Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Этот загадочный bifidus factor
Этот загадочный bifidus factor
Захарова И.Н., Сугян Н.Г., Оробинская Я.В. Этот загадочный bifidus factor. Педиатрия. Consilium Medicum. 2025;2:125–130. DOI: 10.26442/26586630.2025.2.203333
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Грудное молоко (ГМ) представляет собой сложную биологическую смесь, включающую жиры, белки, ферменты, антитела и другие питательные вещества, которые обеспечивают младенцев необходимой энергией и одновременно служат важнейшим иммунологическим барьером. ГМ играет ключевую роль в формировании микробиоты желудочно-кишечного тракта новорожденных, в которой доминируют представители рода Bifidobacterium. Этот селективный рост полезных бактерий связывают с наличием в женском молоке олигосахаридов, которые выполняют пребиотическую функцию. Недостаток таких благотворных микробных компонентов у детей, которые не получают ГМ, может привести к нарушению функций желудочно-кишечного тракта, делая их более восприимчивыми к различным инфекционным агентам и заболеваниям. Именно поэтому производители детских молочных смесей начали экспериментировать с добавлением искусственно синтезированных олигосахаридов в детское питание, чтобы приблизить его к составу ГМ. Следующим этапом стало введение в продукты для детского питания олигосахаридов, естественным образом присутствующих в ГМ. Этот подход оказался успешным: благодаря добавлению олигосахаридов микробиом детей становился все более похожим на тот, который формируется при естественном вскармливании, способствуя улучшению здоровья и развития малышей. Такой результат позволяет предположить, что олигосахариды, содержащиеся в человеческом молоке, выступают в роли bifidus factor. Одним из ключевых компонентов является лакто-N-биоза I (LNB), дисахарид первого типа, который является важным строительным блоком олигосахаридов ГМ. LNB обладает выраженной пребиотической активностью, стимулируя размножение различных штаммов Bifidobacterium в кишечнике и демонстрируя значительный потенциал для использования в детских питательных продуктах и добавках. Аналогично ему искусственно синтезированные галактоолигосахариды и фукозилированный олигосахарид 2-фукозиллактоза, структурно гомологичный олигосахарилу ГМ, обладают противовоспалительным действием и широко применяются в детских молочных смесях, дополняя арсенал средств для поддержки здоровья малышей.
Ключевые слова: грудное молоко, bifidus factor, олигосахарид, галактоолигосахарид, Bifidobacterium, микробиота, желудочно-кишечный тракт, короткоцепочечные жирные кислоты
Keywords: breast milk, bifidus factor, oligosaccharide, galactooligosaccharide, Bifidobacterium, microbiota, gastrointestinal tract, short-chain fatty acids
Ключевые слова: грудное молоко, bifidus factor, олигосахарид, галактоолигосахарид, Bifidobacterium, микробиота, желудочно-кишечный тракт, короткоцепочечные жирные кислоты
________________________________________________
Keywords: breast milk, bifidus factor, oligosaccharide, galactooligosaccharide, Bifidobacterium, microbiota, gastrointestinal tract, short-chain fatty acids
Полный текст
Список литературы
1. Wickes IG. A history of infant feeding. I. Primitive peoples; ancient works; Renaissance writers. Arch Dis Child. 1953;28(138):151-8. PMID:13041294
2. Боровик Т.Э., Ладодо К.С., Яцык Г.В., и др. Научно-практическая программа «Оптимизация вскармливания детей первого года жизни в Российской Федерации». Педиатрия. Журнал им. Г. Н. Сперанского. 2008;87(4):75-9 [Borovik TE, Ladodo KS, Iatsyk GV, et al. Nauchno-prakticheskaia programma "Optimizatsiia vskarmlivaniia detei pervogo goda zhizni v Rossiiskoi Federatsii". Pediatrics. Journal n.a. G.N. Speransky. 2008;87(4):75-9 (in Russian)].
