Актуальность. Первичная цилиарная дискинезия (ПЦД) является орфанным заболеванием, установление диагноза затруднительно, так как отсутствует «золотой стандарт» диагностики. Цель. Клиническая, лабораторно-инструментальная, генетическая характеристика ПЦД у детей. Материалы и методы. С 2009 по 2024 г. в рамках многоцентрового амбиспективного открытого описательного пилотного лонгитудинального исследования наблюдался 31 больной с генетически подтвержденным диагнозом ПЦД. Методы обследования: клинико-анамнестический метод, рентгенологическое исследование и компьютерная томография органов грудной клетки и околоносовых пазух, трахеобронхоскопия, посевы мокроты/аспиратов трахеобронхиального дерева с определением чувствительности к антибиотикам, трансмиссионная электронная микроскопия, высокоскоростная видеомикроскопия реснитчатого эпителия, цитологическое исследование бронхоальвеолярного лаважа, мониторинговая компьютерная пульсоксиметрия, эхокардиография, аудиометрия, спирометрия с бронхолитической пробой. Результаты. В неонатальный период респираторные симптомы имеют 80% детей с ПЦД, дефекты латерализации – 35%, врожденные пороки сердца – 13%, бронхоэктазы – 68%, гнойный эндобронхит – 62%, круглогодичный ринит – 84%, тугоухость, отиты – 65%. Средний возраст дебюта симптомов составил 1 [1; 1] нед, а верификации диагноза – 6 [2,5; 8] лет. Основными возбудителями хронической респираторной инфекции при ПЦД являются Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus. Наиболее частой причиной ПЦД явились биаллельные варианты гена DNAH5. Заключение. Диагностика ПЦД должна быть основана на применении максимального числа диагностических тестов.
Background. Primary ciliary dyskinesia (PCD) is an orphan disease, and diagnosis is difficult because there is no gold standard for diagnosis. Aim. Clinical, laboratory-instrumental, genetic characteristics of PCD in children. Materials and methods. From 2009 to 2024, 31 patients with a genetically confirmed diagnosis of PCD were observed as part of a multicenter, open-ended, descriptive pilot longitudinal study. Examination methods: clinical and anamnestic method; X-ray examination and computed tomography of the chest organs and paranasal sinuses, tracheobronchoscopy; sputum/aspirate cultures of the tracheobroncheal tree with determination of sensitivity to antibiotics; transmission electron microscopy, high-speed video microscopy of the ciliated epithelium, cytological examination of bronchoalveolar lavage; monitoring computer pulse oximetry, echocardiography, audiometry, spirometry with bronchodilator test. Results. Respiratory symptoms in the neonatal period have 80% of children with PCD, lateralization defects – 35%, congenital heart defects – 13%, bronchiectasis – 68%, purulent endobronchitis – 62%, year-round rhinitis – 84%, hearing loss, otitis – 65%. The average age of onset of symptoms was 1 [1; 1] weeks, and the verification of diagnosis was 6 [2,5; 8] years. The main pathogens of chronic respiratory infection with PCD are Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus. The most common cause of PCD was biallelic variants of the DNAH5 gene. Conclusion. The diagnosis of PCD should be based on the application of the maximum number of diagnostic tests.
1. Cleveland M. Situs inversus viscerum: an anatomic study. Arch Surg. 1926;13(3):343-68. DOI:10.1001/ARCHSURG.1926.01130090042003
2. Baillie M. Account of a remarkable transposition of the viscera. Lond Med J. 1789;10(Pt. 2):178-97. PMID:29140050
3. Siewert A. Über einen Fall von Bronchiectasie bei einem Patienten mit situs inversus viscerum. Berliner Klinische Wochenschrift. 1904;41:139-41.
