МикроРНК – класс некодирующих, одноцепочных РНК длиной 19–24 нуклеотидов, основной функцией которых является ингибирование экспрессии белок-кодирующих генов на посттранскрипционном уровне. Известно, что микроРНК являются важным патогенетическим звеном в развитии множества заболеваний, в том числе и сердечно-сосудистых. Разный уровень экспрессии данных молекул при различных патологиях позволяет рассматривать микроРНК в качестве потенциального диагностического и прогностического биомаркера. Многочисленные исследования подтверждают факт изменения профиля экспрессии микроРНК при сердечной недостаточности (СН). Однако подавляющее большинство этих исследований включали в себя пациентов со стабильной хронической СН, в то время как связи этих молекул с острой СН уделялось гораздо меньшее внимание. Острая СН является основной причиной госпитализации пациентов старшей возрастной группы, однако, с учетом низкой прогностической способности имеющихся биологических маркеров СН, поиск нового биологического маркера с высокой прогностической значимостью является важной задачей современной медицины. Данная статья содержит краткий обзор исследований, посвященных оценке диагностических и прогностических способностей нового потенциального биомаркера при острой СН.
MicroRNA is a class of non-coding, single-stranded RNA 19–24 nucleotides in length, the main function of which is to inhibit the expression of protein-coding genes at the post-transcriptional level. It is known that microRNAs are an important pathogenetic link in the development of many diseases, including cardiovascular ones. Different levels of expression of these molecules in different pathologies make microRNAs potential diagnostic and prognostic biomarkers. Numerous studies confirm the fact of changes in the profile of microRNA expression in heart failure (HF). However, it is worth noting that the vast majority of these studies included patients with stable chronic HF, while the connection of these molecules with acute HF has received far less attention. Acute HF is the main cause of hospitalization for older patients. However, taking into account the low prognostic ability of existing biological markers of HF, the search for a new biological marker with a high prognostic significance is an important task of modern medicine. The article provides a brief overview of the research on the evaluation of diagnostic and prognostic abilities of a new potential of the biomarker in acute HF.
1. Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56: 1733–41.
2. Romakina VV, Zhirov IV, Nasonova SN et al. Micro RNA as Biomarkers of Cardiovascular Diseases: Large Opportunities of Small Molecules. Cardiology 2018; 58 (1): 66–71. DOI: 10.18087/cardio.2018.1.10083
3. Givertz MM, Teerlink JR, Albert NM et al. Acute decompensated heart failure: update on new and emerging evidence and directions for future research. J Card Fail 2013; 19: 371–89.
4. Maisel AS, Richards AM, Pascual-Figal D, Mueller C. Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol 2015; 115: 32B–37B.
5. Pascual-Figal DA, Caballero L, Sanchez-Mas J, Lax A. Prognostic markers for acute heart failure. Expert Opin Med Diagn 2013; 7: 379–92.
6. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for predicting mortality and/or heart-failure hospitalization in patients with heart failure. JACC Heart Fail 2014; 2: 429–36.
7. Rahimi K, Bennett D, Conrad N et al. Risk prediction in patients with heart failure. JACC Heart Fail 2014; 2: 440–6.
8. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–200.
9. Bayés-Genis A, Lanfear DE, de Ronde MWJ et al. Pinto: Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patient. Eur J Heart Fail 2018; 20: 67–75.
10. Kochetov AG, Lyang OV, Gimadiev RR et al. Expression of circulating microRNA in chronic heart failure in patients with cardiovascular pathologies. Lab Serv 2016; 1: 26–32. DOI: 10.17116/labs20165126-32
11. Masson S, Batkai S, Beermann J et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Failure 2018; 20: 78–85.
12. Tijsen AJ, Creemers EE, Moerland PD et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106: 1035–9.
13. Ellis KL, Cameron VA, Troughton RW et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013; 15: 1138–47.
14. Seronde MF, Vausort M, Gayat EJ et al. GREAT Network. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One 2015; 10: e0142237.
15. Bruno N, ter Maaten JM, Ovchinnikova ES et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int J Cardiol 2016; 203: 564–9.
16. Ovchinnikova ES, Schmitter D, Vegter EL et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 2016; 18: 414–23.
17. Vegter EL, Schmitter D, Hagemeijer Y et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol 2016; 224: 231–9.
18. Vegter EL, van der Meer P, Voors AA. Associations between volume status and circulating microRNAs in acute heart failure. Eur J Heart Fail 2017; 19 (8): 1077–8.
