Материнское молоко является уникальным продуктом для детей первого и второго года. Помимо компонентов, обеспечивающих энергетические потребности ребенка, грудное молоко содержит множество биологически активных соединений, микроорганизмов, стволовых клеток, влияющих на созревание органов и систем, в том числе системы иммунитета. Даже в самых современных искусственных смесях невозможно полностью повторить состав и эффекты грудного молока. Тем не менее введение в формулу некоторых компонентов, оказывающих положительное влияние на развивающуюся иммунную систему, возможно. К ним относятся жировые компоненты, в частности длинноцепочечные полиненасыщенные жирные кислоты и β-пальмитат, нуклеотиды, наиболее ценными из которых являются монофосфаты аденозина, гуанина, уридина, цитидина и инозина, олигосахариды, пробиотики, макро- и микроэлементы. Козье молоко является привлекательным естественным продуктом для производства качественных молочных смесей для питания младенцев. Обогащение молочных формул, созданных на основе козьего молока, компонентами с иммуномодулирующей функцией, гомологичными таковым грудного молока, позволяет значительно снизить неблагоприятные эффекты искусственного вскармливания младенцев, а также добиться положительного иммуномодулирующего эффекта. Адаптированная смесь на основе козьего молока Kabrita® содержит все полезные натуральные компоненты козьего молока, адаптированного производителем по белковому, жировому, углеводному, микро- и макроэлементному составу, с добавлением комплекса пробиотиков ВВ-12 и липидного комплекс DigestX®.
Mother's milk is a unique product for children in the first and second year of life. In addition to the components that provide the energy needs of the baby, breast milk contains many biologically active compounds, microorganisms, stem cells that influence the maturation of organs and systems, including the immune system. Even in the most advanced artificial formula, it is impossible to replicate the composition and effects of breast milk completely. Nevertheless, it is possible to introduce some components into the formula that have a positive effect on the developing immune system. These include fat components, in particular long-chain polyunsaturated fatty acids and β-palmitate, nucleotides, the most valuable of which are adenosine, guanine, uridine, cytidine and inosine monophosphates, oligosaccharides, probiotics, macro- and microelements. Goat's milk is an attractive natural product for the production of quality infant formula. Enriching milk formulas based on goat's milk with components with immunomodulatory functions homologous to those of breast milk makes it possible to significantly reduce the adverse effects of artificial feeding of infants, as well as to achieve a positive immunomodulatory effect. Kabrita® adapted goat milk formula contains all the beneficial natural components of goat milk, adapted by the manufacturer according to the protein, fat, carbohydrate, micro- and macronutrient composition, with the addition of probiotic complex BB-12 and lipid complex DigestX®.
Keywords: breast milk, breastfeeding, artificial feeding, goat's milk formula, children, immunity, breast milk oligosaccharides, breast milk nucleotides, breast milk microbiota
1. Bode L, McGuire M, Rodriguez JM, et al. It’s alive: microbes and cells in human milk and their potential benefits to mother and infant. Adv Nutr. 2014;5(5):571-3.
2. Захарова И.Н., Мачнева Е.Б., Облогина И.С. Грудное молоко – живая ткань! Как сохранить грудное вскармливание? Медицинский совет. 2017;19:24-9 [Zakharova IN, Machneva EB, Oblogina IS. Grudnoe moloko – zhivaia tkan! Kak sokhranit grudnoe vskarmlivanie? Meditsinskii sovet. 2017;19:24-9 (in Russian)].
DOI:10.21518/2079-701X-2017-19-24-29
3. Melville JM, Moss TJ. The immune consequences of preterm birth. Front Neurosci. 2013;7:79. DOI:10.3389/fnins.2013.00079
4. Хаертынов Х.С., Анохин В.А., Мустафин И.Г., и др. Особенности иммунитета у новорожденных детей с локализованными и генерализованными формами бактериальных инфекций. Рос. вестн. перинатол. и педиатр. 2015;5:168-73 [Khaertynov KhS, Anokhin VA, Mustafin IG, et al. Osobennosti immuniteta u novorozhdennykh detei s lokalizovannymi i generalizovannymi formami bakterial'nykh infektsii. Ros. vestn. perinatol. i pediatr. 2015;5:168-73 (in Russian)].
