Обоснование. Высокий уровень смертности от рака яичников во многом обусловлен бессимптомным течением заболевания. Признаки злокачественных и пограничных опухолей яичника схожи с проявлениями доброкачественных поражений, что определяет актуальность разработки дополнительных процедур обследования и поиска новых онкомаркеров, которые позволят различать доброкачественные и злокачественные процессы. Цель. Создать устойчивые панели липидов крови для дифференциации здоровых пациентов, пациентов с доброкачественными (ДОЯ) и злокачественными (ЗОЯ) опухолями яичника. Материалы и методы. Выполнен поиск маркеров для кластеризации молекулярных профилей образцов крови пациентов ФГБУ «НМИЦ АГП им. акад. В.И. Кулакова» с ДОЯ (цистаденома – n=30, эндометриоидная киста – n=56, тератома – n=21), с ЗОЯ (пограничная опухоль – n=28, рак яичников низкой степени злокачественности – n=16, рак яичников высокой степени злокачественности – n=59) и добровольцев группы контроля (n=19) при помощи дискриминантного анализа ортогональных проекций на скрытые структуры с установленным порогом важности переменной VIP>1 (OPLS) и метода проекций на скрытые структуры (PLS-PLS – это технология многомерного статистического анализа, используемая для сокращения размерности пространства признаков с минимальной потерей полезной информации; порог важности VIP>1) и других статистических инструментов. Молекулярный профиль образцов составляли соединения, идентифицированные посредством методов ядерного магнитного резонанса и высокоэффективной жидкостной хроматографии с масс-спектрометрией. Проведен анализ вовлеченности соединений, являющихся потенциальными маркерами злокачественных процессов, в метаболические пути. Результаты. На основе методов OPLS и PLS в результате попарного и мультиклассового сравнений соответственно выявлены наборы липидов, которые могут рассматриваться в качестве маркеров злокачественных и доброкачественных новообразований. Изучено перекрытие полученных панелей с базами данных метаболических путей, в частности показано, что все маркеры (кроме глюкозы), полученные посредством PLS для дифференциации здоровых пациентов, пациентов с ДОЯ или с ЗОЯ, задействованы в пути транспорта малых молекул (Transport of small molecules), глюкоза и лактат участвуют в пути TCA Cycle Nutrient Utilization and Invasiveness of Ovarian Cancer. Триглицериды TG 16:0_16:0_18:1, TG 16:0_18:0_18:1, TG 16:0_18:1_18:1, TG 18:0_18:1_18:1, TG 18:0_18:1_18:2 и лактат вовлечены в путь HIF1A and PPARG regulation of glycolysis, причем гены HIF1A и PPARG связаны с развитием опухолей. Метаболиты CE 20:4, TG 16:0_16:0_18:1, TG 16:0_18:0_18:1, TG 16:0_18:1_18:1, TG 18:0_18:1_18:1, TG 18:0_18:1_18:2 включены в пути энергетического обмена, а LPC 16:0, PC 16:0_20:3, PC 16:0_20:4 вовлечены в путь Choline metabolism in cancer. Построены графы корреляционного взаимодействия маркеров, позволяющих решать задачи классификации с однозначной интерпретацией результатов, что дает возможность говорить о перспективности использования данных панелей для дальнейшего создания классификационных моделей. Заключение. Показано, что липиды из разработанных панелей участвуют в метаболических путях, связанных с развитием опухолевых заболеваний, и могут быть использованы для дальнейшей валидации диагностических моделей на основе методов углубленного машинного обучения. Внедрение достижений постгеномных исследований обладает потенциалом повысить диагностическую ценность применяемых методов дифференцировки доброкачественных и злокачественных пролиферативных процессов, а также дополнить имеющиеся данные о процессах канцерогенеза в яичниках. Таким образом, анализ молекулярного профиля крови посредством масс-спектрометрии является малоинвазивным потенциально эффективным методом диагностики.
