Антибиотик-ассоциированный дисбиоз – это нарушение кишечной микробиоты, вызванное применением антибиотиков, что может способствовать развитию антибиотик-ассоциированной диареи и других осложнений. Нарушение ранее стабильной, функционально полноценной микробиоты может привести к неблагоприятным последствиям для здоровья как в краткосрочной, так и в долгосрочной перспективе с потенциальным увеличением риска возникновения различных неинфекционных заболеваний, а также неврологических, поведенческих и психологических расстройств. Современные стратегии восстановления микробиоты включают применение специфических пробиотиков, таких как Saccharomyces boulardii CNCM I-745 и Lactobacillus rhamnosus GG. Систематические обзоры и метаанализы клинических исследований подтверждают штамм-специфическую эффективность данных пробиотиков при лечении и профилактике антибиотик-ассоциированной диареи как у детей, так и у взрослых, а также демонстрируют, что своевременное назначение пробиотика в адекватной дозе (с 1-го дня антибактериальной терапии) может помочь предотвратить или устранить последствия антибиотик-ассоциированного дисбиоза и способствовать сохранению устойчивости кишечной микробиоты, возвращая ее в состояние, предшествовавшее применению антибиотиков.
Antibiotic-associated dysbiosis is a disorder of the intestinal microbiota caused by antibiotics, which can contribute to the development of antibiotic-associated diarrhea and other complications. Disorder of a previously stable, functionally complete microbiota can lead to adverse health effects in both the short and long term, with a potential increase in the risk of various non-communicable diseases, as well as neurological, behavioral, and psychological disorders. Current microbiota recovery strategies include specific probiotics such as Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG. Systematic reviews and meta-analyses of clinical studies confirm the strain-specific efficacy of these probiotics in the treatment and prevention of antibiotic-associated diarrhea in both children and adults and also demonstrate that timely administration of an adequate dose of a probiotic (from day 1 of antibiotic therapy) can help prevent or eliminate the consequences of antibiotic-associated dysbiosis and contribute to the preservation of the resilience of the intestinal microbiota, returning it to the state preceding the use of antibiotics.
1. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17(5):553-64. DOI:10.1016/j.chom.2015.04.006
2. Aguilera M, Cerdà-Cuéllar M, Martínez V. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes. 2015;6(1):10-23. DOI:10.4161/19490976.2014.990790
3. Waitzberg D, Guarner F, Hojsak I, et al. Сan the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther. 2024;41(3):901-14. DOI:10.1007/s12325-024-02783-3
4. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. DOI:10.1038/nature07540
5. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. DOI:10.1038/nature09944
6. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14. DOI:10.1038/nature11234
7. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. DOI:10.3389/fcimb.2012.00104
8. Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology. 2023;231:109491. DOI:10.1016/j.neuropharm.2023.109491
9. Liu W, Tan Z, Geng M, et al. Impact of the gut microbiota on angiotensin II-related disorders and its mechanisms. Biochem Pharmacol. 2023;214:115659. DOI:10.1016/j.bcp.2023.115659
10. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-23. DOI:10.1038/nri2515
11. Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol. 2023;13:1151021. DOI:10.3389/fcimb.2023.1151021
12. Zhao M, Chu J, Feng S, et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother. 2023;164:114985. DOI:10.1016/j.biopha.2023.114985
13. Feng Y, Huang Y, Wang Y, et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384. DOI:10.1371/journal.pone.0218384
14. Scott NA, Andrusaite A, Andersen P, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med. 2018;10(464). DOI:10.1126/scitranslmed.aao4755
15. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354-9. DOI:10.1073/pnas.1019378108
16. Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut.
2016;65(4):575-83. DOI:10.1136/gutjnl-2015-309728
17. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136(6):2015-31. DOI:10.1053/j.gastro.2009.01.072
18. Ge X, Ding C, Zhao W, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15(1):13. DOI:10.1186/s12967-016-1105-4
19. Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature.
