Консенсус экспертов Российского медицинского общества по артериальной гипертонии (РМОАГ) по применению радиочастотной денервации почечных артерий у пациентов с артериальной гипертонией
Консенсус экспертов Российского медицинского общества по артериальной гипертонии (РМОАГ) по применению радиочастотной денервации почечных артерий у пациентов с артериальной гипертонией
Данилов Н.М., Агаева Р.А., Матчин Ю.Г. и др. Консенсус экспертов Российского медицинского общества по артериальной гипертонии (РМОАГ) по применению радиочастотной денервации почечных артерий у пациентов с артериальной гипертонией. Системные гипертензии. 2020; 17 (4): 7–18. DOI: 10.26442/2075082X.2020.4.200398
________________________________________________
Danilov N.M., Agaeva R.A., Matchin U.G. et al. Russian Medical Society on Arterial Hypertension (RMSAH) Consensus of Experts on the use of radiofrequency denervation of the renal arteries in patients with arterial hypertension. Systemic Hypertension. 2020; 17 (4): 7–18. DOI: 10.26442/2075082X.2020.4.200398
Консенсус экспертов Российского медицинского общества по артериальной гипертонии (РМОАГ) по применению радиочастотной денервации почечных артерий у пациентов с артериальной гипертонией
Данилов Н.М., Агаева Р.А., Матчин Ю.Г. и др. Консенсус экспертов Российского медицинского общества по артериальной гипертонии (РМОАГ) по применению радиочастотной денервации почечных артерий у пациентов с артериальной гипертонией. Системные гипертензии. 2020; 17 (4): 7–18. DOI: 10.26442/2075082X.2020.4.200398
________________________________________________
Danilov N.M., Agaeva R.A., Matchin U.G. et al. Russian Medical Society on Arterial Hypertension (RMSAH) Consensus of Experts on the use of radiofrequency denervation of the renal arteries in patients with arterial hypertension. Systemic Hypertension. 2020; 17 (4): 7–18. DOI: 10.26442/2075082X.2020.4.200398
Симпатическая гиперактивность нервной системы является одним из основных механизмов в развитии артериальной гипертонии. Транскатетерная денервация почечных артерий предназначена для разрушения почечных симпатических афферентных и эфферентных нервов для достижения устойчивого снижения артериального давления. Начиная с 2017 г. все исследования с применением устройств II поколения продемонстрировали, что ренальная денервация (РДН) обеспечивает клинически значимое снижение артериального давления. Эксперты Российского медицинского общества по артериальной гипертонии (РМОАГ) рассматривают РДН как возможное дополнение к антигипертензивной стратегии у пациентов с неконтролируемой артериальной гипертонией и рекомендуют проведение денервации почечных артерий в рамках регистров и клинических исследований. На основании существующих рандомизированных клинических исследований, а также опыта проведения РДН в России эксперты РМОАГ представляют консенсус и взгляд на современную ситуацию в области РДН.
Hyperactivity of the sympathetic nervous system is one of the basic mechanisms in the development of arterial hypertension (AH). Transcatheter renal artery denervation is aimed to destroy the renal sympathetic afferent and efferent nerves to achieve a sustained reduction in blood pressure. Since 2017, all II generation studies have demonstrated that sympathetic denervation provides clinically significant BP reduction. Russian Medical Society for Arterial Hypertension (RMSAH) experts consider SD as a possible addition to the antihypertensive strategy in patients with uncontrolled AH and recommend denervation of the renal arteries in registers and clinical trials. On the basis of existing randomized clinical trials, as well as the experience of radiofrequency denervation in Russia, the experts of RMSAH present a consensus and view of the current situation in the field of renal denervation.
1. Acelajado MC, Pisoni R, Dudenbostel T et al. Refractory hypertension: definition, prevalence, and patient characteristics. J Clin Hypertens (Greenwich) 2012; 14: 7–12. DOI: 10.1111/j.1751-7176.2011.00556.x
2. Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement fr om the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403–19. DOI: 10.1161/
HYPERTENSIONAHA.108.189141
3. AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension 2018; 71: e13–115.
4. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021–104.
5. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911–7.
6. Symplicity HTNI, Esler MD, Krum H et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity htn-2 trial): a randomised controlled trial. Lancet 2010; 376: 1903–9.