4. Kartagener M. Zur Pathogenese der Bronchiektasien. I. Mitteilung: Bronchiektasien bei Situs viscerum inversus. Beiträge zur Klinik der Tuberkulose. 1933;83(4):489-501. DOI:10.1007/BF02141468
5. Kartagener M, Stucki P. Bronchiectasis with situs inversus. Arch Pediatr. 1962; 79:193-207. PMID:14454074
6. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317-9. DOI:10.1126/science.1084576
7. Фролов П.А., Колганова Н.И., Овсянников Д.Ю., и др. Возможности ранней диагностики первичной цилиарной дискинезии. Педиатрия. Журнал им. Г.Н. Сперанского. 2022;101(1):107-14 [Frolov PA, Kolganova NI, Ovsyannikov DYu, et al. Possibilities of early diagnosis of primary ciliary dyskinesia. Pediatria n.a. G.N. Speransky. 2022;101(1):107-14 (in Russian)]. DOI:10.24110/0031-403X-2022-101-1-107-114
8. Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J. 2020;55(4):1900725. DOI:10.1183/13993003.00725-2019
9. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423-50. DOI:10.1146/annurev.physiol.69.040705.141301
10. Wallmeier J, Frank D, Shoemark A, et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 2019;105(5):1030-39. DOI:10.1016/j.ajhg.2019.09.022
11. Paff T, Loges NT, Aprea I, et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet. 2017;100(1):160-8. DOI:10.1016/j.ajhg.2016.11.019
12. Стрельникова В.А., Цверава А.Г., Овсянников Д.Ю., и др. Первичная цилиарная дискинезия у ребенка с синдромом Симпсона–Голаби–Бемеля II типа вследствие мутации гена OFD1. Пульмонология. 2023;33(2):259-65 [Strelnikova VA, Tsverava AG, Ovsyannikov DYu, et al. Primary ciliary dyskinesia in a child with type II Simpson–Golabi–Bemel syndrome due to OFD1 gene mutation. Pulmonologiya. 2023;33(2):259-65 (in Russian)]. DOI:10.18093/0869-0189-2023-33-2-259-265
13. Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the geno- mics age. Lancet Respir Med. 2020;8(2):202-16. DOI:10.1016/S2213-2600(19)30374-1
14. Pioch CO, Connell DW, Shoemark A. Primary ciliary dyskinesia and bronchiectasis: New data and future challenges. Arch Bronconeumol. 2023;59(3):134-6. DOI:10.1016/j.arbres.2022.12.001
15. Horani A, Ferkol TW. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr. 2021;230:15-22.e1. DOI:10.1016/j.jpeds.2020.11.040
16. Pifferi M, Michelucci A, Conidi ME, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J. 2010;35(6):1413-6. DOI:10.1183/09031936.00186209
17. Behan L, Dimitrov BD, Kuehni CE, et al. PICADAR: A diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J. 2016;47(4):1103-12. DOI:10.1183/13993003.01551-2015
18. Xia H, Huang X, Deng S, et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS One. 2021;16(6):e0252786. DOI:10.1371/journal.pone.0252786
19. Chau JFT, Lee M, Chui MMC, et al. Functional evaluation and genetic landscape of children and young adults referred for assessment of bronchiectasis. Front Genet. 2022;13:933381. DOI:10.3389/fgene.2022.933381
20. Olm MAK, Marson FAL, Athanazio RA, et al. Severe pulmonary disease in an adult primary ciliary dyskinesia population in Brazil. Sci Rep. 2019;9(1):8693.