3. Martinez FA, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482-8. DOI:10.1016/j.biotechadv.2013.01.010
4. Rašić JL, Kurmann JA. History. In: Bifidobacteria and their role. Experientia Supplementum. Vol. 39. Basel: Birkhäuser, 1983. DOI:10.1007/978-3-0348-5448-1_1
5. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-62. DOI:10.1093/glycob/cws074
6. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr. 2012;3(3):473S-82S. DOI:10.3945/an.111.001412
7. Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr. 2025;14(2):104797. DOI:10.5409/wjcp.v14.i2.104797
8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5):357-71. DOI:10.1023/a:1014881913541
9. Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13. DOI:10.1186/s40168-015-0071-z
10. Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, et al. Growth hormone/insulin-like growth factor I axis in health and disease states: An update on the role of intra-portal insulin. Front Endocrinol (Lausanne). 2024;15:1456195. DOI:10.3389/fendo.2024.1456195
11. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – First 1000 days and beyond. Trends Microbiol. 2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
12. Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859-71. DOI:10.1016/j.cell.2016.01.024
13. Bezirtzoglou E, Maipa V, Chotoura N, et al. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization. Comp Immunol Microbiol Infect Dis. 2006;29(5-6):345-52. DOI:10.1016/j.cimid.2006.09.002
14. Korpela K. Impact of delivery mode on infant gut microbiota. Ann Nutr Metab. 2021:1-9. DOI:10.1159/000518498
15. Ward RE, Niñonuevo M, Mills DA, et al. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497-9. DOI:10.1128/AEM.02515-05
16. Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of Bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. DOI:10.3390/microorganisms9122415
17. Machida S, Saito K, Nishimoto M, Kitaoka M. Production of Lacto-N-biose i using crude extracts of bifidobacterial cells. J Appl Glycosci (1999). 2022;69(2):15-21. DOI:10.5458/jag.jag.JAG-2021_0012
18. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem. 2013;288(35):25194-206. DOI:10.1074/jbc.M113.484733
19. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J. 2022;16(9):2265-79. DOI:10.1038/s41396-022-01270-3
20. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G940-9. DOI:10.1152/ajpgi.00141.2009
21. Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. DOI:10.3390/microorganisms7110544
22. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008. 74(13):3996-4004. DOI:10.1128/AEM.00149-08
23. Xiao JZ, Takahashi S, Nishimoto M, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76(1):54-9. DOI:10.1128/AEM.01683-09
24. Satoh T, Odamaki T, Namura M, et al. In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe. 2013;19:50-7. DOI:10.1016/j.anaerobe.2012.12.007
25. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. DOI:10.3390/nu12041107
26. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. DOI:10.1038/nature09646
27. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. DOI:10.3390/microorganisms9102122
28. Garro-Aguilar Y, Gulak M, Astigarraga E, Barreda-Gómez G. Breastfeeding: History, techniques, benefits, complications and care. J Pract Prof Nurs. 2022;6:031. DOI:10.24966/PPN-5681/100031
29. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305-44. DOI:10.1111/j.1365-2672.2007.03520.x
30. Tanabe S, Hochi S. Oral administration of a galactooligosaccharide preparation inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Int J Mol Med. 2010;25(3):331-6. DOI:10.3892/ijmm_00000349
31. Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020;11(11):9445-67. DOI:10.1039/d0fo01700k
32. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920-8. DOI:10.1128/IAI.01030-06
33. Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and postbiotics in infant formulas: What are the immune benefits for infants? Nutrients. 2023;15(5):1231. DOI:10.3390/nu15051231
34. Matsuki T, Tajima S, Hara T, et al. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016;7(4):453-61. DOI:10.3920/BM2015.0168
35. Paganini D, Uyoga MA, Cercamondi CI, et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am J Clin Nutr. 2017;106(4):1020-31. DOI:10.3945/ajcn.116.145060
36. Chu H, Tao X, Sun Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220. DOI:10.1016/j.lfs.2019.117220
37. Park S, Park Y, Jeong YJ, et al. Combining 2'-fucosyllactose and galacto-oligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci. 2024;107(12):10203-20. DOI:10.3168/jds.2024-25171
38. Ferrari M, van Leeuwen SS, de Vos P, et al. Impact of GOS and 2’-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym. 2025;347:122660. DOI:10.1016/j.carbpol.2024.122660
39. Lindner C, Looijesteijn E, Dijck HV, et al. Infant fecal fermentations with galacto-oligosaccharides and 2'-fucosyllactose show differential Bifidobacterium longum stimulation at subspecies level. Children (Basel). 2023;10(3):430. DOI:10.3390/children10030430
2. Borovik TE, Ladodo KS, Iatsyk GV, et al. Nauchno-prakticheskaia programma "Optimizatsiia vskarmlivaniia detei pervogo goda zhizni v Rossiiskoi Federatsii". Pediatrics. Journal n.a. G.N. Speransky. 2008;87(4):75-9 (in Russian).
