Цель. Выяснение влияния умеренной физической нагрузки на вариабельность сердечного ритма (ВСР) у женщин, регулярно принимающих курсы кинезитерапии. Материалы и методы. Исследования проведены с участием 72 женщин с гипертонической болезнью (ГБ), разделенных на 2 подгруппы: в первую (ГБ-1) вошли 37 женщин, страдающих ГБ II стадии и находящихся на медикаментозной терапии, вторую (ГБ-2) составили пациентки, проходившие, наряду с медикаментозным лечением, регулярные курсы кинезитерапии. Для оценки характеристик ВСР применялся метод фотоплетизмографии. Использованы следующие показатели: SDRR – стандартное отклонение всех кардиоинтервалов, RMSSD – квадратный корень из средней суммы квадратов разностей кардиоинтервалов, LF – мощность колебаний в диапазоне низких частот, обусловленная активностью симпатического отдела, HF – мощность в диапазоне высоких частот, связана с дыхательными движениями и обусловленная вагусной активностью, LF/HF – отношение мощностей, отражающее симпатовагусный баланс, CVI – нелинейный парасимпатический индекс, CSI – нелинейный симпатический индекс. Результаты. Установлено, что средняя частота сердечных сокращений у женщин обеих групп приблизительно одинакова, тогда как все остальные показатели (за исключением LF/HF и CSI) оказались значительно выше у пациенток ГБ-2. У больных группы ГБ-2 отмечается значимо большая величина показателей SDRR, RMSSD, LF, HF. При частотном анализе не выявлено повышения общей мощности колебаний кардиоинтервалов и вегетативного баланса (LF/HF). При этом обнаружено выраженное повышение нелинейного парасимпатического индекса (CVI), тогда как симпатический индекс (CSI) оставался неизменным. Заключение. Регулярное использование курсов кинезитерапии способствует повышению тонуса парасимпатического отдела автономной нервной системы, значительно угнетенного при ГБ.
Aim. To elucidate the effect of moderate exercise on heart rate variability (HRV) in women who regularly take kinesitherapy courses. Materials and methods. Studies were conducted on 72 women with essential hypertension (EH), divided into 2 subgroups: first (EH-1) included 37 women suffering from stage II EH and under medical therapy, the second (EH-2) consisted of patients who underwent along with medication treatment, regular courses of kinesitherapy. To evaluate the characteristics of HRV, a photoplethysmography method was used. The following indicators were used: SDRR is the standard deviation of all cardiointervals, RMSSD is the square root of the average sum of squares of cardiointerval differences, LF – is the oscillation power in the low frequency range, due to the activity of the sympathetic section, HF – is the power in the high frequency range, associated with respiratory movements and caused by vagal activity, LF/HF – is the power ratio, reflecting sympathetic balance, CVI – nonlinear parasympathetic index, CSI – nonlinear sympathetic index. Results. It was established that the average heart rate in women of both groups is approximately the same, while all other indicators (with the exception of LF/HF and CSI) were significantly higher in patients EH-2 group. In patients EH-2 group, there is a significantly larger value of SDRR, RMSSD, LF, HF. In the frequency analysis, no increase in the total power of cardiointerval oscillations and autonomic balance (LF/HF) was detected. A pronounced increase in the nonlinear parasympathetic index (CVI) has been shown, while the sympathetic index (CSI) remained unchanged. Conclusion. Regular use of kinesitherapy courses helps to increase the tone of the parasympathetic division of the autonomic nervous system, which is significantly depressed in EH.
1. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84 (2): 482–92. DOI: 10.1161/01.CIR.84.2.482
2. de Andrade PE, do Amaral JAT, Paiva LDS et al. Reduction of heart rate variability in hypertensive elderly. Blood Press 2017; 26 (6): 350–8. DOI: 0.1080/08037051.2017.1354285
3. Nagy K, Sipos E, El Hadj Othmane T. Heart rate variability is significantly reduced in non-diabetic patients with hypertension. Orvosi hetilap 2014; 155 (22): 865–70. DOI: 10.1556/OH.2014.29886
4. Давыдов С.О., Кузник Б.И., Степанов А.В. и др. Влияние кинезитерапии на содержание «гормона молодости» ирисина у здоровых и больных ишемической болезнью сердца. Вестн. восстановительной медицины. 2015; 5: 91–8.