Background. The high mortality rate from ovarian cancer is largely due to the asymptomatic course of the disease. The signs of malignant and borderline ovarian tumors are similar to the manifestations of benign lesions, which determines the relevance of developing additional examination procedures and searching for new cancer markers that will distinguish benign and malignant processes. Aim. To build stable blood lipid panels for differentiation of healthy women, patients with benign (BOT) and malignant (MOT) ovarian tumors. Materials and methods. The search for markers for clustering of molecular profiles of blood samples of patients of the Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology with BOT (cystadenoma – n=30, endometrioid cyst – n=56, teratoma – n=21), with MOT (borderline tumor – n=28, ovarian cancer of low malignancy – n=16, ovarian cancer of high malignancy – n=59) and volunteers of the group control (n=19) using discriminant analysis of orthogonal projections to hidden structures with an established threshold of importance of the variable VIP>1 (OPLS) and the method of projections to hidden structures (PLS-PLS – it is a technology of multidimensional statistical analysis used to reduce the dimension of the feature space with minimal loss of useful information; VIP importance threshold >1) and other statistical tools. Samples’ molecular profile was complete by species, which were identificated by nuclear magnetic resonance and high-perfomance liquid chromatography-mass spectrometry. The analysis of the involvement of compounds that are potential markers of malignant processes in metabolic pathways was carried out. Results. Based on the OPLS and PLS methods, as a result of pairwise and multiclass comparisons, respectively, sets of lipids were identified that can be considered as markers of malignant and benign neoplasms. The overlap of the obtained panels with databases of metabolic pathways was studied, in particular, it was shown that all markers (except glucose) obtained by PLS for differentiation of healthy patients, patients with BOT or with MOT are involved in the transport of small molecules, glucose and lactate are involved in the “TCA Cycle” pathway “Nutrient Utilization and Invasiveness of Ovarian Cancer”. Triglycerides TG 16:0_16:0_18:1, TG 16:0_18:0_18:1, TG 16:0_18:1_18:1, TG 18:0_18:1_18:1, TG 18:0_18:1_18:2 and lactate are involved in the “HIF1A and PPARG regulation of glycolysis” pathway, and The HIF1A and PPARG genes are associated with the development of tumors. Metabolites CE 20:4, TG 16:0_16:0_18:1, TG 16:0_18:0_18:1, TG 16:0_18:1_18:1, TG 18:0_18:1_18:1, TG 18:0_18:1_18:2 are included in the pathways of energy metabolism, and LPC 16:0, PC 16:0_20:3, PC 16:0_20:4 is involved in the path of “Choline metabolism in cancer”. Graphs of the correlation interaction of markers that allow solving classification problems with an unambiguous interpretation of the results are constructed, which makes it possible to assert the prospects of using these panels for further creation of classification models. Conclusion. It is shown that lipids from the developed panels are involved in metabolic pathways associated with the development of tumor diseases and can be used for further validation of diagnostic models based on advanced machine learning methods. The introduction of the achievements of postgenomic research has the potential to increase the diagnostic value of the applied methods of differentiation of benign and malignant proliferative processes, as well as to supplement the available data on the processes of carcinogenesis in the ovaries. Thus, the analysis of the molecular profile of blood by mass spectrometry is a minimally invasive potentially effective diagnostic method.
Keywords: lipidome, machine learning, metabolome, ovarian cancer, markers of malignancies, high-precision differentiation of ovarian tumors benignity
1. Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2019 году. М. 2020 [Kaprin AD, Starinskii VV, Shakhzadova A.O. Sostoianiie onkologicheskoi pomoshchi naseleniyu Rossii v 2019 godu. Moscow. 2020 (in Russian)].
2. Warren LA, Shih A, Renteira SM, et al. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol Med. 2018;24(1):1-12. DOI:10.1186/s10020-018-0009-6.
3. Gaul DA, Mezencev R, Long TG, et al. Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci Rep. 2015;5:1-7.
4. Grossman DC, Curry SJ, Owens DK, et al. Screening for ovarian cancer US preventive services task force recommendation statement. JAMA. 2018;319(6):588-94.