2013;502(7469):96-9. DOI:10.1038/nature12503
20. Konstantinidis T, Tsigalou C, Karvelas A, et al. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines. 2020;8(11):502. DOI:10.3390/biomedicines8110502
21. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. DOI:10.1186/s13073-016-0294-z
22. Patangia DV, Anthony Ryan C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. DOI:10.1002/mbo3.1260
23. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024-33. DOI:10.1111/cmi.12308
24. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. DOI:10.1126/scitranslmed.3008599
25. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784. DOI:10.1371/journal.pone.0090784
26. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. DOI:10.1186/s40168-017-0268-4
27. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends Microbiol.
2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
28. Romano-Keeler J, Sun J. The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. Newborn (Clarksville). 2022;1(2):219-26.
DOI:10.5005/jp-journals-11002-0028
29. Parkin K, Christophersen CT, Verhasselt V, et al. Risk Factors for Gut Dysbiosis in Early Life. Microorganisms. 2021;9(10). DOI:10.3390/microorganisms9102066
30. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559-66. DOI:10.1136/gutjnl-2012-303249
31. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe.
2011;17(6):478-82. DOI:10.1016/j.anaerobe.2011.03.009
32. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511-21. DOI:10.1542/peds.2005-2824
33. Uzan-Yulzari A, Turta O, Belogolovski A, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat Commun. 2021;12(1):443. DOI:10.1038/s41467-020-20495-4
34. Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013;37(1):16-23. DOI:10.1038/ijo.2012.132
35. Murphy R, Stewart AW, Braithwaite I, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2014;38(8):1115-9. DOI:10.1038/ijo.2013.218
36. Saari A, Virta LJ, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135(4):617-26.
DOI:10.1542/peds.2014-3407
37. Alashkar Alhamwe B, López JF, Zhernov Y, et al. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol. 2023;34(6):e13976. DOI:10.1111/pai.13976
38. Debnath N, Kumar R, Kumar A, et al. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev.
2021;37(2):105-53. DOI:10.1080/02648725.2021.1989847
39. Hsu CN, Hou CY, Hsu WH, Tain YL. Cardiovascular Diseases of Developmental Origins: Preventive Aspects of Gut Microbiota-Targeted Therapy. Nutrients. 2021;13(7). DOI:10.3390/nu13072290
40. Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci. 2022;23(7). DOI:10.3390/ijms23073954
41. Laing B, Barnett MPG, Marlow G, et al. An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets. Expert Rev Gastroenterol Hepatol. 2018;12(10):969-83. DOI:10.1080/17474124.2018.1505497
42. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61(5):739-51. DOI:10.1002/dev.21806
43. Salameh M, Burney Z, Mhaimeed N, et al. The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis. Scand J Immunol. 2020;91(3):e12855. DOI:10.1111/sji.12855
44. Zhou H, Sun L, Zhang S, et al. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol. 2021;58(3):249-65. DOI:10.1007/s00592-020-01563-z
45. Elseviers MM, Van Camp Y, Nayaert S, et al. Prevalence and management of antibiotic associated diarrhea in general hospitals. BMC Infect Dis. 2015;15:129.
DOI:10.1186/s12879-015-0869-0
46. Xiang Y, Li F, Peng J, et al. Risk Factors and Predictive Model of Diarrhea Among Patients with Severe Stroke. World Neurosurg. 2020;136:213-1. DOI:10.1016/j.wneu.2019.12.125
47. Zhou H, Xu Q, Liu Y, Guo LT. Risk factors, incidence, and morbidity associated with antibiotic-associated diarrhea in intensive care unit patients receiving antibiotic monotherapy. World J Clin Cases. 2020;8(10):1908-95. DOI:10.12998/wjcc.v8.i10.1908
48. Stavrou G, Kotzampassi K. Gut microbiome, surgical complications and probiotics. Ann Gastroenterol. 2017;30(1):45-53. DOI:10.20524/aog.2016.0086
49. Anthony WE, Wang B, Sukhum KV, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 2022;39(2):110649. DOI:10.1016/j.celrep.2022.110649
50. Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3(11):1255-25.