7. Bhatt DL, Kandzari DE, O’Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401. DOI: 10.1056/NEJMoa1402670
8. Townsend RR, Mahfoud F, Kandzari DE et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160–70.
9. Kandzari DE, Bohm M, Mahfoud F et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018; 391: 2346–55.
10. Azizi M, Schmieder RE, Mahfoud F et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 2018; 391: 2335–45.
11. Schmieder RE, Mahfoud F, Azizi M et al. European Society of Hypertension position paper on renal denervation 2018. J Hypertens 2018; 36: 2042–8. DOI: 10.1097/HJH.0000000000001858
12. Chiang CE, Wang TD, Lin TH et al. The 2017 focused update of the guidelines of the Taiwan Society of Cardiology (TSOC) and the Taiwan Hypertension Society (THS) for the management of hypertension. Acta Cardiol Sin 2017; 33: 213–25.
13. Kario K, Kim B-K, Aoki J et al. Renal Denervation in Asia Consensus Statement of the Asia. DOI: 10.1161/HYPERTENSIONAHA.119.13671
14. Position paper regarding renal denervation technology as treatment for hypertension. The Israeli Society of Hypertension.
15. Bruno RM, Taddei S, Borghi K et al. Italian Society of Arterial Hypertension (SIIA) Position Paper on the Role of Renal Denervation in the Management of the Difficult‑to‑Treat Hypertensive Patient. High Blood Pressure & Cardiovascular Prevention 2020; 27: 109–17. DOI: 10.1007/s40292-020-00367-0
16. Mann SJ. Neurogenic hypertension: pathophysiology, diagnosis and management. Clin Auton Res 2018; 28: 363–74.
17. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006; 7: 335–46.
18. Dibona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 2010; 298: R245–53.
19. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension: results in 1.266 cases. JAMA 1953; 152: 1501–4.
20. Kandzari DE, Bhatt DL, Brar S et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219–27. DOI: 10.1093/eurheartj/ehu441
21. Bakris GL, Townsend RR, Flack JM et al. 12-month blood pressure results of catheter-based renal artery denervation for resistant hypertension: the symplicity HTN-3 trial. J Am Coll Cardiol 2015; 65: 1314–21.
22. Sievert H, Schofer J, Ormiston J et al. Bipolar radiofrequency renal denervation with the Vessix catheter in patients with resistant hypertension: 2-year results from the REDUCE-HTN trial. J Hum Hypertens 2017; 31 (5): 366–8. DOI: 10.1038/jhh.2016.82
23. Krum H, Schlaich MP, Sobotka PA et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the symplicity HTN-1 study. Lancet 2014; 383: 622–9.
24. Esler MD, Bohm M, Sievert H et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the symplicity HTN-2 randomized clinical trial. Eur Heart J 2014; 35: 1752–9.
25. Mahfoud F, Bohm M, Schmieder R et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the global symplicity registry. Eur Heart J 2019.
26. Bohm M, Ukena C, Ewen S et al. Renal denervation reduces office and ambulatory heart rate in patients with uncontrolled hypertension: 12-month outcomes from the global symplicity registry. J Hypertens 2016; 34: 2480–6.
27. Zweiker D, Lambert T, Steinwender C et al. Effects of renal denervation documented in the austrian national multicentre renal denervation registry. PLoS One 2016; 11: e0161250.
28. Volz S, Spaak J, Elf J et al. Renal sympathetic denervation in Sweden: a report from the Swedish registry for renal denervation. J Hypertens 2018; 36: 151–8.
29. Kim BK, Bohm M, Mahfoud F et al. Renal denervation for treatment of uncontrolled hypertension in an asian population: results from the global symplicity registry in South Korea (gsr Korea). J Hum Hypertens 2016; 30: 315–21.
30. Данилов Н.М., Матчин Ю.Г., Чазова И.Е. Эндоваскулярная радиочастотная денервация почечных артерий – инновационный метод лечения рефрактерной артериальной гипертонии. Первый опыт в России. Ангиология и сосудистая хирургия. 2012: 51–3.
[Danilov N.M., Matchin Iu.G., Chazova I.E. Endovaskuliarnaia radiochastotnaia denervatsiia pochechnykh arterii – innovatsionnyi metod lecheniia refrakternoi arterial'noi gipertonii. Pervyi opyt v Rossii. Angiologiia i sosudistaia khirurgiia. 2012: 51–3 (in Russian).
31. Матчин Ю.Г., Григин В.А., Данилов Н.М. и др. Радиочастотная денервация почечных артерий в лечении рефрактерной артериальной гипертонии – результаты годичного наблюдения. Атмосфера. Новости кардиологии. 2013; 3: 12–8.
