Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Дефицит холина в организме, клинические проявления и отдаленные последствия
Дефицит холина в организме, клинические проявления и отдаленные последствия
Захарова И.Н., Бережная И.В., Сгибнева А.И. Дефицит холина в организме, клинические проявления и отдаленные последствия. Педиатрия. Consilium Medicum. 2022;1:66–71.
DOI: 10.26442/26586630.2022.1.201510
DOI: 10.26442/26586630.2022.1.201510
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Холин – вещество, необходимое для существования любого организма, является основой для синтеза фосфатидилхолина и сфингомиелина – двух основных фосфолипидов клеточных мембран. Ацетилхолин – основной нейротрансмиттер парасимпатической нервной системы, т.е. части вегетативной нервной системы. Он влияет на гладкую мускулатуру, тонус сосудистой стенки, сердечный ритм и регулирует метаболизм, являясь источником метильных групп. В организм холин поступает с пищей и частично синтезируется эндогенно. Холин играет важную роль в экспрессии генов, передаче сигналов клеточной мембраны, транспорте и метаболизме липидов, а также раннем развитии мозга ребенка. Дефицит холина повышает риск кардиоваскулярных и метаболических нарушений. Современные научные данные свидетельствуют о негативном влиянии дефицита холина на развитие неалкогольной жировой болезни печени. Недостаточность холина ассоциируется с нарушениями памяти, концентрации внимания, когнитивных функций. В данной статье рассмотрены механизмы влияния холина на организм и возможности коррекции его дефицита в организме.
Ключевые слова: ребенок, холин, фосфолипиды, ацетилхолин, кардиоваскулярные риски, неалкогольная жировая болезнь печени, фосфолипиды, Кидз (Kidz) сироп с холином
Keywords: child, choline, phospholipids, acetylcholine, cardiovascular risks, non-alcoholic fatty liver disease, phospholipids, Kidz choline syrup
Ключевые слова: ребенок, холин, фосфолипиды, ацетилхолин, кардиоваскулярные риски, неалкогольная жировая болезнь печени, фосфолипиды, Кидз (Kidz) сироп с холином
________________________________________________
Keywords: child, choline, phospholipids, acetylcholine, cardiovascular risks, non-alcoholic fatty liver disease, phospholipids, Kidz choline syrup
Полный текст
Список литературы
1. Наумов А.В. Роль нарушений процессов метилирования и обмена метионина в патогенезе заболеваний человека. Журнал ГрГМУ. 2007;1(1):4-7 [Naumov AV. Rol' narushenii protsessov metilirovaniia i obmena metionina v patogeneze zabolevanii cheloveka. Zhurnal GrGMU. 2007;1(1):4-7 (in Russian)].
2. Наумов А.В., Данильчик И.В., Сарана Ю.В. Три пути реметилирования гомоцистеина. Журнал ГрГМУ. 2016;2(54):27-2 [Naumov AV, Danil'chik IV, Sarana IuV. Tri puti remetilirovaniia gomotsisteina. Zhurnal GrGMU. 2016;2(54):27-2 (in Russian)].
3. Sebrell WH, Harris RS, Alam SQ. The vitamins. N. Y. – L.: Аcademic Press, 1971.
4. Strecker A. Üeber einige neue bestandtheile der schweinegalle. Justus Liebigs Ann Chem. 1862;123(3):353-60. DOI:10.1002/jlac.18621230310
5. Sourkes TL. The discovery of lecithin, the first phospholipid. Bulletin of History of Chemistry. 2004;29(1):9-15.
6. Da Costa KA, Niculescu MD, Craciunescu CN, et al. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88-94.
7. Филькин C.Ю., Липкин А.В., Федоров А.Н. Суперсемейство фосфолипаз: структура, функции и применение в биотехнологии. Структура, функции. Успехи биологической химии. 2020;60:369-410 [Fil'kin CIu, Lipkin AV, Fedorov AN. Supersemeistvo fosfolipaz: struktura, funktsii i primenenie v biotekhnologii. Struktura, funktsii. Uspekhi biologicheskoi khimii. 2020;60:369-410 (in Russian)].
8. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557-66.
9. Cho JH, Han JS. Phospholipase D and its essential role in cancer. Molecules and Cells. 2017;40:805.
10. Wonnacott S, Barik J. Nicotinic ACh receptors. Tocris Rev. 2007;28:1-20.
11. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721-33.
12. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.
13. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27.
14. Santos T, Mesquita R, Martins E, et al. Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc. 2003;29(1):41-51.
15. Söderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic α 7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP swe/PS1ΔE9 mice. Neurosci Let. 2011;487(3):325-9.