5. Xie WT, Wang YQ, Xiang ZS, et al. Efficacy of IOTA simple rules, O-RADS, and CA125 to distinguish benign and malignant adnexal masses. J Ovarian Res. 2022;15(1):15. DOI:10.1186/s13048-022-00947-9
6. Xun L, Zhai L, Xu H. Comparison of conventional, doppler and contrast-enhanced ultrasonography in differential diagnosis of ovarian masses: a systematic review and meta-analysis. BMJ Open. 2021;11:e052830. DOI:10.1136/bmjopen-2021-052830
7. Cui L, Xu H, Zhang Y. Diagnostic Accuracies of the Ultrasound and Magnetic Resonance Imaging ADNEX Scoring Systems For Ovarian Adnexal Mass: Systematic Review and Meta-Analysis. Acad Radiol. 2022;29(6):897-908. DOI:10.1016/j.acra.2021.05.029
8. Eroglu EC, Kucukgoz Gulec U, Vardar MA, Paydas S. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor. Eur J Mass Spectrom (Chichester). 2022;28(1-2):12-24. DOI:10.1177/14690667221098520
9. Kim H, Won BH, Choi JI, et al. BRAK and APRIL as novel biomarkers for ovarian tumors. Biomark Med. 2022;16(9):717-29. DOI:10.2217/bmm-2021-1014
10. Zhang W, Lai Z, Liang X, et al. Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis. Clin Chim Acta. 2024;560:119734. DOI:10.1016/j.cca.2024.119734
11. Ban D, Housley SN, Matyunina LV, et al. A personalized probabilistic approach to ovarian cancer diagnostics. Gynecol Oncol. 2024;182:168-75. DOI:10.1016/j.ygyno.2023.12.030
12. Nunes SC, Sousa J, Silva F, et al. Peripheral Blood Serum NMR Metabolomics Is a Powerful Tool to Discriminate Benign and Malignant Ovarian Tumors. Metabolites. 2023;13(9):989. DOI:10.3390/metabo13090989
13. Shekher A, Puneet, Awasthee N, et al. Association of altered metabolic profiles and long non-coding RNAs expression with disease severity in breast cancer patients: analysis by 1H NMR spectroscopy and RT-q-PCR. Metabolomics. 2023;19(2):8. DOI:10.1007/s11306-023-01972-5
14. Чаговец В.В., Васильев В.Г., Юрова М.В., и др. Метаболомная подпись свободных муцинов при онкологических заболеваниях: CA125 и рак яичников высокой степени злокачественности. Вестник РГМУ. 2021;(6):10-6 [Chagovets VV, Vasil'ev VG, Iurova MV, et al. Metabolic “footprints” of the circulating cancer mucins: CA125 in the high-grade ovarian cancer. Bulletin of RSMU. 2021;(6):10-6 (in Russian)]. DOI:10.24075/vrgmu.2021.065.
15. Sah S, Bifarin OO, Moore SG, et al. Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women. Cancer Epidemiol Biomarkers Prev. 2024;33(5):681-93. DOI:10.1158/1055-9965.EPI-23-1293
16. Saorin A, Di Gregorio E, Miolo G, et al. Emerging role of metabolomics in ovarian cancer diagnosis. Metabolites. 2020;10:419.
17. Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245-93.
18. Niemi RJ, Braicu EI, Kulbe H, et al. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer. 2018;119:847-54.
19. Li J, Xie H, Li A, et al. Distinct plasma lipids profiles of recurrent ovarian cancer by liquid chromatography-mass spectrometry. Oncotarget. 2017;8:46834-45.
20. Onwuka JU, Okekunle AP, Olutola OM, et al. Lipid profile and risk of ovarian tumours: a meta-analysis. BMC Cancer. 2020;20:200.
21. Braicu EI, Darb-Esfahani S, Schmitt WD, et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017;8:102912-22.
22. Buas MF, Drescher CW, Urban N, et al. Quantitative global lipidomics analysis of patients with ovarian cancer versus benign adnexal mass. Sci Rep. 2021;11:18156.
