Грудное молоко традиционно считалось стерильным, однако недавние исследования показали, что для кишечника ребенка молоко является постоянным источником разных бактерий, которые могут быть симбионтами, обладать взаимополезными (мутуализм) и/или потенциально пробиотическими свойствами. Разные технологии выращивания бактериальных культур выявили наличие в грудном молоке стафилококков, стрептококков, молочнокислых и бифидобактерий, а также показали важную роль молока в бактериальной колонизации кишечника ребенка. Вдобавок к другим функциям бактерии грудного молока могут защищать ребенка от инфекций и способствовать развитию иммунной системы. Показано, что на поздних сроках беременности бактериями кишечника матери могут быть обсеменены молочные железы, и во время кормления они заносятся в кишечник младенца, обеспечивая стимуляцию работы кишечных моноцитов. Таким образом, изменение микробиоты кишечника матери в течение беременности и лактации напрямую воздействует на здоровье младенца.
Human milk has been traditionally considered sterile; however, recent studies have shown that it represents a continuous supply of commensal, mutualistic and/or potentially probiotic bacteria to the infant gut. Culture-dependent and -independent techniques have revealed the dominance of staphylococci, streptococci, lactic acid bacteria and bifidobacteria in this biological fluid, and their role on the colonization of the infant gut. These bacteria could protect the infant against infections and contribute to the maturation of the immune system, among other functions. Different studies suggest that some bacteria present in the maternal gut could reach the mammary gland during late pregnancy and lactation through a mechanism involving gut monocytes. Thus, modulation of maternal gut microbiota during pregnancy and lactation could have a direct effect on infant health.
Key words: human milk, breastfeeding, bacteria, mammary microbiota, dendritic cells.
1. Fernández L, Langa S, Martín V et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013; 69: 1–10.
2. Martín R, Langa S, Reviriego C et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003; 143: 754–8.
3. Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003; 95: 471–8.
4. Beasley SS, Saris PEJ. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol 2004; 70: 5051–3.
5. Jiménez E, Delgado S, Maldonado A et al. Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol 2008; 8: 143.
6. Jiménez E, Fernández L, Delgado S et al. Assessment of the bacterial diversity of human colostrum by cultural-based techniques. Analysis of the staphylococcal and enterococcal populations. Res Microbiol 2008; 159: 595–601.
7. Martín R, Olivares M, Marín ML et al. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Human Lact 2005; 21: 8–17.
8. Martín R, Jiménez E, Olivares M et al. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol 2006; 112: 35–43.
9. Martín R, Jiménez E, Heilig HG et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009; 75: 965–9.
10. Martín V, Mañés-Lázaro R, Rodríguez JM, Maldonado A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol 2011; 61: 1048–52.
11. Matsumiya Y, Kato N, Watanabe K, Kato H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J Infect Chemother 2002; 8: 43–9.
12. Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 2011; 34: 148–55.
13. Makino H, Kushiro A, Ishikawa E et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 2011; 77: 6788–93.
14. Martín V, Maldonado A, Moles L et al. Sharing of bacterial strains between breast milk and infant feces. J Human Lact 2012; 28: 36–44.
15. Hunt KM, Foster JA, Forney LJ et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011; 6: e21313.
16. Martín R, Heilig HG, Zoetendal EG et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 2007; 158: 31–7.
17. Martín R, Heilig HG, Zoetendal EG et al. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 2007; 103: 2638–44.
18. Gueimonde M, Laitinen K, Salminen S, Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 2007; 92: 64–6.
19. Cabrera-Rubio R, Collado MC, Laitinen K et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012; 96: 544–51.
20. Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013; 110: 1253–62.
21. Jiménez E, de Andrés J, Manrique M et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Human Lact 2015; 31: 406–15.
22. Olivares M, Díaz-Ropero MP, Martín R et al. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J Appl Microbiol 2006; 101: 72–9.
23. Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Inmunobiology 2010; 12: 996–1004.
24. Martín R, Langa S, Reviriego C et al. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 2004; 15: 121–7.
25. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014; 5: 779–84.
26. Langa S, Maldonado A, Delgado S et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype. Appl Microbiol Biotechnol 2012; 94: 1279–87.
________________________________________________
1. Fernández L, Langa S, Martín V et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013; 69: 1–10.
2. Martín R, Langa S, Reviriego C et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003; 143: 754–8.
3. Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003; 95: 471–8.
4. Beasley SS, Saris PEJ. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol 2004; 70: 5051–3.
5. Jiménez E, Delgado S, Maldonado A et al. Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol 2008; 8: 143.
6. Jiménez E, Fernández L, Delgado S et al. Assessment of the bacterial diversity of human colostrum by cultural-based techniques. Analysis of the staphylococcal and enterococcal populations. Res Microbiol 2008; 159: 595–601.
7. Martín R, Olivares M, Marín ML et al. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Human Lact 2005; 21: 8–17.
8. Martín R, Jiménez E, Olivares M et al. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol 2006; 112: 35–43.
9. Martín R, Jiménez E, Heilig HG et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009; 75: 965–9.
10. Martín V, Mañés-Lázaro R, Rodríguez JM, Maldonado A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol 2011; 61: 1048–52.
11. Matsumiya Y, Kato N, Watanabe K, Kato H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J Infect Chemother 2002; 8: 43–9.
12. Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 2011; 34: 148–55.
13. Makino H, Kushiro A, Ishikawa E et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 2011; 77: 6788–93.
14. Martín V, Maldonado A, Moles L et al. Sharing of bacterial strains between breast milk and infant feces. J Human Lact 2012; 28: 36–44.
15. Hunt KM, Foster JA, Forney LJ et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011; 6: e21313.
16. Martín R, Heilig HG, Zoetendal EG et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 2007; 158: 31–7.
17. Martín R, Heilig HG, Zoetendal EG et al. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 2007; 103: 2638–44.
18. Gueimonde M, Laitinen K, Salminen S, Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 2007; 92: 64–6.
19. Cabrera-Rubio R, Collado MC, Laitinen K et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012; 96: 544–51.
20. Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013; 110: 1253–62.
21. Jiménez E, de Andrés J, Manrique M et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Human Lact 2015; 31: 406–15.
22. Olivares M, Díaz-Ropero MP, Martín R et al. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J Appl Microbiol 2006; 101: 72–9.
23. Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Inmunobiology 2010; 12: 996–1004.
24. Martín R, Langa S, Reviriego C et al. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 2004; 15: 121–7.
25. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014; 5: 779–84.
26. Langa S, Maldonado A, Delgado S et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype. Appl Microbiol Biotechnol 2012; 94: 1279–87.
Авторы
Хуан М.Родригеc*
Мадридский университет Комплутенсе. 28040, Мадрид, Испания
*jmrodrig@ucm.es
________________________________________________
Juan M.Rodríguez*
Complutense University of Madrid. 28040 Madrid, Spain
*jmrodrig@ucm.es