16. Макотрова Т.А. Роль α7 никотиновых ацетилхолиновых рецепторов в фармакотерапии нейродегенеративных заболеваний. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(10):57-9 [Makotrova TA. A role of alpha-7 nicotinic acetylcholine receptors in pharmacotherapy of neurodegenerative diseases. Zhurnal Nevrologii i psikhiatrii imeni S.S. Korsakova. 2012;112(10-2):57-9 (in Russian)].
17. Наумов А.В. Гомоцистеин. Медико-биологические проблемы. Минск, 2013 [Naumov AV. Gomocistein. Mediko-biologicheskie problemy. Minsk, 2013 (in Russian)].
18. Torshin IY. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. NY: Nova Biomedical Books, 2009.
19. Мичурова М.С., Калашников В.Ю., Смирнова О.М., и др. Роль эндотелиальных прогениторных клеток в развитии осложнений сахарного диабета. Сахарный диабет. 2015;1(1):24-32 [Michurova MC, Kalashnikov VYu, Smirnova OM, et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32 (in Russian)].
20. Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006;99(6):598-606.
21. Da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440-4.
22. Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
23. Atkinson W, Slow S, Elmslie J, et al. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis. 2009;19(11):767-73.
24. Biedermann L, Rogler G. Gut microbiota: its role in health and disease. Eur J Pediatr. 2015;174:151-67. DOI:10.1007/s00431-014-2476-2
25. МР 2.3.1.2432-08 о нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации от 18.12.2008 [MR 2.3.1.2432-08 on the norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation dated 12/18/2008 (in Russian)].
26. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: a neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019:1-20. DOI:10.1080/19390211.2019.1639875
27. Biswas S, Giri S. The importance of choline as an essential nutrient and its role in the prevention of various toxicoses. Prague Med Rep. 2015;116:5-15. DOI:10.14712/23362936.2015.40
28. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharm. 2018;175:1344-53. DOI:10.1111/bph.13959
29. Filiptsev B, Kojic J, Krul J, et al. Betaine in cereal grains and grain-based products. Food. 2018;7:49. DOI:10.3390/foods7040049
30. Caudill MA. Pre-and postnatal health: Evidence of increased choline needs. J Am Diet Assoc. 2010;110:1198-206. DOI:10.1016/j.jada.2010.05.009
31. Farias PM, Marcelino G, Santana LF, et al. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020;25:5630. DOI:10.3390/molecules25235630
32. Borge TC, Aase H, Brantsæter AL, et al. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7:e016777. DOI:10.1136/bmjopen-2017-016777
33. Banfleet CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal Choline Supplement Improves Baby's Sustained Attention: A 7-Year Follow-Up Randomized Controlled Feeding Trial. FASEB J. 2022;36:e22054. DOI:10.1096/fj.202101217R
34. Caudill MA, Strupp BJ, Muscalu L, et al. Maternal Choline Supplementation During the Third Trimester of Pregnancy Improves Infant Information Processing Speed: A Randomized, Double-Blind, Controlled Feeding Trial. FASEB J. 2018;32(4):2172-80.
35. Аведисова А.С. Терапия астенических состояний. Фармацевтический вестник. 2003;282:15-6 [Avedisova AS. Terapiia astenicheskikh sostoianii. Farmatsevticheskii vestnik. 2003;282:15-6 (in Russian)].
2. Naumov AV, Danil'chik IV, Sarana IuV. Tri puti remetilirovaniia gomotsisteina. Zhurnal GrGMU. 2016;2(54):27-2 (in Russian).
3. Sebrell WH, Harris RS, Alam SQ. The vitamins. N. Y. – L.: Аcademic Press, 1971.
4. Strecker A. Üeber einige neue bestandtheile der schweinegalle. Justus Liebigs Ann Chem. 1862;123(3):353-60. DOI:10.1002/jlac.18621230310
5. Sourkes TL. The discovery of lecithin, the first phospholipid. Bulletin of History of Chemistry. 2004;29(1):9-15.
6. Da Costa KA, Niculescu MD, Craciunescu CN, et al. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88-94.
7. Fil'kin CIu, Lipkin AV, Fedorov AN. Supersemeistvo fosfolipaz: struktura, funktsii i primenenie v biotekhnologii. Struktura, funktsii. Uspekhi biologicheskoi khimii. 2020;60:369-410 (in Russian).
8. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557-66.