DOI:10.1038/s41564-018-0257-9
51. Захарова И.Н., Бережная И.В., Зайденварг Г.Е., и др. Что нового в диагностике и лечении антибиотикоассоциированных диарей у детей? Педиатрия. Consilium Medicum. 2016;2:52-9 [Zakharova IN, Berezhnaya IV, Zaydenvarg GE, et al. What's new in the diagnosis and treatment of antibiotic-associated diarrhoea in children? Pediatrics. Consilium Medicum. 2016;2:52-9 (in Russian)].
52. Baron SW, Ostrowsky BE, Nori P, et al. Screening of Clostridioides difficile carriers in an urban academic medical center: Understanding implications of disease. Infect Control Hosp Epidemiol. 2020;41(2):149-53. DOI:10.1017/ice.2019.309
53. Jolivet S, Couturier J, Grohs P, et al. Prevalence and risk factors of toxigenic Clostridioides difficile asymptomatic carriage in 11 French hospitals. Front Med (Lausanne). 2023;10:1221363. DOI:10.3389/fmed.2023.1221363
54. Shirley DA, Tornel W, Warren CA, Moonah S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics. 2023;152(3). DOI:10.1542/peds.2023-062307
55. Skjøt-Arkil H, Rune Nanthan K, Chen M, Rosenvinge FS. Carrier prevalence of Clostridioides difficile in emergency departments and the association of prior antibiotic consumption: a combined cross-sectional and nested case-control study. J Antimicrob Chemother. 2023;78(8):2089-96. DOI:10.1093/jac/dkad213
56. Tougas SR, Lodha N, Vandermeer B, et al. Prevalence of Detection of Clostridioides difficile Among Asymptomatic Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2021;175(10):e212328. DOI:10.1001/jamapediatrics.2021.2328
57. Павлова А.С., Гусева А.Н. Анализ распространения нетифоидных полирезистентных сальмонелл на территории Российской Федерации за 2016–2018 гг. В: Материалы V Национального конгресса бактериологов. 2019;62-3 [Pavlova AS, Guseva AN. Analiz rasprostraneniia netifoidnykh polirezistentnykh sal'monell na territorii Rossiiskoi Federatsii za 2016–2018 gg. In: Materialy V Natsional'nogo kongressa bakteriologov. 2019;62-3 (in Russian)].
58. Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol.
2019;7(3):692-707. DOI:10.1016/j.jcmgh.2018.12.006
59. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Guidelines for the Evaluation of Probiotics in Food. In: Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 2002.
60. Горелов А.В., Усенко Д.В., Мелехина Е.В., и др. Влияние пробиотика Saccharomyces boulardii CNCM I-745 на развитие антибиотик-ассоциированного синдрома у детей, получающих системную антибактериальную терапию по поводу инфекций нижних дыхательных путей. Вопросы практической педиатрии. 2024;19(2):15-22 [Gorelov АV, Usenko DV, Melekhina ЕV, et al. The effect of the Saccharomyces boulardii CNCM I-745 probiotic on the development of antibiotic-associated syndrome in children receiving systemic antibacterial therapy for lower respiratory tract infections. Vopr. prakt. pediatr. (Clinical Practice in Pediatrics). 2024;19(2):15-22 (in Russian)]. DOI:10.20953/1817-7646-2024-2-15-22
61. Guo Q, Goldenberg JZ, Humphrey C, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2019;4(4):CD004827. DOI:10.1002/14651858.CD004827.pub5
62. Дзотцоева Э.С., Горелов А.В. Оценка применения моноштаммовых и мультиштаммовых пробиотиков при респираторной патологии у детей. РМЖ. Медицинское обозрение. 2020;4(11):698-704 [Dzottsoeva ES, Gorelov AV. Monostrain and multistrain probiotics for respiratory diseases in children. Russian Medical Inquiry. 2020;4(11):698-704 (in Russian)]. DOI:10.32364/2587-6821-2020-4-11-698-704
63. Goldenberg JZ, Lytvyn L, Steurich J, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2015;(12):CD004827. DOI:10.1002/14651858.CD004827.pub4
64. Hempel S, Newberry SJ, Maher AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA. 2012;307(18):1959-69. DOI:10.1001/jama.2012.3507
65. Blaabjerg S, Artzi DM, Aabenhus R. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients – A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2017;6(4). DOI:10.3390/antibiotics6040021
66. Fernández-Alonso M, Aguirre Camorlinga A, Messiah SE, Marroquin E. Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: a systematic review. J Med Microbiol. 2022;71(11). DOI:10.1099/jmm.0.001625
67. Szajewska H, Berni Canani R, Domellöf M, et al. Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J Pediatr Gastroenterol Nutr. 2023;76(2):232-47. DOI:10.1097/MPG.0000000000003633