23. Galan A, Papaluca A, Nejatie A, et al. GD2 and GD3 gangliosides as diagnostic biomarkers for all stages and subtypes of epithelial ovarian cancer. Front Oncol. 2023;13:1134763.
24. Iurova MV, Chagovets VV, Pavlovich SV, et al. Lipid Alterations in Early-Stage High-Grade Serous Ovarian Cancer. Front Mol Biosci. 2022;9:770983. DOI:10.3389/fmolb.2022.770983
25. Юрова М.В., Чаговец В.В., Франкевич В.Е., и др. Дифференциация серозных новообразований яичников на основании масс-спектрометрического анализа липидного профиля сыворотки крови: пилотное исследование. Акушерство и гинекология. 2021;(9):107-19 [Iurova MV, Chagovets VV, Frankevich VE, et al. Differential diagnosis of serous ovarian tumors using mass spectrometry-based serum lipid profiling: A pilot study. Akusherstvo i Ginekologiia. 2021;(9):107-19 (in Russian)]. DOI:10.18565/aig.2021.9.107-119
26. Юрова М.В., Франкевич В.Е., Павлович С.В., и др. Диагностика серозного рака яичников высокой степени злокачественности Iа–Iс стадии по липидному профилю сыворотки крови. Гинекология. 2021;23(4):335-40 [Iurova MV, Frankevich VE, Pavlovich SV, et al. Diagnosis of Ia–Ic stages of serous high-grade ovarian cancerby the lipid profile of blood serum. Gynecology. 2021;23(4):335-40 (in Russian)]. DOI:10.26442/20795696.2021.4.200911
27. Bowman FD, Guo Y, Derado G. Statistical approaches to functional neuroimaging data. Neuroimaging Clin N Am. 2007;17(4):441-58. DOI:10.1016/j.nic.2007.09.002
________________________________________________
1. Kaprin AD, Starinskii VV, Shakhzadova A.O. Sostoianiie onkologicheskoi pomoshchi naseleniyu Rossii v 2019 godu. Moscow. 2020 (in Russian).
2. Warren LA, Shih A, Renteira SM, et al. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol Med. 2018;24(1):1-12. DOI:10.1186/s10020-018-0009-6.
3. Gaul DA, Mezencev R, Long TG, et al. Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci Rep. 2015;5:1-7.
4. Grossman DC, Curry SJ, Owens DK, et al. Screening for ovarian cancer US preventive services task force recommendation statement. JAMA. 2018;319(6):588-94.
5. Xie WT, Wang YQ, Xiang ZS, et al. Efficacy of IOTA simple rules, O-RADS, and CA125 to distinguish benign and malignant adnexal masses. J Ovarian Res. 2022;15(1):15. DOI:10.1186/s13048-022-00947-9
6. Xun L, Zhai L, Xu H. Comparison of conventional, doppler and contrast-enhanced ultrasonography in differential diagnosis of ovarian masses: a systematic review and meta-analysis. BMJ Open. 2021;11:e052830. DOI:10.1136/bmjopen-2021-052830
7. Cui L, Xu H, Zhang Y. Diagnostic Accuracies of the Ultrasound and Magnetic Resonance Imaging ADNEX Scoring Systems For Ovarian Adnexal Mass: Systematic Review and Meta-Analysis. Acad Radiol. 2022;29(6):897-908. DOI:10.1016/j.acra.2021.05.029
8. Eroglu EC, Kucukgoz Gulec U, Vardar MA, Paydas S. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor. Eur J Mass Spectrom (Chichester). 2022;28(1-2):12-24. DOI:10.1177/14690667221098520
9. Kim H, Won BH, Choi JI, et al. BRAK and APRIL as novel biomarkers for ovarian tumors. Biomark Med. 2022;16(9):717-29. DOI:10.2217/bmm-2021-1014
10. Zhang W, Lai Z, Liang X, et al. Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis. Clin Chim Acta. 2024;560:119734. DOI:10.1016/j.cca.2024.119734
11. Ban D, Housley SN, Matyunina LV, et al. A personalized probabilistic approach to ovarian cancer diagnostics. Gynecol Oncol. 2024;182:168-75. DOI:10.1016/j.ygyno.2023.12.030
12. Nunes SC, Sousa J, Silva F, et al. Peripheral Blood Serum NMR Metabolomics Is a Powerful Tool to Discriminate Benign and Malignant Ovarian Tumors. Metabolites. 2023;13(9):989. DOI:10.3390/metabo13090989
13. Shekher A, Puneet, Awasthee N, et al. Association of altered metabolic profiles and long non-coding RNAs expression with disease severity in breast cancer patients: analysis by 1H NMR spectroscopy and RT-q-PCR. Metabolomics. 2023;19(2):8. DOI:10.1007/s11306-023-01972-5
14. Chagovets VV, Vasil'ev VG, Iurova MV, et al. Metabolic “footprints” of the circulating cancer mucins: CA125 in the high-grade ovarian cancer. Bulletin of RSMU. 2021;(6):10-6 (in Russian). DOI:10.24075/vrgmu.2021.065.