DOI:10.1038/s41598-019-45017-1
21. Toro MDC, Ribeiro JD, Marson FAL, et al. Challenges in diagnosing primary ciliary dyskinesia in a Brazilian Tertiary Hospital. Genes (Basel). 2022;13(7):1252. DOI:10.3390/genes13071252
22. Leslie JS, Rawlins LE, Chioza BA, et al. MNS1 variant associated with situs inversus and male infertility. Eur J Hum Genet. 2020;28(1):50-5. DOI:10.1038/s41431-019-0489-z
23. Ferkol TW, Puffenberger EG, Lie H, et al. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities. J Pediatr. 2013;163(2):383-7. DOI:10.1016/j.jpeds.2013.01.061
24. Li Y, Yagi H, Onuoha EO, et al. DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet. 2016;12(2):e1005821. DOI:10.1371/journal.pgen.1005821
25. Shi Y, Lei Q, Han Q. Dual-allele heterozygous mutation of DNAH5 gene in a boy with primary ciliary dyskinesia: A case report. Medicine (Baltimore). 2023;102(52):e36271. DOI:10.1097/MD.0000000000036271
26. Hou YC, Yu HC, Martin R, et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc Natl Acad Sci USA. 2020;117(6):3053-62. DOI:10.1073/pnas.1909378117
27. Quinlan-Jones E, Lord J, Williams D, et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet Med. 2019;21(5):1065-73. DOI:10.1038/s41436-018-0298-8
28. Alhalabi O, Abdulwahab A, Thomas M. The first case of a homozygous CCNO NM 021147.4 mutation associated with primary ciliary dyskinesia in two Indian siblings. Cureus. 2024;16(1):e52237. DOI:10.7759/cureus.52237
29. Xu Y, Ueda K, Nishikido T, et al. Two Japanese pediatric patients with primary ciliary dyskinesia caused by loss-of-function variants in the CCNO gene. Cureus. 2024;16(4):e58854. DOI:10.7759/cureus.58854
30. Dabrowski M, Bukowy-Bieryllo Z, Jackson CL, Zietkiewicz E. Properties of non-aminoglycoside compounds used to stimulate translational readthrough of PTC mutations in primary ciliary dyskinesia. Int J Mol Sci. 2021;22(9):4923. DOI:10.3390/ijms22094923
31. Seidel F, Laser KT, Klingel K, et al. Pathogenic variants in cardiomyopathy disorder genes underlie pediatric myocarditis-further impact of heterozygous immune disorder gene variants? J Cardiovasc Dev Dis. 2022;9(7):216. DOI:10.3390/jcdd9070216
32. Николаева Е.Д., Овсянников Д.Ю., Стрельникова В.А., и др. Характеристика пациентов с первичной цилиарной дискинезией. Пульмонология. 2023;33(2):198-209 [Nikolaeva ED, Ovsyannikov DYu, Strel’nikova VA, et al. Characteristics of patients with primary ciliary dyskinesia. Pulmonologiya. 2023;33(2):198-209 (in Russian)].
DOI:10.18093/0869-0189-2023-33-2-198-209
33. Aghamir SMK, Roudgari H, Heidari H, et al. Whole exome sequencing to find candidate variants for the prediction of kidney transplantation efficacy. Genes (Basel). 2023;14(6):1251. DOI:10.3390/genes14061251
34. Thomas B, Mahmoud RF, Rüdiger S, et al. HYDIN variants cause primary ciliary dyskinesia in the Finnish population. MedRxiv. 2024;05(28):24307879. DOI:10.1101/2024.05.28.24307879
35. Buratti E, Chivers M, Královicová J, et al. Aberrant 5’ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007;35(13):4250-63. DOI:10.1093/nar/gkm402
36. Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436. DOI:10.1371/journal.pone.0059436
37. Zariwala MA, Gee HY, Kurkowiak M, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336-45. DOI:10.1016/j.ajhg.2013.06.007
38. Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1601090. DOI:10.1183/13993003.01090-2016
39. Баранов А.А., Намазова-Баранова Л.С., Вишнева Е.А., и др. Первичная цилиарная дискинезия у детей. Педиатрическая фармакология. 2018;15(1):20-31 [Baranov AA, Namazova-Baranova LS, Vishneva EA Primary ciliary dyskinesia in children. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2018;15(1):20-31 (in Russian)]. DOI:10.15690/pf.v15i1.1840
40. Shapiro AJ, Davis SD, Polineni D, et al. Diagnosis of primary ciliary dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;197(12):e24-39. DOI:10.1164/rccm.201805-0819ST
41. Фролов П.А., Жесткова М.А., Овсянников Д.Ю., и др. Бронхоэктазы, не связанные с муковисцидозом, у детей: этиологическая структура, клинико-лабораторная и компьютерно-томографическая характеристика. Педиатрия. Consilium Medicum. 2022;2:166-73 [Frolov PA, Zhestkova MA, Ovsyannikov DYu, et al. Non cystic fibrosis-related bronchiectasis in children: Etiological structure, clinical and laboratory and computed tomographic characteristics. Pediatrics. Consilium Medicum. 2022;2:166-73 (in Russian)]. DOI:10.26442/26586630.2022.2.201679
42. Баранов А.А., Капранов Н.И., Каширская Н.Ю., и др. Проблемы диагностики муковисцидоза и пути их решения в России. Педиатрическая фармакология.