9. Cho JH, Han JS. Phospholipase D and its essential role in cancer. Molecules and Cells. 2017;40:805.
10. Wonnacott S, Barik J. Nicotinic ACh receptors. Tocris Rev. 2007;28:1-20.
11. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721-33.
12. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.
13. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27.
14. Santos T, Mesquita R, Martins E, et al. Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc. 2003;29(1):41-51.
15. Söderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic α 7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP swe/PS1ΔE9 mice. Neurosci Let. 2011;487(3):325-9.
16. Makotrova TA. A role of alpha-7 nicotinic acetylcholine receptors in pharmacotherapy of neurodegenerative diseases. Zhurnal Nevrologii i psikhiatrii imeni S.S. Korsakova. 2012;112(10-2):57-9 (in Russian).
17. Naumov AV. Gomocistein. Mediko-biologicheskie problemy. Minsk, 2013 (in Russian).
18. Torshin IY. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. NY: Nova Biomedical Books, 2009.
19. Michurova MC, Kalashnikov VYu, Smirnova OM, et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32 (in Russian).
20. Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006;99(6):598-606.
21. Da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440-4.
22. Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
23. Atkinson W, Slow S, Elmslie J, et al. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis. 2009;19(11):767-73.
24. Biedermann L, Rogler G. Gut microbiota: its role in health and disease. Eur J Pediatr. 2015;174:151-67. DOI:10.1007/s00431-014-2476-2
25. MR 2.3.1.2432-08 on the norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation dated 12/18/2008 (in Russian).
26. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: a neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019:1-20. DOI:10.1080/19390211.2019.1639875
27. Biswas S, Giri S. The importance of choline as an essential nutrient and its role in the prevention of various toxicoses. Prague Med Rep. 2015;116:5-15. DOI:10.14712/23362936.2015.40
28. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharm. 2018;175:1344-53. DOI:10.1111/bph.13959
29. Filiptsev B, Kojic J, Krul J, et al. Betaine in cereal grains and grain-based products. Food. 2018;7:49. DOI:10.3390/foods7040049
30. Caudill MA. Pre-and postnatal health: Evidence of increased choline needs. J Am Diet Assoc. 2010;110:1198-206. DOI:10.1016/j.jada.2010.05.009
31. Farias PM, Marcelino G, Santana LF, et al. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020;25:5630. DOI:10.3390/molecules25235630
32. Borge TC, Aase H, Brantsæter AL, et al. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7:e016777. DOI:10.1136/bmjopen-2017-016777
33. Banfleet CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal Choline Supplement Improves Baby's Sustained Attention: A 7-Year Follow-Up Randomized Controlled Feeding Trial. FASEB J. 2022;36:e22054. DOI:10.1096/fj.202101217R
34. Caudill MA, Strupp BJ, Muscalu L, et al. Maternal Choline Supplementation During the Third Trimester of Pregnancy Improves Infant Information Processing Speed: A Randomized, Double-Blind, Controlled Feeding Trial. FASEB J. 2018;32(4):2172-80.
35. Аведисова А.С. Терапия астенических состояний. Фармацевтический вестник. 2003;282:15-6 [Avedisova AS. Terapiia astenicheskikh sostoianii. Farmatsevticheskii vestnik. 2003;282:15-6 (in Russian)].
2. Наумов А.В., Данильчик И.В., Сарана Ю.В. Три пути реметилирования гомоцистеина. Журнал ГрГМУ. 2016;2(54):27-2 [Naumov AV, Danil'chik IV, Sarana IuV. Tri puti remetilirovaniia gomotsisteina. Zhurnal GrGMU. 2016;2(54):27-2 (in Russian)].
3. Sebrell WH, Harris RS, Alam SQ. The vitamins. N. Y. – L.: Аcademic Press, 1971.
4. Strecker A. Üeber einige neue bestandtheile der schweinegalle. Justus Liebigs Ann Chem. 1862;123(3):353-60. DOI:10.1002/jlac.18621230310
5. Sourkes TL. The discovery of lecithin, the first phospholipid. Bulletin of History of Chemistry. 2004;29(1):9-15.
6. Da Costa KA, Niculescu MD, Craciunescu CN, et al. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88-94.
7. Филькин C.Ю., Липкин А.В., Федоров А.Н. Суперсемейство фосфолипаз: структура, функции и применение в биотехнологии. Структура, функции. Успехи биологической химии. 2020;60:369-410 [Fil'kin CIu, Lipkin AV, Fedorov AN. Supersemeistvo fosfolipaz: struktura, funktsii i primenenie v biotekhnologii. Struktura, funktsii. Uspekhi biologicheskoi khimii. 2020;60:369-410 (in Russian)].
8. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557-66.
9. Cho JH, Han JS. Phospholipase D and its essential role in cancer. Molecules and Cells. 2017;40:805.
10. Wonnacott S, Barik J. Nicotinic ACh receptors. Tocris Rev. 2007;28:1-20.
11. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721-33.
12. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.
13. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27.
14. Santos T, Mesquita R, Martins E, et al. Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc. 2003;29(1):41-51.
15. Söderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic α 7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP swe/PS1ΔE9 mice. Neurosci Let. 2011;487(3):325-9.
16. Макотрова Т.А. Роль α7 никотиновых ацетилхолиновых рецепторов в фармакотерапии нейродегенеративных заболеваний. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(10):57-9 [Makotrova TA. A role of alpha-7 nicotinic acetylcholine receptors in pharmacotherapy of neurodegenerative diseases. Zhurnal Nevrologii i psikhiatrii imeni S.S. Korsakova. 2012;112(10-2):57-9 (in Russian)].
17. Наумов А.В. Гомоцистеин. Медико-биологические проблемы. Минск, 2013 [Naumov AV. Gomocistein. Mediko-biologicheskie problemy. Minsk, 2013 (in Russian)].
18. Torshin IY. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. NY: Nova Biomedical Books, 2009.
19. Мичурова М.С., Калашников В.Ю., Смирнова О.М., и др. Роль эндотелиальных прогениторных клеток в развитии осложнений сахарного диабета. Сахарный диабет. 2015;1(1):24-32 [Michurova MC, Kalashnikov VYu, Smirnova OM, et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32 (in Russian)].
20. Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006;99(6):598-606.
21. Da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440-4.
22. Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
23. Atkinson W, Slow S, Elmslie J, et al. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis. 2009;19(11):767-73.
24. Biedermann L, Rogler G. Gut microbiota: its role in health and disease. Eur J Pediatr. 2015;174:151-67. DOI:10.1007/s00431-014-2476-2
25. МР 2.3.1.2432-08 о нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации от 18.12.2008 [MR 2.3.1.2432-08 on the norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation dated 12/18/2008 (in Russian)].
26. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: a neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019:1-20. DOI:10.1080/19390211.2019.1639875
27. Biswas S, Giri S. The importance of choline as an essential nutrient and its role in the prevention of various toxicoses. Prague Med Rep. 2015;116:5-15. DOI:10.14712/23362936.2015.40
28. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharm. 2018;175:1344-53. DOI:10.1111/bph.13959
29. Filiptsev B, Kojic J, Krul J, et al. Betaine in cereal grains and grain-based products. Food. 2018;7:49. DOI:10.3390/foods7040049
30. Caudill MA. Pre-and postnatal health: Evidence of increased choline needs. J Am Diet Assoc. 2010;110:1198-206. DOI:10.1016/j.jada.2010.05.009
31. Farias PM, Marcelino G, Santana LF, et al. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020;25:5630. DOI:10.3390/molecules25235630
32. Borge TC, Aase H, Brantsæter AL, et al. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7:e016777. DOI:10.1136/bmjopen-2017-016777
33. Banfleet CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal Choline Supplement Improves Baby's Sustained Attention: A 7-Year Follow-Up Randomized Controlled Feeding Trial. FASEB J. 2022;36:e22054. DOI:10.1096/fj.202101217R
34. Caudill MA, Strupp BJ, Muscalu L, et al. Maternal Choline Supplementation During the Third Trimester of Pregnancy Improves Infant Information Processing Speed: A Randomized, Double-Blind, Controlled Feeding Trial. FASEB J. 2018;32(4):2172-80.
35. Аведисова А.С. Терапия астенических состояний. Фармацевтический вестник. 2003;282:15-6 [Avedisova AS. Terapiia astenicheskikh sostoianii. Farmatsevticheskii vestnik. 2003;282:15-6 (in Russian)].
________________________________________________
2. Naumov AV, Danil'chik IV, Sarana IuV. Tri puti remetilirovaniia gomotsisteina. Zhurnal GrGMU. 2016;2(54):27-2 (in Russian).