15. Sah S, Bifarin OO, Moore SG, et al. Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women. Cancer Epidemiol Biomarkers Prev. 2024;33(5):681-93. DOI:10.1158/1055-9965.EPI-23-1293
16. Saorin A, Di Gregorio E, Miolo G, et al. Emerging role of metabolomics in ovarian cancer diagnosis. Metabolites. 2020;10:419.
17. Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245-93.
18. Niemi RJ, Braicu EI, Kulbe H, et al. Ovarian tumours of different histologic type and clinical stage induce similar changes in lipid metabolism. Br J Cancer. 2018;119:847-54.
19. Li J, Xie H, Li A, et al. Distinct plasma lipids profiles of recurrent ovarian cancer by liquid chromatography-mass spectrometry. Oncotarget. 2017;8:46834-45.
20. Onwuka JU, Okekunle AP, Olutola OM, et al. Lipid profile and risk of ovarian tumours: a meta-analysis. BMC Cancer. 2020;20:200.
21. Braicu EI, Darb-Esfahani S, Schmitt WD, et al. High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid metabolism. Oncotarget. 2017;8:102912-22.
22. Buas MF, Drescher CW, Urban N, et al. Quantitative global lipidomics analysis of patients with ovarian cancer versus benign adnexal mass. Sci Rep. 2021;11:18156.
23. Galan A, Papaluca A, Nejatie A, et al. GD2 and GD3 gangliosides as diagnostic biomarkers for all stages and subtypes of epithelial ovarian cancer. Front Oncol. 2023;13:1134763.
24. Iurova MV, Chagovets VV, Pavlovich SV, et al. Lipid Alterations in Early-Stage High-Grade Serous Ovarian Cancer. Front Mol Biosci. 2022;9:770983. DOI:10.3389/fmolb.2022.770983
25. Iurova MV, Chagovets VV, Frankevich VE, et al. Differential diagnosis of serous ovarian tumors using mass spectrometry-based serum lipid profiling: A pilot study. Akusherstvo i Ginekologiia. 2021;(9):107-19 (in Russian). DOI:10.18565/aig.2021.9.107-119
26. Iurova MV, Frankevich VE, Pavlovich SV, et al. Diagnosis of Ia–Ic stages of serous high-grade ovarian cancerby the lipid profile of blood serum. Gynecology. 2021;23(4):335-40 (in Russian). DOI:10.26442/20795696.2021.4.200911
27. Bowman FD, Guo Y, Derado G. Statistical approaches to functional neuroimaging data. Neuroimaging Clin N Am. 2007;17(4):441-58. DOI:10.1016/j.nic.2007.09.002
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия
*m_yurova@oparina4.ru
________________________________________________
Maria V. Iurova*, Alisa O. Tokareva, Vitaliy V. Chagovets, Natalia L. Starodubtseva, Vladimir E. Frankevich
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
*m_yurova@oparina4.ru