5. Устьянцева Л.С., Чистякова Г.Н., Ремизова И.И., и др. Особенности врожденного и адаптивного иммунитета недоношенных детей с тяжелым гипоксически-ишемическим поражением центральной нервной системы. Рос. вестн. перинатол. и педиатр. 2017;62:(3):59-65 [Ustiantseva LS, Chistiakova GN, Remizova II, et al. Osobennosti vrozhdennogo i adaptivnogo immuniteta nedonoshennykh detei s tiazhelym gipoksicheski-ishemicheskim porazheniem tsentral'noi nervnoi sistemy. Ros. vestn. perinatol. i pediatr. 2017;62:(3):59-65 (in Russian)]. DOI:10.21508/1027-4065-2017-62-3-59-65
6. Victora CG, Alufsio RB, Barros JD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475-90.
7. Иванова И.Е. Роль грудного молока в иммунологической защите ребенка и формировании его иммунной системы. Здравоохранение Чувашии. 2015;4:63-71 [Ivanova IE. Rol grudnogo moloka v immunologicheskoi zashchite rebenka i formirovanii ego immunnoi sistemy. Zdravookhranenie Chuvashii. 2015;4:63-71 (in Russian)].
8. Геппе Н.А., Мелешкина А.В., Яблокова Е.А., Чебышева С.Н. Достоинства адаптированных смесей на основе козьего молока при функциональных нарушениях желудочно-кишечного тракта у детей раннего возраста на искусственном вскармливании. Лечащий врач. 2020;3:43-9 [Geppe NA, Meleshkina AV, Iablokova EA, Chebysheva SN. Dostoinstva adaptirovannykh smesei na osnove kozego moloka pri funktsionalnykh narusheniiakh zheludochno-kishechnogo trakta u detei rannego vozrasta na iskusstvennom vskarmlivanii. Lechashchii vrach. 2020;3:43-9 (in Russian)]. DOI:10.26295/OS.2020.72.94.007
9. Казюкова Т.В., Ильенко Л.И., Котлуков В.К. Козье молоко в питании детей грудного и раннего возраста. Педиатрия. 2017;96(1):75-82 [Kaziukova TV, Ilenko LI, Kotlukov VK. Koze moloko v pitanii detei grudnogo i rannego vozrasta. Pediatriia. 2017;96(1):75-82 (in Russian)].
10. Donnet-Hughes A, Duc N, Serrant P, et al. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol. 2000;78:74-9.
11. Miles EA, Childs CE, Calder PC. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients. 2021;13(1):247.
DOI:10.3390/nu13010247
12. Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018;10(8):1038. DOI:10.3390/nu10081038
13. Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci. 2019;20(20):5028. DOI:10.3390/ijms20205028
14. Vahn SL, Ulleryd MA, Grahnemo L, et al. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis. Infect Immun. 2016;84(4):1205-13. DOI:10.1128/IAI.01391-15
15. Husson MO, Ley D, Portal C, et al. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect. 2016;73(6):523-35. pmid:27746159.
16. Russel FD, Bürgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10(11):2535-59.
17. Oh SF, Vickery TW, Serhan ChN. Chiral Lipidomics of E-Series Resolvins: Aspirin and the Biosynthesis of Novel Mediators. Biochim Biophys Acta. 2011;1811(11):737-47.
18. Field C, Van Aerde J, Robinson LE, Clandinin MT. Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Br J Nutr. 2008;99:91-9.
19. Николаева С.В., Усенко Д.В., Шушакова Е.К., и др. Значение омега-3 полиненасыщенных жирных кислот для детей. РМЖ. 2020;2:28-32 [Nikolaeva SV, Usenko DV, Shushakova EK, et al. Znachenie omega-3 polinenasyshchennykh zhirnykh kislot dlia detei. RMZh. 2020;2:28-32 (in Russian)].
