Накоплены экспериментальные и клинические данные об участии воспалительных факторов в патогенезе легочной гипертензии (ЛГ), при этом необходимы сравнительные исследования воспалительных механизмов развития заболевания у больных с различными формами ЛГ. Цель данного исследования – определение профиля провоспалительных цитокинов у пациентов с различными формами ЛГ. Материалы и методы. В исследование включен 51 пациент, из них с идиопатической ЛГ (ИЛГ) – 16 больных, с системной склеродермией (СС) – 12 больных, с хронической обструктивной болезнью легких (ХОБЛ) – 11 больных, с тромбоэмболией легочной артерии (ТЭЛА) – 12 больных. Определяли: высокочувствительный С-реактивнй белок (вчСРБ), интерлейкины (ИЛ)-1, -6, -8, фактор некроза опухоли-α (ФНО-α) и sCD40L. Результаты. Уровень вчСРБ был выше (р<0,05) в группе ХОБЛ по сравнению с группами ИЛГ и ТЭЛА. В группе ИЛГ ИЛ-1β выше (2,2±0,6 пкг/мл); (р<0,05), чем при СС (1,1±0,2 пкг/мл) и ТЭЛА (0,9±0,3 пкг/мл). Повышен ИЛ-6 (3,7±0,7 пкг/мл) у пациентов с СС. ИЛ-8 и sCD40L в различных группах достоверно не различались. ФНО-α у пациентов с ИЛГ более высокий (р<0,05; 2,0±0,2 пкг/мл) по отношению к группам ХОБЛ (1,2±0,1 пкг/мл) и ТЭЛА (1,2±0,1 пкг/мл). У 25% пациентов с ИЛГ уровень фракталкина составлял от 0,3 до 60 нг/мл, в других группах значения попадали в данный диапазон лишь у 8,3-9,0% пациентов. Заключение. В патогенезе ЛГ важная роль отводится воспалительным механизмам, при этом характеристики воспалительного процесса при ИЛГ отличаются от таковых при ассоциированных формах ЛГ (увеличение уровня ИЛ-1β и ФНО-α при ИЛГ; ИЛ-6 при СС и СРБ при ХОБЛ, тенденция к увеличению уровня фракталкина при ИЛГ), что можно использовать с целью дифференциальной диагностики.
Experimental and clinical data of inflammatory factors participation in the pulmonary hypertension (PH) pathogenesis are cumulated. Comparative investigations of these inflammatory mechanisms of different forms of PH are needed. The aim of this study was the evaluation of proinflammatory markers pattern of patients with different forms of PH. Material and methods. 51 patients with PH were enrolled in clinical study (with idiopathic PH (IPH) – 16 patients, with systemic scleroderma (SS) – 12 patients, with chronic obstructive pulmonary disease (COPD) – 11 patients, with pulmonary thromboembolism (PT) – 12 patients. High sensitivity C-reactive protein (hsCRP), interleukin (IL)-1, -6, -8, TNF-α and sCD40L were evaluated. Results: the hsCRP level was higher (р<0,05) in the COPD group then in the IPH and PT groups. In the group of IPH patients the IL-1β was higher (2,2±0,6 pkg/ml; р<0,05), than in the SS (1,1±0,2 pkg/ml) and PT (0,9±0,3 pkg/ml) patients. The IL-6 (3,7±0,7 pkg/ml) was higher in patients with SS. The IL-8 and sCD40L in all groups were comparable. The TNF-α in patients with IPH was higher (р<0,05) (2,0±0,2 pkg/ml) than in COPD (1,2±0,1 pkg/ml) and PT (1,2±0,1 pkg/ml) groups. 25% of patients with IPH had the level of fractalkine from 0.3 to 60 ng/ml, in other groups it was in the given range only in 8,3-9,0% of patients. Conclusion. Inflammatory mechanisms play important role in pathogenesis of PH. Characteristics of inflammatory process in IPH differ from those in associated PH forms (higher level IL-1β and the TNF-α in IPH; IL-6 in SS and hsCRP in COPD, tendency to increase the level of fractalkine in IPH) which makes it possible to use these markers for the purposes of differential diagnostics.
1. Galie N, Hoeper M, Humbert M. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2009; 34: 1219–63.
2. Peacock AJ, Murphy NF, McMurray JJ et al. An epidemiological study of pulmonary arterial hypertension. Eur Respir J 2007; 30 (1): 104–9.
3. Thabut G, Dauriat G, Stern JB et al. Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 2005; 127 (5): 1531–6.
4. Hoeper MM, Mayer E, Simonneau G, Rubin LJ. Chronic thromboembolic pulmonary hypertension. Circulation 2006; 113 (16): 2011–20.
5. Humbert M, Sitbon O, Chaouat A et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 2006; 173 (9): 1023–30.
6. Dorfmuller P, Perros F, Balabanian K et al Inflammation in pulmonary arterial hypertension. Eur Respir J 2003; 22: 358–63.
7. Rich S, Dantzker DR, Ayres SM et al Primary pulmonary hypertension: a national prospective study. Ann Intern Med 1987; 107: 216-23.
8. Рекомендации ВНОК по диагностике и лечению легочной гипертензии. Кардиоваск. тер. и проф. 2007; 6 (6); Прил. 2.
9. Humbert M, Morrell NW, Archer SL et al. Cellular and molecular patho-biology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43: S13–S24.
10. Sanchez O, Sitbon O, Ja_s X et al. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest 2006; 130(1): 182–9.
11. Jais X, Launay D, Yaici A et al. Immunosuppressive therapy in lupus- and mixed connective tissue disease-associated pulmonary arterial hypertension: a retrospective analysis of twenty-three cases. Arthritis Rheum. 2008; 58(2): 521–31.
12. Lagrand WK, Visser CA, Hermens WT et al C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 1999; 100: 96–102.
13. Lakoski SG, Cushman M, Palmas W et al The relationship between blood pressure and C-reactive protein in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2005; 46: 1869–74.
14. Patel AR, Hurst JR, Wedzicha JA. The potential value of biomarkers in diagnosis and staging of COPD and exacerbations. Semin Respir Crit Care Med 2010; 31 (3): 267–75.
15. Venugopal SK, Devaraj S, Yuhanna I et al. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002; 106: 1439–41.
16. Verma S, Li SH, Badiwala MV et al Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002; 105: 1890–96.
17. Joppa P, Petrasova D, Stancak B, Tkacova R. Systemic inflammation in patients with COPD and pulmonary hypertension. Chest 2006; 130 (2): 326–33.
18. Heresi G, Dweik R. Biomarkers in pulmonary hypertension. PVRI review. 2010; 2 (1): 12–6.
19. Humbert M, Monti G, Brenot F et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151 (5): 1628–31.
20. Amany R. Seraga, Sahar M et al. Regulated upon activation, normal T-cell expressed and secreted chemokine and interleukin-6 in rheumatic pulmonary hypertension, targets for therapeutic decisions Eur J Cardiothorac Surg 2010; 37: 853–58.
21. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and element of in_ammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994; 144: 275–85.
22. Fong AM, Robinson LA, Streeber DA, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 1998; 188: 1413.
23. Garcia GE, Xia Y, Chen S, et al. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 2000; 67 (4): 577–84.
24. Ludwig A, Berkhout T, Moores K et al. Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-alpha and is modulated by metalloproteinase activity. J Immunol 2002; 168 (2): 604–12.
25. Moon SO, Kim W, Sung MJ et al. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol 2006; 70 (1): 112–9.