[Davydov SO, Kuznik BI, Stepanov AV et al. Vliianie kineziterapii na soderzhanie "gormona molodosti" irisina u zdorovykh i bol'nykh ishemicheskoi bolezn'iu serdtsa. Vestn. vosstanovitel'noi meditsiny. 2015; 5: 91–8 (in Russian).]
5. Давыдов С.О., Степанов А.В., Кузник Б.И., Гусева Е.С. Влияние кинезитерапии на уровень адгезивной молекулы JAM-A у больных гипертонической болезнью. Вестн. восстановительной медицины. 2017; 5: 33–7.
. [Davydov SO, Stepanov AV, Kuznik BI, Guseva ES. Vliianie kineziterapii na uroven' adgezivnoi molekuly JAM-A u bol'nykh gipertonicheskoi bolezn'iu. Vestn. vosstanovitel'noi meditsiny. 2017; 5: 33–7 (in Russian).]
6. Гусева Е.С., Давыдов С.О., Кузник Б.И. и др. Роль дифференцировочного фактора роста 11 (GDF11) в регуляции липидного обмена и кардиогемодинамических функций у больных гипертонической болезнью при умеренной физической нагрузке. Рос. кардиол. журн. 2018; 4: 93–8. DOI: 10.15829/1560-4071-2018-4-93-98
[Guseva ES, Davydov SO, Kuznik BI et al. Rol' differencirovochnogo faktora rosta 11 (GDF11) v reguljacii lipidnogo obmena i kardiogemodinamicheskih funkcij u bol'nyh gipertonicheskoj bolezn'ju pri umerennoj fizicheskoj nagruzke. Ros. kardiol. zhurnal. 2018; 4: 93–8. DOI: 10.15829/1560-4071-2018-4-93-98. (in Russian).]
7. Pinheiro N, Couceiro R, Henriques J et al. Can PPG be used for HRV analysis? 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016; p. 2945–9. DOI: 10.1109/EMBC.2016.7591347
8. Fine I, Kaminsky AV, Shenkman L. A new sensor for stress measurement based on blood flow fluctuations. Dynamics and Fluctuations in Biomedical Photonics XII. SPIE Press 2016; 9707: 970705. DOI: 10.1117/12.2212866
9. Kuznik BI, Smolyakov YN, Tsybikov NN et al. Impact of fitness status on the optically measured hemodynamic indexes. J Healthcare Engineering 2018; 1674931. DOI: 10.1155/2018/1674931
10. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Frontiers in public health 2017; 5: 258. DOI: 10.3389/fpubh.2017.00258
11. Barbieri R, Scilingo EP, Valenza G. (ed.). Complexity and nonlinearity in cardiovascular signals. Springer, 2017.
12. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org
13. Toichi M, Sugiura T, Murai T, Sengoku A. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J Autonomic Nervous System 1997; 62 (1–2): 79–84. DOI: 10.1016/S0165-1838(96)00112-9
14. Koichubekov BK, Sorokina MA, Laryushina YM et al. Nonlinear analyses of heart rate variability in hypertension. Ann de Cardiologie et d'Angéiologie 2018; 67 (3): 174–79. DOI: 10.1016/j.ancard.2018.04.014Get
15. Masroor S, Bhati P, Verma S et al. Heart Rate Variability following Combined Aerobic and Resistance Training in Sedentary Hypertensive Women: A Randomised Control Trial. Indian Heart J 2018; 70:
28–S35. DOI: 10.1016/j.ihj.2018.03.005
16. Besnier F, Labrunee M, Pathak A et al. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Physical Rehabilitation Medicine 2017; 60 (1): 27–35. DOI: 10.1016/j.rehab.2016.07.002
________________________________________________
1. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84 (2): 482–92. DOI: 10.1161/01.CIR.84.2.482
2. de Andrade PE, do Amaral JAT, Paiva LDS et al. Reduction of heart rate variability in hypertensive elderly. Blood Press 2017; 26 (6): 350–8. DOI: 0.1080/08037051.2017.1354285
3. Nagy K, Sipos E, El Hadj Othmane T. Heart rate variability is significantly reduced in non-diabetic patients with hypertension. Orvosi hetilap 2014; 155 (22): 865–70. DOI: 10.1556/OH.2014.29886
4. Davydov SO, Kuznik BI, Stepanov AV et al. Vliianie kineziterapii na soderzhanie "gormona molodosti" irisina u zdorovykh i bol'nykh ishemicheskoi bolezn'iu serdtsa. Vestn. vosstanovitel'noi meditsiny. 2015; 5: 91–8 (in Russian).