20. Miles EA, Childs CE, Calder PC. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients. 2021;13(1):247.
DOI:10.3390/nu13010247
21. Летифов Г.М., Полянская Ф.И., Панова И.В. Адаптированные молочные смеси и сухие молочные напитки на основе козьего молока в питании здоровых детей. Практика педиатра. 2016;6:20-4 [Letifov GM, Polianskaia FI, Panova IV. Adaptirovannye molochnye smesi i sukhie molochnye napitki na osnove koz'ego moloka v pitanii zdorovykh detei. Praktika pediatra. 2016;6:20-4 (in Russian)].
22. Комарова О.Н. Влияние жирового компонента смесей на развитие ребенка. Лечащий врач. 2013;7:76 [Komarova ON. Vliianie zhirovogo komponenta smesei na razvitie rebenka. Lechashchii vrach. 2013;7:76 (in Russian)].
23. Hoffman DR, Boettcher JA, Diersen-Schade DA. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2009;81:151-8.
24. Havlicekova Z, Jesenak M, Banovcin P, Kuchta M. Beta-palmitate – a natural component of human milk in supplemental milk formulas. Nutr J. 2016;15:28.
25. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. DOI:10.3389/fimmu.2018.00361
26. Боровик Т.Э., Семёнова Н.Н., Лукоянова О.Л., и др. Эффективность использования адаптированной смеси на основе козьего молока в питании здоровых детей первого полугодия жизни: результаты многоцентрового проспективного сравнительного исследования. Вопросы современной педиатрии. 2017;16(3):226-34 [Borovik TE, Semenova NN, Lukoianova OL, et al. Effektivnost ispolzovaniia adaptirovannoi smesi na osnove kozego moloka v pitanii zdorovykh detei pervogo polugodiia zhizni: rezultaty mnogotsentrovogo prospektivnogo sravnitelnogo issledovaniia. Voprosy sovremennoi pediatrii. 2017;16(3):226-34 (in Russian)].
27. Litmanovitz I, Bar-Yoseph F, Lifshitz Y, et al. Reduced crying in term infants fed high beta-palmitate formula: a double-blind randomized clinical trial. BMC Pediatr. 2014;14:152. DOI:10.1186/1471-2431-14-152
28. Киселева Е.С., Мохова Ю.А. Грудное молоко и его компоненты: влияние на иммунитет ребенка. Педиатрия. 2010;89(6):62-9 [Kiseleva ES, Mokhova IuA. Grudnoe moloko i ego komponenty: vliianie na immunitet rebenka. Pediatriia. 2010;89(6):62-9 (in Russian)].
29. Лукоянова О.Л. Грудное молоко как эталонная модель для создания детских молочных смесей. Вопросы современной педиатрии. 2012;11(4):111-5 [Lukoianova OL. Grudnoe moloko kak etalonnaia model dlia sozdaniia detskikh molochnykh smesei. Voprosy sovremennoi pediatrii. 2012;11(4):111-5 (in Russian)].
30. Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. J Agric Food Chem. 2018;66(45):11881-96. DOI:10.1021/acs.jafc.8b04031
31. Кешишян Е.С., Бердникова Е.К. Нуклеотиды в питании детей раннего возраста. Лечащий врач. 2004;1:53-4 [Keshishian ES, Berdnikova EK. Nukleotidy v pitanii detei rannego vozrasta. Lechashchii vrach. 2004;1:53-4 (in Russian)].
32. Баранов А.А., Тутельян В.А., Чумакова О.В., и др. Программа оптимизации питания детей в возрасте от 1 года до 3 лет в Российской Федерации. Методические рекомендации. М., 2019 [Baranov AA, Tutelian VA, Chumakova OV, et al. Nutrition optimization program for children aged 1 to 3 years in the Russian Federation. Metodicheskie rekomendatsii. Moscow, 2019 (in Russian)].
33. Грибакин С.Г., Боковская О.А., Давыдовская А.А. Питание ребенка и иммунитет: в погоне за идеалом. Лечащий врач. 2013;8:72-6 [Gribakin SG, Bokovskaia OA, Davydovskaia AA. Pitanie rebenka i immunitet: v pogone za idealom. Lechashchii vrach. 2013;8:72-6 (in Russian)].