[Matchin Iu.G., Grigin V.A., Danilov N.M. et al. Radiochastotnaia denervatsiia pochechnykh arterii v lechenii refrakternoi arterial'noi gipertonii – rezul'taty godichnogo nabliudeniia. Atmosfera. Novosti kardiologii. 2013; 3: 12–8 (in Russian).]
32. Щелкова Г.В. Влияние радиочастотной денервации почечных артерий на показатели активности симпатической нервной системы, центральной и периферической гемодинамики у пациентов с рефрактерной артериальной гипертонией. Автореф. дис. … канд. мед. наук. М., 2017.
[Shchelkova G.V. Vliianie radiochastotnoi denervatsii pochechnykh arterii na pokazateli aktivnosti simpaticheskoi nervnoi sistemy, tsentral'noi i perifericheskoi gemodinamiki u patsientov s refrakternoi arterial'noi gipertoniei. Avtoref. dis. … kand. med. nauk. Moscow, 2017 (in Russian).]
33. Пекарский С.Е. Малотравматичная анатомически оптимизированная симпатическая денервация почек для лечения больных с резистентной артериальной гипертонией. Автореф. дис. … д-ра мед. наук. Томск, 2015.
[Pekarskii S.E. Malotravmatichnaia anatomicheski optimizirovannaia simpaticheskaia denervatsiia pochek dlia lecheniia bol'nykh s rezistentnoi arterial'noi gipertoniei. Avtoref. dis. … d-ra med. nauk. Tomsk, 2015 (in Russian).]
34. Рипп Т.М., Реброва Т.Ю., Мордовин В.Ф. и др. Критерии отбора больных с резистентной артериальной гипертонией для симпатической денервация почек. Терапевтический архив. 2016; 88 (8): 14–8. DOI: 10.17116/terarkh201688814-18
[Ripp T.M., Rebrova T.Yu., Mordovin V.F. et al. Criteria for the selection of patients with resistant arterial hypertension for sympathetic renal denervation. Therapeutic Archive. 2016; 88 (8): 14–8. DOI: 10.17116/terarkh201688814-18 (in Russian).]
35. Pokushalov E, Romanov A, Corbucci G et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163–70.
36. Ситкова Е.С., Мордовин В.Ф., Рипп Т.М. и др. Положительное влияние ренальной денервации на гипертрофию и субэндокардиальное повреждение миокарда. Артериальная гипертензия. 2019; 25 (1): 46–59. DOI: 10.18705/1607-419X-2019-25-1-46-59
[Sitkova E.S., Mordovin V.F., Ripp T.M. et al. Positive effects of renal denervation on left ventricular hypertrophy and subendocardial damage. Arterial Hypertension. 2019; 25 (1): 46–59. DOI: 10.18705/1607-419X-2019-25-1-46-59 (in Russian).]
37. Рипп Т.М. Нарушения реактивности артерий: комплексные методы оценки и возможности коррекции, органопротективные эффекты симпатической денервации почек у пациентов с артериальной гипертензией. Автореф. дис. … д-ра мед. наук. Томск, 2017.
[Ripp T.M. Narusheniia reaktivnosti arterii: kompleksnye metody otsenki i vozmozhnosti korrektsii, organoprotektivnye effekty simpaticheskoi denervatsii pochek u patsientov s arterial'noi gipertenziei. Avtoref. dis. … d-ra med. nauk. Tomsk, 2017 (in Russian).]
38. Фальковская А.Ю., Мордовин В.Ф., Пекарский С.Е. и др. Ренальная денервация как новая стратегия нефропротекции у больных резистентной артериальной гипертонией, ассоциированной с сахарным диабетом 2-го типа. Сиб. журн. клинической и экспериментальной медицины. 2020; 35 (1): 80–92. DOI: 10.29001/2073-8552-2020-35-1-80-92
[Falkovskaya A.Yu., Mordovin V.F., Pekarskiy S.E. et al. Renal denervation as a new nephroprotective strategy in diabetic patients with resistant hypertension. The Siberian Journal of Clinical and Experimental Medicine. 2020; 35 (1): 80–92. DOI: 10.29001/2073-8552-2020-35-1-80-92 (in Russian).]
39. Агаева Р.А., Данилов Н.М., Щелкова Г.В. и др. Применение метода радиочастотной денервации почечных артерий мультиэлектродным биполярным устройством при рефрактерной артериальной гипертонии. Кардиологический вестн. 2017; 2: 76–8.