3. Martinez FA, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482-8. DOI:10.1016/j.biotechadv.2013.01.010
4. Rašić JL, Kurmann JA. History. In: Bifidobacteria and their role. Experientia Supplementum. Vol. 39. Basel: Birkhäuser, 1983. DOI:10.1007/978-3-0348-5448-1_1
5. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-62. DOI:10.1093/glycob/cws074
6. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr. 2012;3(3):473S-82S. DOI:10.3945/an.111.001412
7. Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr. 2025;14(2):104797. DOI:10.5409/wjcp.v14.i2.104797
8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5):357-71. DOI:10.1023/a:1014881913541
9. Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13. DOI:10.1186/s40168-015-0071-z
10. Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, et al. Growth hormone/insulin-like growth factor I axis in health and disease states: An update on the role of intra-portal insulin. Front Endocrinol (Lausanne). 2024;15:1456195. DOI:10.3389/fendo.2024.1456195
11. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – First 1000 days and beyond. Trends Microbiol. 2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
12. Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859-71. DOI:10.1016/j.cell.2016.01.024
13. Bezirtzoglou E, Maipa V, Chotoura N, et al. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization. Comp Immunol Microbiol Infect Dis. 2006;29(5-6):345-52. DOI:10.1016/j.cimid.2006.09.002
14. Korpela K. Impact of delivery mode on infant gut microbiota. Ann Nutr Metab. 2021:1-9. DOI:10.1159/000518498
15. Ward RE, Niñonuevo M, Mills DA, et al. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497-9. DOI:10.1128/AEM.02515-05
16. Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of Bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. DOI:10.3390/microorganisms9122415
17. Machida S, Saito K, Nishimoto M, Kitaoka M. Production of Lacto-N-biose i using crude extracts of bifidobacterial cells. J Appl Glycosci (1999). 2022;69(2):15-21. DOI:10.5458/jag.jag.JAG-2021_0012
18. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem. 2013;288(35):25194-206. DOI:10.1074/jbc.M113.484733
19. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J. 2022;16(9):2265-79. DOI:10.1038/s41396-022-01270-3
20. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G940-9. DOI:10.1152/ajpgi.00141.2009
21. Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. DOI:10.3390/microorganisms7110544
22. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008. 74(13):3996-4004. DOI:10.1128/AEM.00149-08
23. Xiao JZ, Takahashi S, Nishimoto M, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76(1):54-9. DOI:10.1128/AEM.01683-09
24. Satoh T, Odamaki T, Namura M, et al. In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe. 2013;19:50-7. DOI:10.1016/j.anaerobe.2012.12.007
25. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. DOI:10.3390/nu12041107
26. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. DOI:10.1038/nature09646
27. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. DOI:10.3390/microorganisms9102122
28. Garro-Aguilar Y, Gulak M, Astigarraga E, Barreda-Gómez G. Breastfeeding: History, techniques, benefits, complications and care. J Pract Prof Nurs. 2022;6:031. DOI:10.24966/PPN-5681/100031
29. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305-44. DOI:10.1111/j.1365-2672.2007.03520.x
30. Tanabe S, Hochi S. Oral administration of a galactooligosaccharide preparation inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Int J Mol Med. 2010;25(3):331-6. DOI:10.3892/ijmm_00000349
31. Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020;11(11):9445-67. DOI:10.1039/d0fo01700k
32. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920-8. DOI:10.1128/IAI.01030-06
33. Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and postbiotics in infant formulas: What are the immune benefits for infants? Nutrients. 2023;15(5):1231. DOI:10.3390/nu15051231
34. Matsuki T, Tajima S, Hara T, et al. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016;7(4):453-61. DOI:10.3920/BM2015.0168
35. Paganini D, Uyoga MA, Cercamondi CI, et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am J Clin Nutr. 2017;106(4):1020-31. DOI:10.3945/ajcn.116.145060