34. Дементьева Ю.Н. Иммунологические аспекты грудного вскармливания. Рос. вестн. перинатол. и педиатр. 2015;4:19-24 [Dementeva IuN. Immunologicheskie aspekty grudnogo vskarmlivaniia. Ros. vestn. perinatol. i pediatr. 2015;4:19-24 (in Russian)].
35. Меренкова С.П. Физиологическое значение нутриентного состава адаптированных молочных смесей. Вестник ЮУрГУ. 2013;1(1):56-62 [Merenkova SP. Fiziologicheskoe znachenie nutrientnogo sostava adaptirovannykh molochnykh smesei. Vestnik IuUrGU. 2013;1(1):56-62 (in Russian)].
36. Linette P, Tao H, Hanneke B. Naturally high content of nucleotides in goat milk based infant formula. Abstracts of ESPGHAN 51st Annual Meeting, 2018; p. 1091.
37. Захарова И.Н., Сугян Н.Г., Глотова А.П. Козье молоко в питании детей с функциональными нарушениями желудочно-кишечного тракта. Медицинский совет. 2020;(18):103-9 [Zakharova IN, Sugian NG, Glotova AP. Koze moloko v pitanii detei s funktsionalnymi narusheniiami zheludochno-kishechnogo trakta. Meditsinskii sovet. 2020;(18):103-9 (in Russian)]. DOI:10.21518/2079-701X-2020-18-103-109
38. Захарова И.Н., Дмитриева Ю.А., Ягодкин М.В. Олигосахариды грудного молока: еще один шаг на пути приближения детских молочных смесей к «золотому стандарту» вскармливания ребенка. Медицинский совет. 2018;7:30-7 [Zakharova IN, Dmitrieva IuA, Iagodkin MV. Oligosakharidy grudnogo moloka: eshche odin shag na puti priblizheniia detskikh molochnykh smesei k "zolotomu standartu' vskarmlivaniia rebenka. Meditsinskii sovet. 2018;7:30-7 (in Russian)]. DOI:10.21518/2079-701X-2018-17-30-37
39. Donovan SM, Comstock SS. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. 2016;69 Suppl. 2(Suppl. 2):42-51.
DOI:10.1159/000452818
40. Johannesen SA, Beeren SR, Blank D, et al. Glycan analysis via derivatization with a fluorogenic pyrylium dye. Carbohydr Res. 2012;352:94-100. DOI:10.1016/j.carres.2012.02.016
41. Оганезова И.А. Кишечная микробиота и иммунитет: иммуномодулирующие эффекты Lactobacillus rhamnosus GG. РМЖ. 2018;26(9):39-44 [Oganezova IA. Kishechnaia mikrobiota i immunitet: immunomoduliruiushchie effekty Lactobacillus rhamnosus GG. RMZh. 2018;26(9):39-44 (in Russian)].
42. Пахомовская Н.Л., Венедиктова М.М. Влияние микробиоты ребенка первого года жизни на его развитие. Медицинский совет. 2018;2:200-5 [Pakhomovskaia NL, Venediktova MM. Vliianie mikrobioty rebenka pervogo goda zhizni na ego razvitie. Meditsinskii sovet. 2018;2:200-5 (in Russian)]. DOI:10.21518/2079-701X-2018-2-200-205
43. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015;77(1-2):229-35.
44. Mezoff EA, Hawkins JA, Ollberding NJ, et al. The human milk oligosaccharide 2'‑fucosyllactose augments the adaptive response to extensive intestinal resection. Am J Physiol Gastrointest Liver Physiol. 2016;310(6):G427-38.
45. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol. 2015;15:172.
46. Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014;9(7):e101692.
47. Steenhout P, Sperisen P, Martin F-P, et al. Term infant formula supplemented with human milk oligosaccharides (2'‑fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. FASEB J. 2016;30(Suppl. 1):275-7.