[Agaeva R.A., Danilov N.M., Shchelkova G.V. et al. Primenenie metoda radiochastotnoi denervatsii pochechnykh arterii mul'tielektrodnym bipoliarnym ustroistvom pri refrakternoi arterial'noi gipertonii. Kardiologicheskii vestn. 2017; 2: 76–8 (in Russian).]
40. Агаева Р.А., Данилов Н.М., Щелкова Г.В. и др. Радиочастотная денервация почечных артерий моноэлектродным и мультиэлектродным устройствами у пациентов с неконтролируемой артериальной гипертонией: результаты 6-месячного наблюдения Системные гипертензии. 2020; 17 (1): 46–50. DOI: 10.26442/2075082X.2020.1.200077
[Agaeva R.A., Danilov N.M., Shchcelkova G.V. et al. Radiofrequency renal denervation with mono-electrode and multi-electrode device for treatment in patient with uncontrolled hypertension: results of a 6-month follow-up. Systemic Hypertension. 2020; 17 (1): 46–50. DOI: 10.26442/2075082X.2020.1.200077 (in Russian).]
41. Pekarskiy SE, Baev AE, Mordovin VF et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 2017; 35: 369–75.
42. Pekarskiy S, Baev A, Mordovin V et al. First-in-man experience of distal renal denervation in segmental branches of renal artery using multi-electrode balloon device. J Hypertens 2018; 6 (36): e167.
43. Böhm M, Mahfoud F, Townsend RR et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN- OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J 2019; 40: 743–51. DOI: 10.1093/eurheartj/ehy871
44. Kario K, Bhatt DL, Kandzari DE et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension-insights from the symplicity HTN-3 trial. Circ J 2016; 80: 1404–12.
45. Warchol-Celinska E, Prejbisz A, Kadziela J et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension 2018; 72: 381–90.
46. Pedrosa RP, Drager LF, Gonzaga CC et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811–7.
47. Muxfeldt ES, Margallo VS, Guimaraes GM, Salles G2. Prevalence and associated factors of obstructive sleep apnea in patients with resistant hypertension. Am J Hypertens 2014; 27: 1069–78.
48. Rimoldi SF, Scherrer U, Messerli FH. Secondary arterial hypertension: when, who, and how to screen? Eur Heart J 2014; 35: 1245–54.
49. Linz D, Mancia G, Mahfoud F et al. Renal artery denervation for treatment of patients with self-reported obstructive sleep apnea and resistant hypertension: results from the global SYMPLICITY registry. J Hypertens 2017; 35: 148–53.
50. Logan AG, Perlikowski SM, Mente A et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 2001; 19: 2271–7.
51. Cooper CJ, Murphy TP, Cutlip DE et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 2014; 370: 13–22.
52. Sakakura K, Ladich E, Cheng Q et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64: 635–43.
53. Vink EE, Goldschmeding R, Vink A et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrol Dial Transplant 2014; 29: 1608–10.
54. Sanders MF, Blankestijn PJ. Chronic Kidney Disease As a Potential Indication for Renal Denervation. Front Physiol 2016; 7: 220.
55. Rippy MK, Zarins D, Barman NC et al. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol 2011; 100: 1095–101.
56. Tzafriri AR, Mahfoud F, Keating JH, et al. Innervation patterns may lim it response to endovascular renal denervation. J Am Coll Cardiol 2014;64:1079-87.
57. Mahfoud F, Bhatt DL. Catheter-based renal denervation: the black box procedure. JACC Cardiovasc Interv 2013; 6: 1092–4.
58. Henegar JR, Zhang Y, Hata C et al. Catheter-based radiofrequency renal denervation: location effects on renal norepinephrine. Am J Hypertens 2015; 28: 909–14.
59. Available from: https://clinicaltrials.gov/ct2/show/NCT04311086
60. Bhatt DL. Guide to peripheral and cerebrovascular intervention: remedica; 2004.
61. Hazirolan T, Öz M, Türkbey B et al. CT angiography of the renal arteries and veins: normal anatomy and variants. Diagn Interv Radiol 2011; 17: 67–73.
62. Kawarada O, Yokoi Y, Sakamoto S et al. Impact of aortorenal morphology on renal artery stent procedures: significance of aortic tortuosity and renal artery derivation. J Endovasc Ther 2014; 21: 140–7.