36. Chu H, Tao X, Sun Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220. DOI:10.1016/j.lfs.2019.117220
37. Park S, Park Y, Jeong YJ, et al. Combining 2'-fucosyllactose and galacto-oligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci. 2024;107(12):10203-20. DOI:10.3168/jds.2024-25171
38. Ferrari M, van Leeuwen SS, de Vos P, et al. Impact of GOS and 2’-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym. 2025;347:122660. DOI:10.1016/j.carbpol.2024.122660
39. Lindner C, Looijesteijn E, Dijck HV, et al. Infant fecal fermentations with galacto-oligosaccharides and 2'-fucosyllactose show differential Bifidobacterium longum stimulation at subspecies level. Children (Basel). 2023;10(3):430. DOI:10.3390/children10030430
2. Боровик Т.Э., Ладодо К.С., Яцык Г.В., и др. Научно-практическая программа «Оптимизация вскармливания детей первого года жизни в Российской Федерации». Педиатрия. Журнал им. Г. Н. Сперанского. 2008;87(4):75-9 [Borovik TE, Ladodo KS, Iatsyk GV, et al. Nauchno-prakticheskaia programma "Optimizatsiia vskarmlivaniia detei pervogo goda zhizni v Rossiiskoi Federatsii". Pediatrics. Journal n.a. G.N. Speransky. 2008;87(4):75-9 (in Russian)].
3. Martinez FA, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482-8. DOI:10.1016/j.biotechadv.2013.01.010
4. Rašić JL, Kurmann JA. History. In: Bifidobacteria and their role. Experientia Supplementum. Vol. 39. Basel: Birkhäuser, 1983. DOI:10.1007/978-3-0348-5448-1_1
5. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-62. DOI:10.1093/glycob/cws074
6. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr. 2012;3(3):473S-82S. DOI:10.3945/an.111.001412
7. Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr. 2025;14(2):104797. DOI:10.5409/wjcp.v14.i2.104797
8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5):357-71. DOI:10.1023/a:1014881913541
9. Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13. DOI:10.1186/s40168-015-0071-z
10. Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, et al. Growth hormone/insulin-like growth factor I axis in health and disease states: An update on the role of intra-portal insulin. Front Endocrinol (Lausanne). 2024;15:1456195. DOI:10.3389/fendo.2024.1456195
11. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – First 1000 days and beyond. Trends Microbiol. 2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
12. Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859-71. DOI:10.1016/j.cell.2016.01.024
13. Bezirtzoglou E, Maipa V, Chotoura N, et al. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization. Comp Immunol Microbiol Infect Dis. 2006;29(5-6):345-52. DOI:10.1016/j.cimid.2006.09.002
14. Korpela K. Impact of delivery mode on infant gut microbiota. Ann Nutr Metab. 2021:1-9. DOI:10.1159/000518498
15. Ward RE, Niñonuevo M, Mills DA, et al. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497-9. DOI:10.1128/AEM.02515-05
16. Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of Bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. DOI:10.3390/microorganisms9122415
17. Machida S, Saito K, Nishimoto M, Kitaoka M. Production of Lacto-N-biose i using crude extracts of bifidobacterial cells. J Appl Glycosci (1999). 2022;69(2):15-21. DOI:10.5458/jag.jag.JAG-2021_0012
18. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem. 2013;288(35):25194-206. DOI:10.1074/jbc.M113.484733
19. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J. 2022;16(9):2265-79. DOI:10.1038/s41396-022-01270-3
20. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G940-9. DOI:10.1152/ajpgi.00141.2009
21. Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. DOI:10.3390/microorganisms7110544
22. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008. 74(13):3996-4004. DOI:10.1128/AEM.00149-08
23. Xiao JZ, Takahashi S, Nishimoto M, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76(1):54-9. DOI:10.1128/AEM.01683-09
24. Satoh T, Odamaki T, Namura M, et al. In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe. 2013;19:50-7. DOI:10.1016/j.anaerobe.2012.12.007
25. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. DOI:10.3390/nu12041107
26. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. DOI:10.1038/nature09646
27. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. DOI:10.3390/microorganisms9102122
28. Garro-Aguilar Y, Gulak M, Astigarraga E, Barreda-Gómez G. Breastfeeding: History, techniques, benefits, complications and care. J Pract Prof Nurs. 2022;6:031. DOI:10.24966/PPN-5681/100031
29. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305-44. DOI:10.1111/j.1365-2672.2007.03520.x
30. Tanabe S, Hochi S. Oral administration of a galactooligosaccharide preparation inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Int J Mol Med. 2010;25(3):331-6. DOI:10.3892/ijmm_00000349
31. Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020;11(11):9445-67. DOI:10.1039/d0fo01700k
32. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920-8. DOI:10.1128/IAI.01030-06
33. Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and postbiotics in infant formulas: What are the immune benefits for infants? Nutrients. 2023;15(5):1231. DOI:10.3390/nu15051231
34. Matsuki T, Tajima S, Hara T, et al. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016;7(4):453-61. DOI:10.3920/BM2015.0168
35. Paganini D, Uyoga MA, Cercamondi CI, et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am J Clin Nutr. 2017;106(4):1020-31. DOI:10.3945/ajcn.116.145060
36. Chu H, Tao X, Sun Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220. DOI:10.1016/j.lfs.2019.117220
37. Park S, Park Y, Jeong YJ, et al. Combining 2'-fucosyllactose and galacto-oligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci. 2024;107(12):10203-20. DOI:10.3168/jds.2024-25171
38. Ferrari M, van Leeuwen SS, de Vos P, et al. Impact of GOS and 2’-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym. 2025;347:122660. DOI:10.1016/j.carbpol.2024.122660
39. Lindner C, Looijesteijn E, Dijck HV, et al. Infant fecal fermentations with galacto-oligosaccharides and 2'-fucosyllactose show differential Bifidobacterium longum stimulation at subspecies level. Children (Basel). 2023;10(3):430. DOI:10.3390/children10030430
________________________________________________
2. Borovik TE, Ladodo KS, Iatsyk GV, et al. Nauchno-prakticheskaia programma "Optimizatsiia vskarmlivaniia detei pervogo goda zhizni v Rossiiskoi Federatsii". Pediatrics. Journal n.a. G.N. Speransky. 2008;87(4):75-9 (in Russian).
3. Martinez FA, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482-8. DOI:10.1016/j.biotechadv.2013.01.010
4. Rašić JL, Kurmann JA. History. In: Bifidobacteria and their role. Experientia Supplementum. Vol. 39. Basel: Birkhäuser, 1983. DOI:10.1007/978-3-0348-5448-1_1
5. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-62. DOI:10.1093/glycob/cws074
6. Urashima T, Asakuma S, Leo F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr. 2012;3(3):473S-82S. DOI:10.3945/an.111.001412
7. Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr. 2025;14(2):104797. DOI:10.5409/wjcp.v14.i2.104797
8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5):357-71. DOI:10.1023/a:1014881913541
9. Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:13. DOI:10.1186/s40168-015-0071-z
10. Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, et al. Growth hormone/insulin-like growth factor I axis in health and disease states: An update on the role of intra-portal insulin. Front Endocrinol (Lausanne). 2024;15:1456195. DOI:10.3389/fendo.2024.1456195
11. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – First 1000 days and beyond. Trends Microbiol. 2019;27(2):131-47. DOI:10.1016/j.tim.2018.09.008
12. Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164(5):859-71. DOI:10.1016/j.cell.2016.01.024
13. Bezirtzoglou E, Maipa V, Chotoura N, et al. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization. Comp Immunol Microbiol Infect Dis. 2006;29(5-6):345-52. DOI:10.1016/j.cimid.2006.09.002
14. Korpela K. Impact of delivery mode on infant gut microbiota. Ann Nutr Metab. 2021:1-9. DOI:10.1159/000518498
15. Ward RE, Niñonuevo M, Mills DA, et al. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497-9. DOI:10.1128/AEM.02515-05
16. Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of Bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. DOI:10.3390/microorganisms9122415