48. Zuurveld M, van Witzenburg NP, Garssen J, et al. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11:801. DOI:10.3389/fimmu.2020.00801
49. Meyrand M, Dallas DC, Caillat H, et al. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize as1-casein. Small Rumin Res. 2013;113(2‑3):411-20. DOI:10.1016/j.smallrumres.2013.03.014
50. Leong A, Liu Z, Almshawit H, et al. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr. 2019;122(4):441-9.
51. Daddaoua A, Puerta V, Requena P, et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr. 2006;136(3):672-6. DOI:10.1093/jn/136.3.672
52. Chen YL, Liao FH, Lin SH, Chien YW. A Prebiotic Formula Improves the Gastrointestinal Bacterial Flora in Toddlers. Gastroenterol Res Pract. 2016;2016:3504282.
53. Абрамова Т.В., Пырьева Е.А., Тоболева М.А., и др. Пробиотик ВВ-12 в питании детей. Фарматека. 2016;15:90-5 [Abramova TV, Pyreva EA, Toboleva MA, et al. Probiotik VV-12 v pitanii detei. Farmateka. 2016;15:90-5 (in Russian)].
54. Урсова Н.И. Значение грудного вскармливания для роста и развития младенца. Альманах клинической медицины. 2015;42:23-37 [Ursova NI. Znachenie grudnogo vskarmlivaniia dlia rosta i razvitiia mladentsa. Al'manakh klinicheskoi meditsiny. 2015;42:23-37 (in Russian)].
55. Третьякова О.С. Физиологическая роль железа в организме человека. Дитячий лікар. 2013;1(22):14-8 [Tretiakova OS. Fiziologicheskaia rol zheleza v organizme cheloveka. Ditiachii lіkar. 2013;1(22):14-8 (in Russian)].
56. Haschke F, Haiden N, Thakkar SK. Nutritive and Bioactive Proteins in Breast Milk by Ferdinand Haschke et al. Ann Nutr Metab. 2016;69(Suppl. 2):17-26.
57. Baqui AH, Black RE, El Arifeen S, et al. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomized trial. BMJ. 2002;325(7372):1059.
58. Bahl R, Bhandari N, Saksena M, et al. Efficacy of zinc-fortified oral rehydration solution in 6- to 35-month-old children with acute diarrhea. J Pediatr. 2002;141(5):677-82.
59. Hoag KA, Nashold FE, Goverman J, Hayes CE. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigenpresenting cells. J Nutr. 2002;132(12):3736-9.
60. Geissmann F, Revy P, Brousse N, et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J Exp Med. 2003;198(4):623-34.
61. Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. J Nutr. 2003;133(5 Suppl. 1):1457S-9S.
62. Stuss M, Michalska-Kasiczak M, Sewerynek E. The role of selenium in thyroid gland pathophysiology. Endokrynol Pol. 2017;68(4):440-65. DOI:10.5603/EP.2017.0051
63. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):236. DOI:10.3390/nu12010236
64. Кондратьева Е.И., Барабаш Н.А., Станкевич С.С., и др. Влияние микроэлементов на состояние здоровья детей, находящихся на различных видах вскармливания. Рос. вестн. перинатол. и педиатр. 2008;2:24-9 [Kondrateva EI, Barabash NA, Stankevich SS, et al. Vliianie mikroelementov na sostoianie zdorovia detei, nakhodiashchikhsia na razlichnykh vidakh vskarmlivaniia. Ros. vestn. perinatol. i pediatr. 2008;2:24-9 (in Russian)].
65. Рюмина И.И. Смеси на основе козьего молока при выборе искусственного вскармливания новорожденного и ребенка первого года жизни. Медицинский cовет. 2021;1:30-6 [Riumina II. Smesi na osnove koz'ego moloka pri vybore iskusstvennogo vskarmlivaniia novorozhdennogo i rebenka pervogo goda zhizni. Meditsinskii sovet. 2021;1:30-6 (in Russian)]. DOI:10.21518/2079-701X-2021-1-30-35
________________________________________________
1. Bode L, McGuire M, Rodriguez JM, et al. It’s alive: microbes and cells in human milk and their potential benefits to mother and infant. Adv Nutr. 2014;5(5):571-3.