63. Galli M, Tarantino F, Mameli S et al. Transradial approach for renal percutaneous transluminal angioplasty and stenting: a feasibility pilot study. J Invasive Cardiol 2002; 14: 386–90.
64. Alli O, Mathew V, From AM et al. Transradial access for renal artery intervention is feasible and safe. Vasc Endovascular Surg 2011; 45: 738–42.
65. Liu YM, Lin PL, Liao FC et al. Effect of radiofrequency-based renal denervation: the impact of unplanned medication change from a systematic review and meta-analysis. Acta Cardiol Sin 2019; 35: 144–52.
66. Lenski M, Mahfoud F, Razouk A et al. Orthostatic function after renal sympathetic denervation in patients with resistant hypertension. Int J Cardiol 2013; 169: 418–24.
67. Pucci G, Battista F, Lazzari L et al. Progression of renal artery stenosis after renal denervation. Circ J 2014; 78: 767–8.
68. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8.
69. Persu A, Gordin D, Jacobs L et al. Blood pressure response to renal denervation is correlated with baseline blood pressure variability: a patient-level meta-analysis. J Hypertens 2018; 36: 221–9.
70. Ott C, Schmid A, Toennes SW et al. Central pulse pressure predicts BP reduction after renal denervation in patients with treatment-resistant hypertension. EuroIntervention 2015; 11: 110–6.
71. Peters CD, Mathiassen ON, Vase H et al. The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomized sham-controlled doubleblinded trial (the RESET trial). Blood Press 2017; 26: 366–80.
72. Chen W, Du H, Lu J et al. Renal artery vasodilation may be an indicator of successful sympathetic nerve damage during renal denervation procedure. Sci Rep 2016; 6: 37218.
73. Zuern CS, Eick C, Rizas KD et al. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 2013; 62: 2124–30.
74. Hart EC, McBryde FD, Burchell AE et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension 2013; 62: 533–41.
75. Пекарский С.Е., Мордовин В.Ф., Рипп Т.М., Фальковская А.Ю. Ренальная денервация в 2019 году. Сиб. журн. клинической и экспериментальной медицины. 2019; 34 (3): 21–32. DOI: 10.29001/2073-8552-2019-34-3-21-32
[Pekarskiy S.E., Mordovin V.F., Ripp T.M., Falkovskaya A.Yu. Renal denervation in 2019. The Siberian Medical Journal. 2019; 34 (3): 21–32. DOI: 10.29001/2073-8552-2019-34-3-21-32 (in Russian).]
76. Sakaoka A, Terao H, Nakamura S et al. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model. Circ Cardiovasc Interv 2018; 11: e005779.
77. Pekarskiy S, Baev A, Mordovin V et al. Easy real-time assessment of the procedural success of radiofrequency renal denervation by the impedance drop during energy delivery. Eurointervention 2020; 16 (Suppl. AC): 930. PCR e-Course 2020: 25–7.
78. Singh RR, McArdle ZM, Iudica M et al. Sustained decrease in blood pressure and reduced anatomical and functional reinnervation of renal nerves in hypertensive sheep 30 months after catheter-based renal denervation. Hypertension 2019; 73: 718–27.
79. Doytchinova A, Hassel JL, Yuan Y et al. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm 2017; 14: 25–33.
80. Mauriello A, Rovella V, Borri F et al. Hypertension in kidney transplantation is associated with an early renal nerve sprouting. Nephrol Dial Transplant 2017; 32: 1053–60.
81. Kabir RA, Doytchinova A, Liu X et al. Crescendo skin sympathetic nerve activity and ventricular arrhythmia. J Am Coll Cardiol 2017; 70: 3201–2.
82. Booth LC, Nishi EE, Yao ST et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension 2015; 65: 393–400.
________________________________________________
1. Acelajado MC, Pisoni R, Dudenbostel T et al. Refractory hypertension: definition, prevalence, and patient characteristics. J Clin Hypertens (Greenwich) 2012; 14: 7–12. DOI: 10.1111/j.1751-7176.2011.00556.x
2. Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement fr om the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403–19. DOI: 10.1161/
HYPERTENSIONAHA.108.189141
3. AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension 2018; 71: e13–115.
4. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021–104.
5. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911–7.
6. Symplicity HTNI, Esler MD, Krum H et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity htn-2 trial): a randomised controlled trial. Lancet 2010; 376: 1903–9.