68. Guarner F, Sanders ME, Szajewska H, et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J Clin Gastroenterol.
2024;58(6):533-53. DOI:10.1097/MCG.0000000000002002
69. Ивашкин В.Т., Горелов А.В., Абдулганиева Д.И., и др. Методические рекомендации Научного сообщества по содействию клиническому изучению микробиома человека (НСОИМ) и Российской гастроэнтерологической ассоциации (РГА) по применению пробиотиков, пребиотиков, синбиотиков, метабиотиков и обогащенных ими функциональных пищевых продуктов для лечения и профилактики заболеваний гастроэнтерологического профиля у взрослых и детей. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2024;34(4):113-36 [Ivashkin VT, Gorelov AV, Abdulganieva DI, et al. Methodological Guidelines of the Scientific Community for Human Microbiome Research (CHMR) and the Russian Gastroenterology Association (RGA) on the Use of Probiotics, Prebiotics, Synbiotics, Metabiotics and Functional Foods Enriched with Them for the Treatment and Prevention of Gastrointestinal Diseases in Adults and Children. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):113-36 (in Russian)]. DOI:10.22416/1382-4376-2024-117-312
70. Ротавирусный гастроэнтерит у детей. Клинические рекомендации Евро-Азиатского общества по инфекционным болезням, Ассоциации врачей-инфекционистов Санкт-Петербурга и Ленинградской области. Режим доступа: https://cr.minzdrav.gov.ru/recomend/755_1. Ссылка активна на 01.09.2024 [Rotavirusnyi gastroenterit u detei. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/755_1. Accessed: 01.09.2024 (in Russian)].
71. Сальмонеллез у детей. Клинические рекомендации Евро-Азиатского общества по инфекционным болезням, Ассоциации врачей-инфекционистов Санкт-Петербурга и Ленинградской области. Режим доступа: https://cr.minzdrav.gov.ru/recomend/703_1. Ссылка активна на 01.09.2024 [Sal'monellez u detei. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/703_1. Accessed: 01.09.2024 (in Russian)].
72. Сальмонеллез у взрослых. Клинические рекомендации Евро-Азиатского общества по инфекционным болезням, Ассоциации врачей-инфекционистов Санкт-Петербурга и Ленинградской области. Режим доступа: https://cr.minzdrav.gov.ru/recomend/700_2. Ссылка активна на 01.09.2024 [Sal'monellez u vzroslykh. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/700_2. Accessed: 01.09.2024 (in Russian)].
73. Szajewska H, Kołodziej M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2015;42(7):793-801. DOI:10.1111/apt.13344
74. Szajewska H, Kołodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther. 2015;42(10):1149-57. DOI:10.1111/apt.13404
75. Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol. 2016;9:269-79. DOI:10.2147/CEG.S111003
76. Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clin Exp Gastroenterol. 2015;8:237-55. DOI:10.2147/CEG.S85574
77. Cui B, Lin L, Wang B, et al. Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res. 2022;175:106022. DOI:10.1016/j.phrs.2021.106022
78. Moré MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. Clin Med Insights Gastroenterol. 2018;11:1179552217752679. DOI:10.1177/1179552217752679
79. Blehaut H, Massot J, Elmer GW, Levy RH. Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos. 1989;10(4):353-64. DOI:10.1002/bdd.2510100403
80. Barc MC, Charrin-Sarnel C, Rochet V, et al. Molecular analysis of the digestive microbiota in a gnotobiotic mouse model during antibiotic treatment: Influence of Saccharomyces boulardii. Anaerobe. 2008;14(4):229-33. DOI:10.1016/j.anaerobe.2008.04.003
81. Elmer GW, McFarland LV, Surawicz CM, et al. Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Aliment Pharmacol Ther. 1999;13(12):1663-8. DOI:10.1046/j.1365-2036.1999.00666.x
82. Cifuentes SG, Prado MB, Fornasini M, et al. Saccharomyces boulardii CNCM I-745 supplementation modifies the fecal resistome during Helicobacter pylori eradication therapy. Helicobacter. 2022;27(2):e12870. DOI:10.1111/hel.12870