2. Zakharova IN, Machneva EB, Oblogina IS. Grudnoe moloko – zhivaia tkan! Kak sokhranit grudnoe vskarmlivanie? Meditsinskii sovet. 2017;19:24-9 (in Russian)
DOI:10.21518/2079-701X-2017-19-24-29
3. Melville JM, Moss TJ. The immune consequences of preterm birth. Front Neurosci. 2013;7:79. DOI:10.3389/fnins.2013.00079
4. Khaertynov KhS, Anokhin VA, Mustafin IG, et al. Osobennosti immuniteta u novorozhdennykh detei s lokalizovannymi i generalizovannymi formami bakterial'nykh infektsii. Ros. vestn. perinatol. i pediatr. 2015;5:168-73 (in Russian)
5. Ustiantseva LS, Chistiakova GN, Remizova II, et al. Osobennosti vrozhdennogo i adaptivnogo immuniteta nedonoshennykh detei s tiazhelym gipoksicheski-ishemicheskim porazheniem tsentral'noi nervnoi sistemy. Ros. vestn. perinatol. i pediatr. 2017;62:(3):59-65 (in Russian) DOI:10.21508/1027-4065-2017-62-3-59-65
6. Victora CG, Alufsio RB, Barros JD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475-90.
7. Ivanova IE. Rol grudnogo moloka v immunologicheskoi zashchite rebenka i formirovanii ego immunnoi sistemy. Zdravookhranenie Chuvashii. 2015;4:63-71 (in Russian)
8. Geppe NA, Meleshkina AV, Iablokova EA, Chebysheva SN. Dostoinstva adaptirovannykh smesei na osnove kozego moloka pri funktsionalnykh narusheniiakh zheludochno-kishechnogo trakta u detei rannego vozrasta na iskusstvennom vskarmlivanii. Lechashchii vrach. 2020;3:43-9 (in Russian) DOI:10.26295/OS.2020.72.94.007
9. Kaziukova TV, Ilenko LI, Kotlukov VK. Koze moloko v pitanii detei grudnogo i rannego vozrasta. Pediatriia. 2017;96(1):75-82 (in Russian)
10. Donnet-Hughes A, Duc N, Serrant P, et al. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol. 2000;78:74-9.
11. Miles EA, Childs CE, Calder PC. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients. 2021;13(1):247.
DOI:10.3390/nu13010247
12. Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018;10(8):1038. DOI:10.3390/nu10081038
13. Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci. 2019;20(20):5028. DOI:10.3390/ijms20205028
14. Vahn SL, Ulleryd MA, Grahnemo L, et al. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis. Infect Immun. 2016;84(4):1205-13. DOI:10.1128/IAI.01391-15
15. Husson MO, Ley D, Portal C, et al. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect. 2016;73(6):523-35. pmid:27746159.
16. Russel FD, Bürgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10(11):2535-59.
17. Oh SF, Vickery TW, Serhan ChN. Chiral Lipidomics of E-Series Resolvins: Aspirin and the Biosynthesis of Novel Mediators. Biochim Biophys Acta. 2011;1811(11):737-47.
18. Field C, Van Aerde J, Robinson LE, Clandinin MT. Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Br J Nutr. 2008;99:91-9.
19. Nikolaeva SV, Usenko DV, Shushakova EK, et al. Znachenie omega-3 polinenasyshchennykh zhirnykh kislot dlia detei. RMZh. 2020;2:28-32 (in Russian)
20. Miles EA, Childs CE, Calder PC. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients. 2021;13(1):247.
DOI:10.3390/nu13010247
21. Letifov GM, Polianskaia FI, Panova IV. Adaptirovannye molochnye smesi i sukhie molochnye napitki na osnove koz'ego moloka v pitanii zdorovykh detei. Praktika pediatra. 2016;6:20-4 (in Russian)
22. Komarova ON. Vliianie zhirovogo komponenta smesei na razvitie rebenka. Lechashchii vrach. 2013;7:76 (in Russian)
23. Hoffman DR, Boettcher JA, Diersen-Schade DA. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2009;81:151-8.
24. Havlicekova Z, Jesenak M, Banovcin P, Kuchta M. Beta-palmitate – a natural component of human milk in supplemental milk formulas. Nutr J. 2016;15:28.
25. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018;9:361. DOI:10.3389/fimmu.2018.00361
26. Borovik TE, Semenova NN, Lukoianova OL, et al. Effektivnost ispolzovaniia adaptirovannoi smesi na osnove kozego moloka v pitanii zdorovykh detei pervogo polugodiia zhizni: rezultaty mnogotsentrovogo prospektivnogo sravnitelnogo issledovaniia. Voprosy sovremennoi pediatrii. 2017;16(3):226-34 (in Russian)
27. Litmanovitz I, Bar-Yoseph F, Lifshitz Y, et al. Reduced crying in term infants fed high beta-palmitate formula: a double-blind randomized clinical trial. BMC Pediatr. 2014;14:152. DOI:10.1186/1471-2431-14-152
28. Kiseleva ES, Mokhova IuA. Grudnoe moloko i ego komponenty: vliianie na immunitet rebenka. Pediatriia. 2010;89(6):62-9 (in Russian)
29. Lukoianova OL. Grudnoe moloko kak etalonnaia model dlia sozdaniia detskikh molochnykh smesei. Voprosy sovremennoi pediatrii. 2012;11(4):111-5 (in Russian)
30. Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. J Agric Food Chem. 2018;66(45):11881-96. DOI:10.1021/acs.jafc.8b04031
31. Keshishian ES, Berdnikova EK. Nukleotidy v pitanii detei rannego vozrasta. Lechashchii vrach. 2004;1:53-4 (in Russian)
32. Baranov AA, Tutelian VA, Chumakova OV, et al. Nutrition optimization program for children aged 1 to 3 years in the Russian Federation. Metodicheskie rekomendatsii. Moscow, 2019 (in Russian)
33. Gribakin SG, Bokovskaia OA, Davydovskaia AA. Pitanie rebenka i immunitet: v pogone za idealom. Lechashchii vrach. 2013;8:72-6 (in Russian)
34. Dementeva IuN. Immunologicheskie aspekty grudnogo vskarmlivaniia. Ros. vestn. perinatol. i pediatr. 2015;4:19-24 (in Russian)
35. Merenkova SP. Fiziologicheskoe znachenie nutrientnogo sostava adaptirovannykh molochnykh smesei. Vestnik IuUrGU. 2013;1(1):56-62 (in Russian)
36. Linette P, Tao H, Hanneke B. Naturally high content of nucleotides in goat milk based infant formula. Abstracts of ESPGHAN 51st Annual Meeting, 2018; p. 1091.
37. Zakharova IN, Sugian NG, Glotova AP. Koze moloko v pitanii detei s funktsionalnymi narusheniiami zheludochno-kishechnogo trakta. Meditsinskii sovet. 2020;(18):103-9 (in Russian) DOI:10.21518/2079-701X-2020-18-103-109
38. Zakharova IN, Dmitrieva IuA, Iagodkin MV. Oligosakharidy grudnogo moloka: eshche odin shag na puti priblizheniia detskikh molochnykh smesei k "zolotomu standartu' vskarmlivaniia rebenka. Meditsinskii sovet. 2018;7:30-7 (in Russian) DOI:10.21518/2079-701X-2018-17-30-37
39. Donovan SM, Comstock SS. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. 2016;69 Suppl. 2(Suppl. 2):42-51.
DOI:10.1159/000452818
40. Johannesen SA, Beeren SR, Blank D, et al. Glycan analysis via derivatization with a fluorogenic pyrylium dye. Carbohydr Res. 2012;352:94-100. DOI:10.1016/j.carres.2012.02.016
41. Oganezova IA. Kishechnaia mikrobiota i immunitet: immunomoduliruiushchie effekty Lactobacillus rhamnosus GG. RMZh. 2018;26(9):39-44 (in Russian)
42. Pakhomovskaia NL, Venediktova MM. Vliianie mikrobioty rebenka pervogo goda zhizni na ego razvitie. Meditsinskii sovet. 2018;2:200-5 (in Russian) DOI:10.21518/2079-701X-2018-2-200-205
43. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015;77(1-2):229-35.