2014;11(6):16-23 [Baranov AA, Kapranov NI, Kashirskaya NYu, et al. Diagnostic problems of mucoviscidosis and ways of solution in Russia. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2014;11(6):16-23 (in Russian)].
43. Савостьянов К.В. Современные алгоритмы генетической диагностики редких наследственных болезней у российских пациентов. Информационные материалы. М.: Полиграфист и издатель, 2022 [Savost’ianov K.V. Sovremennye algoritmy geneticheskoi diagnostiki redkikh nasledstvennykh boleznei u rossiiskikh patsientov. Informatsionnye materialy. Moscow: Poligrafist i izdatel’, 2022 (in Russian)]. EDN RDUZGH
________________________________________________
1. Cleveland M. Situs inversus viscerum: an anatomic study. Arch Surg. 1926;13(3):343-68. DOI:10.1001/ARCHSURG.1926.01130090042003
2. Baillie M. Account of a remarkable transposition of the viscera. Lond Med J. 1789;10(Pt. 2):178-97. PMID:29140050
3. Siewert A. Über einen Fall von Bronchiectasie bei einem Patienten mit situs inversus viscerum. Berliner Klinische Wochenschrift. 1904;41:139-41.
4. Kartagener M. Zur Pathogenese der Bronchiektasien. I. Mitteilung: Bronchiektasien bei Situs viscerum inversus. Beiträge zur Klinik der Tuberkulose. 1933;83(4):489-501. DOI:10.1007/BF02141468
5. Kartagener M, Stucki P. Bronchiectasis with situs inversus. Arch Pediatr. 1962; 79:193-207. PMID:14454074
6. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317-9. DOI:10.1126/science.1084576
7. Frolov PA, Kolganova NI, Ovsyannikov DYu, et al. Possibilities of early diagnosis of primary ciliary dyskinesia. Pediatria n.a. G.N. Speransky. 2022;101(1):107-14 (in Russian). DOI:10.24110/0031-403X-2022-101-1-107-114
8. Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J. 2020;55(4):1900725. DOI:10.1183/13993003.00725-2019
9. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423-50. DOI:10.1146/annurev.physiol.69.040705.141301
10. Wallmeier J, Frank D, Shoemark A, et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 2019;105(5):1030-39. DOI:10.1016/j.ajhg.2019.09.022
11. Paff T, Loges NT, Aprea I, et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet. 2017;100(1):160-8. DOI:10.1016/j.ajhg.2016.11.019
12. Strelnikova VA, Tsverava AG, Ovsyannikov DYu, et al. Primary ciliary dyskinesia in a child with type II Simpson–Golabi–Bemel syndrome due to OFD1 gene mutation. Pulmonologiya. 2023;33(2):259-65 (in Russian). DOI:10.18093/0869-0189-2023-33-2-259-265
13. Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the geno- mics age. Lancet Respir Med. 2020;8(2):202-16. DOI:10.1016/S2213-2600(19)30374-1
14. Pioch CO, Connell DW, Shoemark A. Primary ciliary dyskinesia and bronchiectasis: New data and future challenges. Arch Bronconeumol. 2023;59(3):134-6. DOI:10.1016/j.arbres.2022.12.001
15. Horani A, Ferkol TW. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr. 2021;230:15-22.e1. DOI:10.1016/j.jpeds.2020.11.040
16. Pifferi M, Michelucci A, Conidi ME, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J. 2010;35(6):1413-6. DOI:10.1183/09031936.00186209
17. Behan L, Dimitrov BD, Kuehni CE, et al. PICADAR: A diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J. 2016;47(4):1103-12. DOI:10.1183/13993003.01551-2015
18. Xia H, Huang X, Deng S, et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS One. 2021;16(6):e0252786. DOI:10.1371/journal.pone.0252786
19. Chau JFT, Lee M, Chui MMC, et al. Functional evaluation and genetic landscape of children and young adults referred for assessment of bronchiectasis. Front Genet. 2022;13:933381. DOI:10.3389/fgene.2022.933381
20. Olm MAK, Marson FAL, Athanazio RA, et al. Severe pulmonary disease in an adult primary ciliary dyskinesia population in Brazil. Sci Rep. 2019;9(1):8693.