17. Machida S, Saito K, Nishimoto M, Kitaoka M. Production of Lacto-N-biose i using crude extracts of bifidobacterial cells. J Appl Glycosci (1999). 2022;69(2):15-21. DOI:10.5458/jag.jag.JAG-2021_0012
18. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem. 2013;288(35):25194-206. DOI:10.1074/jbc.M113.484733
19. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J. 2022;16(9):2265-79. DOI:10.1038/s41396-022-01270-3
20. Khailova L, Dvorak K, Arganbright KM, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G940-9. DOI:10.1152/ajpgi.00141.2009
21. Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: A key member of the early human gut microbiota. Microorganisms. 2019;7(11):544. DOI:10.3390/microorganisms7110544
22. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008. 74(13):3996-4004. DOI:10.1128/AEM.00149-08
23. Xiao JZ, Takahashi S, Nishimoto M, et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol. 2010;76(1):54-9. DOI:10.1128/AEM.01683-09
24. Satoh T, Odamaki T, Namura M, et al. In vitro comparative evaluation of the impact of lacto-N-biose I, a major building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe. 2013;19:50-7. DOI:10.1016/j.anaerobe.2012.12.007
25. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. DOI:10.3390/nu12041107
26. Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. DOI:10.1038/nature09646
27. Ríos-Covian D, Langella P, Martín R. From short- to long-term effects of C-section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. DOI:10.3390/microorganisms9102122
28. Garro-Aguilar Y, Gulak M, Astigarraga E, Barreda-Gómez G. Breastfeeding: History, techniques, benefits, complications and care. J Pract Prof Nurs. 2022;6:031. DOI:10.24966/PPN-5681/100031
29. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305-44. DOI:10.1111/j.1365-2672.2007.03520.x
30. Tanabe S, Hochi S. Oral administration of a galactooligosaccharide preparation inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. Int J Mol Med. 2010;25(3):331-6. DOI:10.3892/ijmm_00000349
31. Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020;11(11):9445-67. DOI:10.1039/d0fo01700k
32. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920-8. DOI:10.1128/IAI.01030-06
33. Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and postbiotics in infant formulas: What are the immune benefits for infants? Nutrients. 2023;15(5):1231. DOI:10.3390/nu15051231
34. Matsuki T, Tajima S, Hara T, et al. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016;7(4):453-61. DOI:10.3920/BM2015.0168
35. Paganini D, Uyoga MA, Cercamondi CI, et al. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: A stable-isotope study in Kenyan infants. Am J Clin Nutr. 2017;106(4):1020-31. DOI:10.3945/ajcn.116.145060
36. Chu H, Tao X, Sun Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220. DOI:10.1016/j.lfs.2019.117220
37. Park S, Park Y, Jeong YJ, et al. Combining 2'-fucosyllactose and galacto-oligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci. 2024;107(12):10203-20. DOI:10.3168/jds.2024-25171
38. Ferrari M, van Leeuwen SS, de Vos P, et al. Impact of GOS and 2’-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym. 2025;347:122660. DOI:10.1016/j.carbpol.2024.122660
39. Lindner C, Looijesteijn E, Dijck HV, et al. Infant fecal fermentations with galacto-oligosaccharides and 2'-fucosyllactose show differential Bifidobacterium longum stimulation at subspecies level. Children (Basel). 2023;10(3):430. DOI:10.3390/children10030430
Авторы
И.Н. Захарова*1, Н.Г. Сугян1,2, Я.В. Оробинская1,2
1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2ГБУЗ Московской области «Химкинская клиническая больница», Химки, Россия
*zakharova-rmapo@yandex.ru
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2Khimki Clinical Hospital, Khimki, Russia
*zakharova-rmapo@yandex.ru
1ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2ГБУЗ Московской области «Химкинская клиническая больница», Химки, Россия
*zakharova-rmapo@yandex.ru
________________________________________________
1Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2Khimki Clinical Hospital, Khimki, Russia
*zakharova-rmapo@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