5. Davydov SO, Stepanov AV, Kuznik BI, Guseva ES. Vliianie kineziterapii na uroven' adgezivnoi molekuly JAM-A u bol'nykh gipertonicheskoi bolezn'iu. Vestn. vosstanovitel'noi meditsiny. 2017; 5: 33–7 (in Russian).
6. Guseva ES, Davydov SO, Kuznik BI et al. Rol' differencirovochnogo faktora rosta 11 (GDF11) v reguljacii lipidnogo obmena i kardiogemodinamicheskih funkcij u bol'nyh gipertonicheskoj bolezn'ju pri umerennoj fizicheskoj nagruzke. Ros. kardiol. zhurnal. 2018; 4: 93–8. DOI: 10.15829/1560-4071-2018-4-93-98. (in Russian).
7. Pinheiro N, Couceiro R, Henriques J et al. Can PPG be used for HRV analysis? 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016; p. 2945–9. DOI: 10.1109/EMBC.2016.7591347
8. Fine I, Kaminsky AV, Shenkman L. A new sensor for stress measurement based on blood flow fluctuations. Dynamics and Fluctuations in Biomedical Photonics XII. SPIE Press 2016; 9707: 970705. DOI: 10.1117/12.2212866
9. Kuznik BI, Smolyakov YN, Tsybikov NN et al. Impact of fitness status on the optically measured hemodynamic indexes. J Healthcare Engineering 2018; 1674931. DOI: 10.1155/2018/1674931
10. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Frontiers in public health 2017; 5: 258. DOI: 10.3389/fpubh.2017.00258
11. Barbieri R, Scilingo EP, Valenza G. (ed.). Complexity and nonlinearity in cardiovascular signals. Springer, 2017.
12. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org
13. Toichi M, Sugiura T, Murai T, Sengoku A. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J Autonomic Nervous System 1997; 62 (1–2): 79–84. DOI: 10.1016/S0165-1838(96)00112-9
14. Koichubekov BK, Sorokina MA, Laryushina YM et al. Nonlinear analyses of heart rate variability in hypertension. Ann de Cardiologie et d'Angéiologie 2018; 67 (3): 174–79. DOI: 10.1016/j.ancard.2018.04.014Get
15. Masroor S, Bhati P, Verma S et al. Heart Rate Variability following Combined Aerobic and Resistance Training in Sedentary Hypertensive Women: A Randomised Control Trial. Indian Heart J 2018; 70:
28–S35. DOI: 10.1016/j.ihj.2018.03.005
16. Besnier F, Labrunee M, Pathak A et al. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Physical Rehabilitation Medicine 2017; 60 (1): 27–35. DOI: 10.1016/j.rehab.2016.07.002
Авторы
Ю.Н. Смоляков*1,2, Б.И. Кузник1,2, Е.С. Гусева2, С.О. Давыдов1,2
1ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава России, Чита, Россия;
2Иновационная клиника «Академия здоровья», Чита, Россия
*smolyakov@rambler.ru
________________________________________________
Yuriy N. Smolyakov*1,2, Boris I. Kuznik1,2,
Ekaterina S. Guseva2, Sergey O. Davydov1,2
1Chita State Medical Academy, Chita, Russia;
2Innovation Clinic Academy of Health, Chita, Russia
*smolyakov@rambler.ru