19. Melman YF, Shah R, Danielson K et al. Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Study. Circulation 2015; 131: 2202–16.
20. Xiao J, Gao R, Bei Y et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell Physiol Biochem 2017; 41: 865–74.
21. Van Boven N, Kardys I, van Vark LC et al. Serially measured circulating microRNAs and adverse clinical outcomes in patients with acute heart failure. Eur J Heart Fail 2018; 20: 89–96.
22. Жиров И.В., Кочетов А.Г., Засеева А.В. и др. МикроРНК в диагностике хронической сердечной недостаточности: состояние проблемы и результаты пилотного исследования. Системные гипертензии. 2016; 13 (1): 39–46.
[Zhirov IV, Kochetov AG, Zaseeva AV et al. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot study. Systemic Hypertension. 2016; 13 (1): 39–46 (in Russian).]
23. Goren Y, Kushnir M, Zafrir B et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 2012; 14: 147–54.
________________________________________________
1. Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56: 1733–41.
2. Romakina VV, Zhirov IV, Nasonova SN et al. Micro RNA as Biomarkers of Cardiovascular Diseases: Large Opportunities of Small Molecules. Cardiology 2018; 58 (1): 66–71. DOI: 10.18087/cardio.2018.1.10083
3. Givertz MM, Teerlink JR, Albert NM et al. Acute decompensated heart failure: update on new and emerging evidence and directions for future research. J Card Fail 2013; 19: 371–89.
4. Maisel AS, Richards AM, Pascual-Figal D, Mueller C. Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol 2015; 115: 32B–37B.
5. Pascual-Figal DA, Caballero L, Sanchez-Mas J, Lax A. Prognostic markers for acute heart failure. Expert Opin Med Diagn 2013; 7: 379–92.
6. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for predicting mortality and/or heart-failure hospitalization in patients with heart failure. JACC Heart Fail 2014; 2: 429–36.
7. Rahimi K, Bennett D, Conrad N et al. Risk prediction in patients with heart failure. JACC Heart Fail 2014; 2: 440–6.
8. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–200.
9. Bayés-Genis A, Lanfear DE, de Ronde MWJ et al. Pinto: Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patient. Eur J Heart Fail 2018; 20: 67–75.
10. Kochetov AG, Lyang OV, Gimadiev RR et al. Expression of circulating microRNA in chronic heart failure in patients with cardiovascular pathologies. Lab Serv 2016; 1: 26–32. DOI: 10.17116/labs20165126-32
11. Masson S, Batkai S, Beermann J et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Failure 2018; 20: 78–85.
12. Tijsen AJ, Creemers EE, Moerland PD et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106: 1035–9.
13. Ellis KL, Cameron VA, Troughton RW et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013; 15: 1138–47.
14. Seronde MF, Vausort M, Gayat EJ et al. GREAT Network. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One 2015; 10: e0142237.
15. Bruno N, ter Maaten JM, Ovchinnikova ES et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int J Cardiol 2016; 203: 564–9.
16. Ovchinnikova ES, Schmitter D, Vegter EL et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 2016; 18: 414–23.
17. Vegter EL, Schmitter D, Hagemeijer Y et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol 2016; 224: 231–9.
18. Vegter EL, van der Meer P, Voors AA. Associations between volume status and circulating microRNAs in acute heart failure. Eur J Heart Fail 2017; 19 (8): 1077–8.
19. Melman YF, Shah R, Danielson K et al. Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Study. Circulation 2015; 131: 2202–16.
20. Xiao J, Gao R, Bei Y et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell Physiol Biochem 2017; 41: 865–74.
21. Van Boven N, Kardys I, van Vark LC et al. Serially measured circulating microRNAs and adverse clinical outcomes in patients with acute heart failure. Eur J Heart Fail 2018; 20: 89–96.
22. Zhirov IV, Kochetov AG, Zaseeva AV et al. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot study. Systemic Hypertension. 2016; 13 (1): 39–46 (in Russian).
23. Goren Y, Kushnir M, Zafrir B et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 2012; 14: 147–54.
Авторы
С.Н. Насонова1, Д.Р. Миндзаев1, И.В. Жиров*1,2, С.Н. Терещенко1
1ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*izhirov@mail.ru
________________________________________________
Svetlana N. Nasonova1, Dzambolat R. Mindzaev1, Igor V. Zhirov*1,2,
Sergei N. Tereshchenko1
1National Medical Research Center for Cardiology, Moscow, Russia;
2Russian Medical Academy of Continuous Professional Education,
Moscow, Russia
*izhirov@mail.ru