DOI:10.1038/s41598-019-45017-1
21. Toro MDC, Ribeiro JD, Marson FAL, et al. Challenges in diagnosing primary ciliary dyskinesia in a Brazilian Tertiary Hospital. Genes (Basel). 2022;13(7):1252. DOI:10.3390/genes13071252
22. Leslie JS, Rawlins LE, Chioza BA, et al. MNS1 variant associated with situs inversus and male infertility. Eur J Hum Genet. 2020;28(1):50-5. DOI:10.1038/s41431-019-0489-z
23. Ferkol TW, Puffenberger EG, Lie H, et al. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities. J Pediatr. 2013;163(2):383-7. DOI:10.1016/j.jpeds.2013.01.061
24. Li Y, Yagi H, Onuoha EO, et al. DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet. 2016;12(2):e1005821. DOI:10.1371/journal.pgen.1005821
25. Shi Y, Lei Q, Han Q. Dual-allele heterozygous mutation of DNAH5 gene in a boy with primary ciliary dyskinesia: A case report. Medicine (Baltimore). 2023;102(52):e36271. DOI:10.1097/MD.0000000000036271
26. Hou YC, Yu HC, Martin R, et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc Natl Acad Sci USA. 2020;117(6):3053-62. DOI:10.1073/pnas.1909378117
27. Quinlan-Jones E, Lord J, Williams D, et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet Med. 2019;21(5):1065-73. DOI:10.1038/s41436-018-0298-8
28. Alhalabi O, Abdulwahab A, Thomas M. The first case of a homozygous CCNO NM 021147.4 mutation associated with primary ciliary dyskinesia in two Indian siblings. Cureus. 2024;16(1):e52237. DOI:10.7759/cureus.52237
29. Xu Y, Ueda K, Nishikido T, et al. Two Japanese pediatric patients with primary ciliary dyskinesia caused by loss-of-function variants in the CCNO gene. Cureus. 2024;16(4):e58854. DOI:10.7759/cureus.58854
30. Dabrowski M, Bukowy-Bieryllo Z, Jackson CL, Zietkiewicz E. Properties of non-aminoglycoside compounds used to stimulate translational readthrough of PTC mutations in primary ciliary dyskinesia. Int J Mol Sci. 2021;22(9):4923. DOI:10.3390/ijms22094923
31. Seidel F, Laser KT, Klingel K, et al. Pathogenic variants in cardiomyopathy disorder genes underlie pediatric myocarditis-further impact of heterozygous immune disorder gene variants? J Cardiovasc Dev Dis. 2022;9(7):216. DOI:10.3390/jcdd9070216
32. Nikolaeva ED, Ovsyannikov DYu, Strel’nikova VA, et al. Characteristics of patients with primary ciliary dyskinesia. Pulmonologiya. 2023;33(2):198-209 (in Russian). DOI:10.18093/0869-0189-2023-33-2-198-209
33. Aghamir SMK, Roudgari H, Heidari H, et al. Whole exome sequencing to find candidate variants for the prediction of kidney transplantation efficacy. Genes (Basel). 2023;14(6):1251. DOI:10.3390/genes14061251
34. Thomas B, Mahmoud RF, Rüdiger S, et al. HYDIN variants cause primary ciliary dyskinesia in the Finnish population. MedRxiv. 2024;05(28):24307879. DOI:10.1101/2024.05.28.24307879
35. Buratti E, Chivers M, Královicová J, et al. Aberrant 5’ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007;35(13):4250-63. DOI:10.1093/nar/gkm402
36. Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436. DOI:10.1371/journal.pone.0059436
37. Zariwala MA, Gee HY, Kurkowiak M, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336-45. DOI:10.1016/j.ajhg.2013.06.007
38. Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1601090. DOI:10.1183/13993003.01090-2016
39. Baranov AA, Namazova-Baranova LS, Vishneva EA Primary ciliary dyskinesia in children. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2018;15(1):20-31 (in Russian). DOI:10.15690/pf.v15i1.1840
40. Shapiro AJ, Davis SD, Polineni D, et al. Diagnosis of primary ciliary dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;197(12):e24-39. DOI:10.1164/rccm.201805-0819ST
41. Frolov PA, Zhestkova MA, Ovsyannikov DYu, et al. Non cystic fibrosis-related bronchiectasis in children: Etiological structure, clinical and laboratory and computed tomographic characteristics. Pediatrics. Consilium Medicum. 2022;2:166-73 (in Russian). DOI:10.26442/26586630.2022.2.201679
42. Baranov AA, Kapranov NI, Kashirskaya NYu, et al. Diagnostic problems of mucoviscidosis and ways of solution in Russia. Pediatricheskaya farmakologiya=Pediatric pharmacology. 2014;11(6):16-23 (in Russian).
43. Savost’ianov K.V. Sovremennye algoritmy geneticheskoi diagnostiki redkikh nasledstvennykh boleznei u rossiiskikh patsientov. Informatsionnye materialy. Moscow: Poligrafist i izdatel’, 2022 (in Russian). EDN RDUZGH
1ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», Москва, Россия; 2ГБУЗ «Морозовская детская городская клиническая больница» Департамента здравоохранения г. Москвы, Москва, Россия; 3ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Минздрава России, Москва, Россия; 4ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 5ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия; 6ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова», Москва, Россия; 7ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия; 8ГБУЗ «Московский областной консультативно-диагностический центр для детей» Минздрава Московской области, Мытищи, Россия; 9ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России, Санкт-Петербург, Россия; 10ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, Санкт-Петербург, Россия
*doc.strelnikova@mail.ru
________________________________________________
Valeriia А. Strelnikova*1,2, Dmitriy Yu. Ovsyannikov1,2, Alexander А. Pushkov3, Maxim I. Ayrapetyan4,5, Elizaveta E. Bragina6,7, Sergey А. Bulynko2, Anna Iu. Voronkova6,8, Valerii V. Gorev2, Nikolay K. Grigoriadis2, Tatiana А. Gutyrchik2, Evgenia V. Deeva2, Svetlana V. Zhilina2, Maxim A. Karpenko1,2, Nataliya I. Kolganova1,2, Olga B. Kondakova3, Evgeny L. Laberko2, Oleg G. Malyshev1, Elina А. Nafanailova2, Alina S. Reminnaia2, Olga I. Simonova2–4, Natalia А. Sokolova2,5, Svetlana V. Starevskaia9,10, Oleg G. Topilin2, Anna G. Tsverava2, Irina О. Shmeleva9,10, Yuliya F. Shubina2,5, Tatiana I. Iushina2, Kirill V. Savost’anov3
1Patrice Lumumba Peoples’ Friendship University of Russia, Moscow, Russia; 2Morozov Children’s City Clinical Hospital, Moscow, Russia; 3National Medical Research Center for Children’s Health, Moscow, Russia; 4Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 5Pirogov Russian National Research Medical University, Moscow, Russia; 6Bochkov Research Centre for Medical Genetics, Moscow, Russia; 7Lomonosov Moscow State University, Moscow, Russia; 8Moscow Regional Consultative and Diagnostic Center for Children, Mytishchi, Russia; 9Saint Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russia; 10Mechnikov North-Western State Medical University, Saint Petersburg, Russia
*doc.strelnikova@mail.ru