7. Bhatt DL, Kandzari DE, O’Neill WW et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393–401. DOI: 10.1056/NEJMoa1402670
8. Townsend RR, Mahfoud F, Kandzari DE et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160–70.
9. Kandzari DE, Bohm M, Mahfoud F et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018; 391: 2346–55.
10. Azizi M, Schmieder RE, Mahfoud F et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 2018; 391: 2335–45.
11. Schmieder RE, Mahfoud F, Azizi M et al. European Society of Hypertension position paper on renal denervation 2018. J Hypertens 2018; 36: 2042–8. DOI: 10.1097/HJH.0000000000001858
12. Chiang CE, Wang TD, Lin TH et al. The 2017 focused update of the guidelines of the Taiwan Society of Cardiology (TSOC) and the Taiwan Hypertension Society (THS) for the management of hypertension. Acta Cardiol Sin 2017; 33: 213–25.
13. Kario K, Kim B-K, Aoki J et al. Renal Denervation in Asia Consensus Statement of the Asia. DOI: 10.1161/HYPERTENSIONAHA.119.13671
14. Position paper regarding renal denervation technology as treatment for hypertension. The Israeli Society of Hypertension.
15. Bruno RM, Taddei S, Borghi K et al. Italian Society of Arterial Hypertension (SIIA) Position Paper on the Role of Renal Denervation in the Management of the Difficult‑to‑Treat Hypertensive Patient. High Blood Pressure & Cardiovascular Prevention 2020; 27: 109–17. DOI: 10.1007/s40292-020-00367-0
16. Mann SJ. Neurogenic hypertension: pathophysiology, diagnosis and management. Clin Auton Res 2018; 28: 363–74.
17. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006; 7: 335–46.
18. Dibona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 2010; 298: R245–53.
19. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension: results in 1.266 cases. JAMA 1953; 152: 1501–4.
20. Kandzari DE, Bhatt DL, Brar S et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219–27. DOI: 10.1093/eurheartj/ehu441
21. Bakris GL, Townsend RR, Flack JM et al. 12-month blood pressure results of catheter-based renal artery denervation for resistant hypertension: the symplicity HTN-3 trial. J Am Coll Cardiol 2015; 65: 1314–21.
22. Sievert H, Schofer J, Ormiston J et al. Bipolar radiofrequency renal denervation with the Vessix catheter in patients with resistant hypertension: 2-year results from the REDUCE-HTN trial. J Hum Hypertens 2017; 31 (5): 366–8. DOI: 10.1038/jhh.2016.82
23. Krum H, Schlaich MP, Sobotka PA et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the symplicity HTN-1 study. Lancet 2014; 383: 622–9.
24. Esler MD, Bohm M, Sievert H et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the symplicity HTN-2 randomized clinical trial. Eur Heart J 2014; 35: 1752–9.
25. Mahfoud F, Bohm M, Schmieder R et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the global symplicity registry. Eur Heart J 2019.
26. Bohm M, Ukena C, Ewen S et al. Renal denervation reduces office and ambulatory heart rate in patients with uncontrolled hypertension: 12-month outcomes from the global symplicity registry. J Hypertens 2016; 34: 2480–6.
27. Zweiker D, Lambert T, Steinwender C et al. Effects of renal denervation documented in the austrian national multicentre renal denervation registry. PLoS One 2016; 11: e0161250.
28. Volz S, Spaak J, Elf J et al. Renal sympathetic denervation in Sweden: a report from the Swedish registry for renal denervation. J Hypertens 2018; 36: 151–8.
29. Kim BK, Bohm M, Mahfoud F et al. Renal denervation for treatment of uncontrolled hypertension in an asian population: results from the global symplicity registry in South Korea (gsr Korea). J Hum Hypertens 2016; 30: 315–21.
30. Danilov N.M., Matchin Iu.G., Chazova I.E. Endovaskuliarnaia radiochastotnaia denervatsiia pochechnykh arterii – innovatsionnyi metod lecheniia refrakternoi arterial'noi gipertonii. Pervyi opyt v Rossii. Angiologiia i sosudistaia khirurgiia. 2012: 51–3 (in Russian).
31. Matchin Iu.G., Grigin V.A., Danilov N.M. et al. Radiochastotnaia denervatsiia pochechnykh arterii v lechenii refrakternoi arterial'noi gipertonii – rezul'taty godichnogo nabliudeniia. Atmosfera. Novosti kardiologii. 2013; 3: 12–8 (in Russian).
32. Shchelkova G.V. Vliianie radiochastotnoi denervatsii pochechnykh arterii na pokazateli aktivnosti simpaticheskoi nervnoi sistemy, tsentral'noi i perifericheskoi gemodinamiki u patsientov s refrakternoi arterial'noi gipertoniei. Avtoref. dis. … kand. med. nauk. Moscow, 2017 (in Russian).
33. Pekarskii S.E. Malotravmatichnaia anatomicheski optimizirovannaia simpaticheskaia denervatsiia pochek dlia lecheniia bol'nykh s rezistentnoi arterial'noi gipertoniei. Avtoref. dis. … d-ra med. nauk. Tomsk, 2015 (in Russian).
34. Ripp T.M., Rebrova T.Yu., Mordovin V.F. et al. Criteria for the selection of patients with resistant arterial hypertension for sympathetic renal denervation. Therapeutic Archive. 2016; 88 (8): 14–8. DOI: 10.17116/terarkh201688814-18 (in Russian).
35. Pokushalov E, Romanov A, Corbucci G et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163–70.
36. Sitkova E.S., Mordovin V.F., Ripp T.M. et al. Positive effects of renal denervation on left ventricular hypertrophy and subendocardial damage. Arterial Hypertension. 2019; 25 (1): 46–59. DOI: 10.18705/1607-419X-2019-25-1-46-59 (in Russian).
37. Ripp T.M. Narusheniia reaktivnosti arterii: kompleksnye metody otsenki i vozmozhnosti korrektsii, organoprotektivnye effekty simpaticheskoi denervatsii pochek u patsientov s arterial'noi gipertenziei. Avtoref. dis. … d-ra med. nauk. Tomsk, 2017 (in Russian).
38. Falkovskaya A.Yu., Mordovin V.F., Pekarskiy S.E. et al. Renal denervation as a new nephroprotective strategy in diabetic patients with resistant hypertension. The Siberian Journal of Clinical and Experimental Medicine. 2020; 35 (1): 80–92. DOI: 10.29001/2073-8552-2020-35-1-80-92 (in Russian).
39. Agaeva R.A., Danilov N.M., Shchelkova G.V. et al. Primenenie metoda radiochastotnoi denervatsii pochechnykh arterii mul'tielektrodnym bipoliarnym ustroistvom pri refrakternoi arterial'noi gipertonii. Kardiologicheskii vestn. 2017; 2: 76–8 (in Russian).
40. Agaeva R.A., Danilov N.M., Shchcelkova G.V. et al. Radiofrequency renal denervation with mono-electrode and multi-electrode device for treatment in patient with uncontrolled hypertension: results of a 6-month follow-up. Systemic Hypertension. 2020; 17 (1): 46–50. DOI: 10.26442/2075082X.2020.1.200077 (in Russian).
41. Pekarskiy SE, Baev AE, Mordovin VF et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 2017; 35: 369–75.
42. Pekarskiy S, Baev A, Mordovin V et al. First-in-man experience of distal renal denervation in segmental branches of renal artery using multi-electrode balloon device. J Hypertens 2018; 6 (36): e167.
43. Böhm M, Mahfoud F, Townsend RR et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN- OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J 2019; 40: 743–51. DOI: 10.1093/eurheartj/ehy871
44. Kario K, Bhatt DL, Kandzari DE et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension-insights from the symplicity HTN-3 trial. Circ J 2016; 80: 1404–12.
45. Warchol-Celinska E, Prejbisz A, Kadziela J et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension 2018; 72: 381–90.
46. Pedrosa RP, Drager LF, Gonzaga CC et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811–7.
47. Muxfeldt ES, Margallo VS, Guimaraes GM, Salles G2. Prevalence and associated factors of obstructive sleep apnea in patients with resistant hypertension. Am J Hypertens 2014; 27: 1069–78.
48. Rimoldi SF, Scherrer U, Messerli FH. Secondary arterial hypertension: when, who, and how to screen? Eur Heart J 2014; 35: 1245–54.
49. Linz D, Mancia G, Mahfoud F et al. Renal artery denervation for treatment of patients with self-reported obstructive sleep apnea and resistant hypertension: results from the global SYMPLICITY registry. J Hypertens 2017; 35: 148–53.
50. Logan AG, Perlikowski SM, Mente A et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 2001; 19: 2271–7.
51. Cooper CJ, Murphy TP, Cutlip DE et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 2014; 370: 13–22.
52. Sakakura K, Ladich E, Cheng Q et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64: 635–43.
53. Vink EE, Goldschmeding R, Vink A et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrol Dial Transplant 2014; 29: 1608–10.
54. Sanders MF, Blankestijn PJ. Chronic Kidney Disease As a Potential Indication for Renal Denervation. Front Physiol 2016; 7: 220.
55. Rippy MK, Zarins D, Barman NC et al. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol 2011; 100: 1095–101.
56. Tzafriri AR, Mahfoud F, Keating JH, et al. Innervation patterns may lim it response to endovascular renal denervation. J Am Coll Cardiol 2014;64:1079-87.
57. Mahfoud F, Bhatt DL. Catheter-based renal denervation: the black box procedure. JACC Cardiovasc Interv 2013; 6: 1092–4.
58. Henegar JR, Zhang Y, Hata C et al. Catheter-based radiofrequency renal denervation: location effects on renal norepinephrine. Am J Hypertens 2015; 28: 909–14.
59. Available from: https://clinicaltrials.gov/ct2/show/NCT04311086
60. Bhatt DL. Guide to peripheral and cerebrovascular intervention: remedica; 2004.
61. Hazirolan T, Öz M, Türkbey B et al. CT angiography of the renal arteries and veins: normal anatomy and variants. Diagn Interv Radiol 2011; 17: 67–73.
62. Kawarada O, Yokoi Y, Sakamoto S et al. Impact of aortorenal morphology on renal artery stent procedures: significance of aortic tortuosity and renal artery derivation. J Endovasc Ther 2014; 21: 140–7.
63. Galli M, Tarantino F, Mameli S et al. Transradial approach for renal percutaneous transluminal angioplasty and stenting: a feasibility pilot study. J Invasive Cardiol 2002; 14: 386–90.
64. Alli O, Mathew V, From AM et al. Transradial access for renal artery intervention is feasible and safe. Vasc Endovascular Surg 2011; 45: 738–42.
65. Liu YM, Lin PL, Liao FC et al. Effect of radiofrequency-based renal denervation: the impact of unplanned medication change from a systematic review and meta-analysis. Acta Cardiol Sin 2019; 35: 144–52.
66. Lenski M, Mahfoud F, Razouk A et al. Orthostatic function after renal sympathetic denervation in patients with resistant hypertension. Int J Cardiol 2013; 169: 418–24.
67. Pucci G, Battista F, Lazzari L et al. Progression of renal artery stenosis after renal denervation. Circ J 2014; 78: 767–8.
68. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8.
69. Persu A, Gordin D, Jacobs L et al. Blood pressure response to renal denervation is correlated with baseline blood pressure variability: a patient-level meta-analysis. J Hypertens 2018; 36: 221–9.
70. Ott C, Schmid A, Toennes SW et al. Central pulse pressure predicts BP reduction after renal denervation in patients with treatment-resistant hypertension. EuroIntervention 2015; 11: 110–6.
71. Peters CD, Mathiassen ON, Vase H et al. The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomized sham-controlled doubleblinded trial (the RESET trial). Blood Press 2017; 26: 366–80.
72. Chen W, Du H, Lu J et al. Renal artery vasodilation may be an indicator of successful sympathetic nerve damage during renal denervation procedure. Sci Rep 2016; 6: 37218.
73. Zuern CS, Eick C, Rizas KD et al. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 2013; 62: 2124–30.
74. Hart EC, McBryde FD, Burchell AE et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension 2013; 62: 533–41.
75. Pekarskiy S.E., Mordovin V.F., Ripp T.M., Falkovskaya A.Yu. Renal denervation in 2019. The Siberian Medical Journal. 2019; 34 (3): 21–32. DOI: 10.29001/2073-8552-2019-34-3-21-32 (in Russian).
76. Sakaoka A, Terao H, Nakamura S et al. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model. Circ Cardiovasc Interv 2018; 11: e005779.
77. Pekarskiy S, Baev A, Mordovin V et al. Easy real-time assessment of the procedural success of radiofrequency renal denervation by the impedance drop during energy delivery. Eurointervention 2020; 16 (Suppl. AC): 930. PCR e-Course 2020: 25–7.
78. Singh RR, McArdle ZM, Iudica M et al. Sustained decrease in blood pressure and reduced anatomical and functional reinnervation of renal nerves in hypertensive sheep 30 months after catheter-based renal denervation. Hypertension 2019; 73: 718–27.
79. Doytchinova A, Hassel JL, Yuan Y et al. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm 2017; 14: 25–33.
80. Mauriello A, