prevention. Modern problems of science and education. 2017;2.
32. Rodger MA, Gris JC, de Vries JIP, et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet. 2016;388(10060):2629-41.
33. Mello G, Parretti E, Fatini C, et al. Low-molecular-weight heparin lowers the recurrence rate of preeclampsia and restores the physiological vascular changes in angiotensin-converting enzyme DD women. Hypertension. 2005;45(1):86-91.
34. Haddad B, Winer N, Chitrit Y, et al. Enoxaparin and Aspirin Compared with Aspirin Alone to Prevent Placenta-Mediated Pregnancy Complications. Obstet Gynecol. 2016;128(5):1053-63.
35. Groom KM, McCowan LM, Mackay LK, et al. Enoxaparin for the prevention of preeclampsia and intrauterine growth restriction in women with a history: a randomized trial. Am J Obstet Gynecol. 2017;216(3):296.e1-296.e14.
36. Costantine MM, Cleary K. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet Gynecol. 2013;121(2 Pt 1):349-53.
37. Yu CKH, Sykes L, Sethi M, et al. Vitamin D deficiency and supplementation during pregnancy. Clin Endocrinol (Oxf). 2009;70(5):685-90.
38. Owens NJ. Vitamin D supplementation for women during pregnancy: Summary of a Cochrane review. Explore (NY). 2020;16(1):73-4.
39. Achamrah N, Ditisheim A. Nutritional approach to preeclampsia prevention. Curr Opin Clin Nutr Metab Care. 2018;21(3):168-73.
40. Lausman A, McCarthy FP, Walker M, Kingdom J. Screening, Diagnosis, and Management of Intrauterine Growth Restriction. J Obstet Gynaecol Can. 2012;34(1):17-28.
41. Stockley EL, Ting JY, Kingdom JC, et al. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am J Obstet Gynecol. 2018;219(6):606.e1-606.e8.
Авторы
Е.А. Минаева*, Р.Г. Шмаков
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия
*minaevakatya93@yandex.ru
________________________________________________
Ekaterina A. Minaeva*, Roman G. Shmakov
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
*minaevakatya93@yandex.ru