3. Sebrell WH, Harris RS, Alam SQ. The vitamins. N. Y. – L.: Аcademic Press, 1971.
4. Strecker A. Üeber einige neue bestandtheile der schweinegalle. Justus Liebigs Ann Chem. 1862;123(3):353-60. DOI:10.1002/jlac.18621230310
5. Sourkes TL. The discovery of lecithin, the first phospholipid. Bulletin of History of Chemistry. 2004;29(1):9-15.
6. Da Costa KA, Niculescu MD, Craciunescu CN, et al. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88-94.
7. Fil'kin CIu, Lipkin AV, Fedorov AN. Supersemeistvo fosfolipaz: struktura, funktsii i primenenie v biotekhnologii. Struktura, funktsii. Uspekhi biologicheskoi khimii. 2020;60:369-410 (in Russian).
8. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557-66.
9. Cho JH, Han JS. Phospholipase D and its essential role in cancer. Molecules and Cells. 2017;40:805.
10. Wonnacott S, Barik J. Nicotinic ACh receptors. Tocris Rev. 2007;28:1-20.
11. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721-33.
12. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558-71.
13. Carvalho FA, Mesquita R, Martins-Silva J, Saldanha C. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J Appl Toxicol. 2004;24(6):419-27.
14. Santos T, Mesquita R, Martins E, et al. Effects of choline on hemorheological properties and NO metabolism of human erythrocytes. Clin Hemorheol Microcirc. 2003;29(1):41-51.
15. Söderman A, Mikkelsen JD, West MJ, et al. Activation of nicotinic α 7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP swe/PS1ΔE9 mice. Neurosci Let. 2011;487(3):325-9.
16. Makotrova TA. A role of alpha-7 nicotinic acetylcholine receptors in pharmacotherapy of neurodegenerative diseases. Zhurnal Nevrologii i psikhiatrii imeni S.S. Korsakova. 2012;112(10-2):57-9 (in Russian).
17. Naumov AV. Gomocistein. Mediko-biologicheskie problemy. Minsk, 2013 (in Russian).
18. Torshin IY. Bioinformatics in the post-genomic era: sensing the change from molecular genetics to personalized medicine. NY: Nova Biomedical Books, 2009.
19. Michurova MC, Kalashnikov VYu, Smirnova OM, et al. Endothelial progenitor cells in diabetes complications. Diabetes mellitus. 2015;18(1):24-32 (in Russian).
20. Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006;99(6):598-606.
21. Da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440-4.
22. Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
23. Atkinson W, Slow S, Elmslie J, et al. Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis. 2009;19(11):767-73.
24. Biedermann L, Rogler G. Gut microbiota: its role in health and disease. Eur J Pediatr. 2015;174:151-67. DOI:10.1007/s00431-014-2476-2
25. MR 2.3.1.2432-08 on the norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation dated 12/18/2008 (in Russian).
26. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: a neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019:1-20. DOI:10.1080/19390211.2019.1639875
27. Biswas S, Giri S. The importance of choline as an essential nutrient and its role in the prevention of various toxicoses. Prague Med Rep. 2015;116:5-15. DOI:10.14712/23362936.2015.40
28. Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharm. 2018;175:1344-53. DOI:10.1111/bph.13959
29. Filiptsev B, Kojic J, Krul J, et al. Betaine in cereal grains and grain-based products. Food. 2018;7:49. DOI:10.3390/foods7040049
30. Caudill MA. Pre-and postnatal health: Evidence of increased choline needs. J Am Diet Assoc. 2010;110:1198-206. DOI:10.1016/j.jada.2010.05.009
31. Farias PM, Marcelino G, Santana LF, et al. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020;25:5630. DOI:10.3390/molecules25235630
32. Borge TC, Aase H, Brantsæter AL, et al. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7:e016777. DOI:10.1136/bmjopen-2017-016777
33. Banfleet CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal Choline Supplement Improves Baby's Sustained Attention: A 7-Year Follow-Up Randomized Controlled Feeding Trial. FASEB J. 2022;36:e22054. DOI:10.1096/fj.202101217R
34. Caudill MA, Strupp BJ, Muscalu L, et al. Maternal Choline Supplementation During the Third Trimester of Pregnancy Improves Infant Information Processing Speed: A Randomized, Double-Blind, Controlled Feeding Trial. FASEB J. 2018;32(4):2172-80.
35. Аведисова А.С. Терапия астенических состояний. Фармацевтический вестник. 2003;282:15-6 [Avedisova AS. Terapiia astenicheskikh sostoianii. Farmatsevticheskii vestnik. 2003;282:15-6 (in Russian)].
Авторы
И.Н. Захарова*, И.В. Бережная, А.И. Сгибнева
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*zakharova-rmapo@yandex.ru
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*zakharova-rmapo@yandex.ru
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*zakharova-rmapo@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