83. Neut C, Mahieux S, Dubreuil LJ. Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics? Med Mal Infect.
2017;47(7):477-83. DOI:10.1016/j.medmal.2017.07.001
84. World Gastroenterology Organization. Global Guidelines Probiotics and Prebiotics Available at: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics.... Accessed: 05.09.2024.
85. Zhang J, Cameron D, Quak SH, et al. Rates and determinants of antibiotics and probiotics prescription to children in Asia-Pacific countries. Benef Microbes. 2020;11(4):329-38. DOI:10.3920/BM2019.0203
86. Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol. 2012;5(2):111-25. DOI:10.1177/1756283X11428502
87. Горелов А.В., Захарова И.Н., Хавкин А.И., и др. Резолюция Совета экспертов «Дисбиоз. Ближайшие и отдаленные последствия нарушения микробиома и варианты их коррекции с помощью пробиотиков». Педиатрия. Consilium Medicum. 2022;1:90-6 [Gorelov AV, Zakharova IN, Khavkin AI, et al. Resolution of the Council of Experts “Dysbiosis. Immediate and long-term consequences of microbiome disorders and options for their correction with probiotics”. Pediatrics. Consilium Medicum. 2022;1:90-6 (in Russian)]. DOI:10.26442/26586630.2022.1.201535
88. Shan LS, Hou P, Wang ZJ, et al. Prevention and treatment of diarrhoea with Saccharomyces boulardii in children with acute lower respiratory tract infections. Benef Microbes. 2013;4(4):329-34. DOI:10.3920/BM2013.0008
________________________________________________
1. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17(5):553-64. DOI:10.1016/j.chom.2015.04.006
2. Aguilera M, Cerdà-Cuéllar M, Martínez V. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes. 2015;6(1):10-23. DOI:10.4161/19490976.2014.990790
3. Waitzberg D, Guarner F, Hojsak I, et al. Сan the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther. 2024;41(3):901-14. DOI:10.1007/s12325-024-02783-3
4. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. DOI:10.1038/nature07540
5. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. DOI:10.1038/nature09944
6. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14. DOI:10.1038/nature11234
7. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. DOI:10.3389/fcimb.2012.00104
8. Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology. 2023;231:109491. DOI:10.1016/j.neuropharm.2023.109491
9. Liu W, Tan Z, Geng M, et al. Impact of the gut microbiota on angiotensin II-related disorders and its mechanisms. Biochem Pharmacol. 2023;214:115659. DOI:10.1016/j.bcp.2023.115659
10. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-23. DOI:10.1038/nri2515
11. Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol. 2023;13:1151021. DOI:10.3389/fcimb.2023.1151021
12. Zhao M, Chu J, Feng S, et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother. 2023;164:114985. DOI:10.1016/j.biopha.2023.114985
13. Feng Y, Huang Y, Wang Y, et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384. DOI:10.1371/journal.pone.0218384
14. Scott NA, Andrusaite A, Andersen P, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med. 2018;10(464). DOI:10.1126/scitranslmed.aao4755
15. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354-9. DOI:10.1073/pnas.1019378108
16. Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut.
2016;65(4):575-83. DOI:10.1136/gutjnl-2015-309728
17. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136(6):2015-31. DOI:10.1053/j.gastro.2009.01.072
18. Ge X, Ding C, Zhao W, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15(1):13. DOI:10.1186/s12967-016-1105-4
19. Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature.
2013;502(7469):96-9. DOI:10.1038/nature12503
20. Konstantinidis T, Tsigalou C, Karvelas A, et al. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines. 2020;8(11):502. DOI:10.3390/biomedicines8110502
21. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. DOI:10.1186/s13073-016-0294-z
22. Patangia DV, Anthony Ryan C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. DOI:10.1002/mbo3.1260
23. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024-33. DOI:10.1111/cmi.12308
24. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. DOI:10.1126/scitranslmed.3008599
25. Ardissone AN, de la Cruz DM, Davis-Richardson AG, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784. DOI:10.1371/journal.pone.0090784
26. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. DOI:10.1186/s40168-017-0268-4
27. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends Microbiol.
2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
28. Romano-Keeler J, Sun J. The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. Newborn (Clarksville). 2022;1(2):219-26.
DOI:10.5005/jp-journals-11002-0028
29. Parkin K, Christophersen CT, Verhasselt V, et al. Risk Factors for Gut Dysbiosis in Early Life. Microorganisms. 2021;9(10). DOI:10.3390/microorganisms9102066
30. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559-66. DOI:10.1136/gutjnl-2012-303249
31. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe.
2011;17(6):478-82. DOI:10.1016/j.anaerobe.2011.03.009
32. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511-21. DOI:10.1542/peds.2005-2824
33. Uzan-Yulzari A, Turta O, Belogolovski A, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat Commun. 2021;12(1):443. DOI:10.1038/s41467-020-20495-4
34. Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013;37(1):16-23. DOI:10.1038/ijo.2012.132
35. Murphy R, Stewart AW, Braithwaite I, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2014;38(8):1115-9. DOI:10.1038/ijo.2013.218
36. Saari A, Virta LJ, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135(4):617-26.
DOI:10.1542/peds.2014-3407
37. Alashkar Alhamwe B, López JF, Zhernov Y, et al. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol. 2023;34(6):e13976. DOI:10.1111/pai.13976
38. Debnath N, Kumar R, Kumar A, et al. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev.
2021;37(2):105-53. DOI:10.1080/02648725.2021.1989847
39. Hsu CN, Hou CY, Hsu WH, Tain YL. Cardiovascular Diseases of Developmental Origins: Preventive Aspects of Gut Microbiota-Targeted Therapy. Nutrients. 2021;13(7). DOI:10.3390/nu13072290
40. Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci. 2022;23(7). DOI:10.3390/ijms23073954
41. Laing B, Barnett MPG, Marlow G, et al. An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets. Expert Rev Gastroenterol Hepatol. 2018;12(10):969-83. DOI:10.1080/17474124.2018.1505497
42. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61(5):739-51. DOI:10.1002/dev.21806
43. Salameh M, Burney Z, Mhaimeed N, et al. The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis. Scand J Immunol. 2020;91(3):e12855. DOI:10.1111/sji.12855
44. Zhou H, Sun L, Zhang S, et al. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol. 2021;58(3):249-65. DOI:10.1007/s00592-020-01563-z
45. Elseviers MM, Van Camp Y, Nayaert S, et al. Prevalence and management of antibiotic associated diarrhea in general hospitals. BMC Infect Dis. 2015;15:129.
DOI:10.1186/s12879-015-0869-0
46. Xiang Y, Li F, Peng J, et al. Risk Factors and Predictive Model of Diarrhea Among Patients with Severe Stroke. World Neurosurg. 2020;136:213-1. DOI:10.1016/j.wneu.2019.12.125
47. Zhou H, Xu Q, Liu Y, Guo LT. Risk factors, incidence, and morbidity associated with antibiotic-associated diarrhea in intensive care unit patients receiving antibiotic monotherapy. World J Clin Cases. 2020;8(10):1908-95. DOI:10.12998/wjcc.v8.i10.1908
48. Stavrou G, Kotzampassi K. Gut microbiome, surgical complications and probiotics. Ann Gastroenterol. 2017;30(1):45-53. DOI:10.20524/aog.2016.0086
49. Anthony WE, Wang B, Sukhum KV, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 2022;39(2):110649. DOI:10.1016/j.celrep.2022.110649
50. Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3(11):1255-25.
DOI:10.1038/s41564-018-0257-9
51. Zakharova IN, Berezhnaya IV, Zaydenvarg GE, et al. What's new in the diagnosis and treatment of antibiotic-associated diarrhoea in children? Pediatrics. Consilium Medicum. 2016;2:52-9 (in Russian).
52. Baron SW, Ostrowsky BE, Nori P, et al. Screening of Clostridioides difficile carriers in an urban academic medical center: Understanding implications of disease. Infect Control Hosp Epidemiol. 2020;41(2):149-53. DOI:10.1017/ice.2019.309
53. Jolivet S, Couturier J, Grohs P, et al. Prevalence and risk factors of toxigenic Clostridioides difficile asymptomatic carriage in 11 French hospitals. Front Med (Lausanne). 2023;10:1221363. DOI:10.3389/fmed.2023.1221363
54. Shirley DA, Tornel W, Warren CA, Moonah S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics. 2023;152(3). DOI:10.1542/peds.2023-062307
55. Skjøt-Arkil H, Rune Nanthan K, Chen M, Rosenvinge FS. Carrier prevalence of Clostridioides difficile in emergency departments and the association of prior antibiotic consumption: a combined cross-sectional and nested case-control study. J Antimicrob Chemother. 2023;78(8):2089-96. DOI:10.1093/jac/dkad213
56. Tougas SR, Lodha N, Vandermeer B, et al. Prevalence of Detection of Clostridioides difficile Among Asymptomatic Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2021;175(10):e212328. DOI:10.1001/jamapediatrics.2021.2328
57. Pavlova AS, Guseva AN. Analiz rasprostraneniia netifoidnykh polirezistentnykh sal'monell na territorii Rossiiskoi Federatsii za 2016–2018 gg. In: Materialy V Natsional'nogo kongressa bakteriologov. 2019;62-3 (in Russian).
58. Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol.
2019;7(3):692-707. DOI:10.1016/j.jcmgh.2018.12.006
59. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Guidelines for the Evaluation of Probiotics in Food. In: Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 2002.
60. Gorelov АV, Usenko DV, Melekhina ЕV, et al. The effect of the Saccharomyces boulardii CNCM I-745 probiotic on the development of antibiotic-associated syndrome in children receiving systemic antibacterial therapy for lower respiratory tract infections. Vopr. prakt. pediatr. (Clinical Practice in Pediatrics). 2024;19(2):15-22 (in Russian).
DOI:10.20953/1817-7646-2024-2-15-22
61. Guo Q, Goldenberg JZ, Humphrey C, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2019;4(4):CD004827. DOI:10.1002/14651858.CD004827.pub5
62. Dzottsoeva ES, Gorelov AV. Monostrain and multistrain probiotics for respiratory diseases in children. Russian Medical Inquiry. 2020;4(11):698-704 (in Russian).
DOI:10.32364/2587-6821-2020-4-11-698-704
63. Goldenberg JZ, Lytvyn L, Steurich J, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2015;(12):CD004827. DOI:10.1002/14651858.CD004827.pub4
64. Hempel S, Newberry SJ, Maher AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA. 2012;307(18):1959-69. DOI:10.1001/jama.2012.3507
65. Blaabjerg S, Artzi DM, Aabenhus R. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients – A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2017;6(4). DOI:10.3390/antibiotics6040021
66. Fernández-Alonso M, Aguirre Camorlinga A, Messiah SE, Marroquin E. Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: a systematic review. J Med Microbiol. 2022;71(11). DOI:10.1099/jmm.0.001625
67. Szajewska H, Berni Canani R, Domellöf M, et al. Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J Pediatr Gastroenterol Nutr. 2023;76(2):232-47. DOI:10.1097/MPG.0000000000003633
68. Guarner F, Sanders ME, Szajewska H, et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J Clin Gastroenterol.
2024;58(6):533-53. DOI:10.1097/MCG.0000000000002002
69. Ivashkin VT, Gorelov AV, Abdulganieva DI, et al. Methodological Guidelines of the Scientific Community for Human Microbiome Research (CHMR) and the Russian Gastroenterology Association (RGA) on the Use of Probiotics, Prebiotics, Synbiotics, Metabiotics and Functional Foods Enriched with Them for the Treatment and Prevention of Gastrointestinal Diseases in Adults and Children. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(4):113-36 (in Russian). DOI:10.22416/1382-4376-2024-117-312
70. Rotavirusnyi gastroenterit u detei. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/755_1. Accessed: 01.09.2024 (in Russian).
71. Sal'monellez u detei. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/703_1. Accessed: 01.09.2024 (in Russian).
72. Sal'monellez u vzroslykh. Klinicheskie rekomendatsii Evro-Aziatskogo obshchestva po infektsionnym bolezniam, Assotsiatsii vrachei-infektsionistov Sankt-Peterburga i Leningradskoi oblasti. Available at: https://cr.minzdrav.gov.ru/recomend/700_2. Accessed: 01.09.2024 (in Russian).
73. Szajewska H, Kołodziej M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2015;42(7):793-801. DOI:10.1111/apt.13344
74. Szajewska H, Kołodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther. 2015;42(10):1149-57. DOI:10.1111/apt.13404
75. Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol. 2016;9:269-79. DOI:10.2147/CEG.S111003
76. Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clin Exp Gastroenterol. 2015;8:237-55. DOI:10.2147/CEG.S85574
77. Cui B, Lin L, Wang B, et al. Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res. 2022;175:106022. DOI:10.1016/j.phrs.2021.106022
78. Moré MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. Clin Med Insights Gastroenterol. 2018;11:1179552217752679. DOI:10.1177/1179552217752679
79. Blehaut H, Massot J, Elmer GW, Levy RH. Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos. 1989;10(4):353-64. DOI:10.1002/bdd.2510100403
80. Barc MC, Charrin-Sarnel C, Rochet V, et al. Molecular analysis of the digestive microbiota in a gnotobiotic mouse model during antibiotic treatment: Influence of Saccharomyces boulardii. Anaerobe. 2008;14(4):229-33. DOI:10.1016/j.anaerobe.2008.04.003
81. Elmer GW, McFarland LV, Surawicz CM, et al. Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Aliment Pharmacol Ther. 1999;13(12):1663-8. DOI:10.1046/j.1365-2036.1999.00666.x
82. Cifuentes SG, Prado MB, Fornasini M, et al. Saccharomyces boulardii CNCM I-745 supplementation modifies the fecal resistome during Helicobacter pylori eradication therapy. Helicobacter. 2022;27(2):e12870. DOI:10.1111/hel.12870
83. Neut C, Mahieux S, Dubreuil LJ. Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics? Med Mal Infect.
2017;47(7):477-83. DOI:10.1016/j.medmal.2017.07.001
84. World Gastroenterology Organization. Global Guidelines Probiotics and Prebiotics Available at: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics.... Accessed: 05.09.2024.
85. Zhang J, Cameron D, Quak SH, et al. Rates and determinants of antibiotics and probiotics prescription to children in Asia-Pacific countries. Benef Microbes. 2020;11(4):329-38. DOI:10.3920/BM2019.0203
86. Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol. 2012;5(2):111-25. DOI:10.1177/1756283X11428502
87. Gorelov AV, Zakharova IN, Khavkin AI, et al. Resolution of the Council of Experts “Dysbiosis. Immediate and long-term consequences of microbiome disorders and options for their correction with probiotics”. Pediatrics. Consilium Medicum. 2022;1:90-6 (in Russian). DOI:10.26442/26586630.2022.1.201535
88. Shan LS, Hou P, Wang ZJ, et al. Prevention and treatment of diarrhoea with Saccharomyces boulardii in children with acute lower respiratory tract infections. Benef Microbes. 2013;4(4):329-34. DOI:10.3920/BM2013.0008
1ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Москва, Россия; 2ГБУЗ МО «Химкинская клиническая больница», Химки, Россия; 3ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 4ФГБОУ ВО «Российский университет медицины» Минздрава России, Москва, Россия; 5Biocodex Россия, Москва, Россия
*sidelnikovaes@gmail.com
________________________________________________
Elina S. Dzottsoeva*1,2, Aleksandr V. Gorelov1,3,4, Ludmila R. Khabibulina5
1Central Research Institute of Epidemiology, Moscow, Russia; 2Khimki Clinical Hospital, Khimki, Russia; 3Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 4Russian University of Medicine, Moscow, Russia; 5Biocodex Russia, Moscow, Russia
*sidelnikovaes@gmail.com