44. Mezoff EA, Hawkins JA, Ollberding NJ, et al. The human milk oligosaccharide 2'‑fucosyllactose augments the adaptive response to extensive intestinal resection. Am J Physiol Gastrointest Liver Physiol. 2016;310(6):G427-38.
45. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol. 2015;15:172.
46. Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014;9(7):e101692.
47. Steenhout P, Sperisen P, Martin F-P, et al. Term infant formula supplemented with human milk oligosaccharides (2'‑fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. FASEB J. 2016;30(Suppl. 1):275-7.
48. Zuurveld M, van Witzenburg NP, Garssen J, et al. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11:801. DOI:10.3389/fimmu.2020.00801
49. Meyrand M, Dallas DC, Caillat H, et al. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize as1-casein. Small Rumin Res. 2013;113(2‑3):411-20. DOI:10.1016/j.smallrumres.2013.03.014
50. Leong A, Liu Z, Almshawit H, et al. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr. 2019;122(4):441-9.
51. Daddaoua A, Puerta V, Requena P, et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr. 2006;136(3):672-6. DOI:10.1093/jn/136.3.672
52. Chen YL, Liao FH, Lin SH, Chien YW. A Prebiotic Formula Improves the Gastrointestinal Bacterial Flora in Toddlers. Gastroenterol Res Pract. 2016;2016:3504282.
53. Abramova TV, Pyreva EA, Toboleva MA, et al. Probiotik VV-12 v pitanii detei. Farmateka. 2016;15:90-5 (in Russian)
54. Ursova NI. Znachenie grudnogo vskarmlivaniia dlia rosta i razvitiia mladentsa. Al'manakh klinicheskoi meditsiny. 2015;42:23-37 (in Russian)
55. Tretiakova OS. Fiziologicheskaia rol zheleza v organizme cheloveka. Ditiachii lіkar. 2013;1(22):14-8 (in Russian)
56. Haschke F, Haiden N, Thakkar SK. Nutritive and Bioactive Proteins in Breast Milk by Ferdinand Haschke et al. Ann Nutr Metab. 2016;69(Suppl. 2):17-26.
57. Baqui AH, Black RE, El Arifeen S, et al. Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomized trial. BMJ. 2002;325(7372):1059.
58. Bahl R, Bhandari N, Saksena M, et al. Efficacy of zinc-fortified oral rehydration solution in 6- to 35-month-old children with acute diarrhea. J Pediatr. 2002;141(5):677-82.
59. Hoag KA, Nashold FE, Goverman J, Hayes CE. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigenpresenting cells. J Nutr. 2002;132(12):3736-9.
60. Geissmann F, Revy P, Brousse N, et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J Exp Med. 2003;198(4):623-34.
61. Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. J Nutr. 2003;133(5 Suppl. 1):1457S-9S.
62. Stuss M, Michalska-Kasiczak M, Sewerynek E. The role of selenium in thyroid gland pathophysiology. Endokrynol Pol. 2017;68(4):440-65. DOI:10.5603/EP.2017.0051
63. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):236. DOI:10.3390/nu12010236
64. Kondrateva EI, Barabash NA, Stankevich SS, et al. Vliianie mikroelementov na sostoianie zdorovia detei, nakhodiashchikhsia na razlichnykh vidakh vskarmlivaniia. Ros. vestn. perinatol. i pediatr. 2008;2:24-9 (in Russian)
65. Riumina II. Smesi na osnove koz'ego moloka pri vybore iskusstvennogo vskarmlivaniia novorozhdennogo i rebenka pervogo goda zhizni. Meditsinskii sovet. 2021;1:30-6 (in Russian) DOI:10.21518/2079-701X-2021-1-30-35
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*meleshkina.angel@mail.ru
________________________________________________
Angelina V. Meleshkina*, Natalia A. Geppe, Svetlana N. Chebysheva, Marina D. Velikoretskaia, Darima V. Dagbaeva
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*meleshkina.angel@mail.ru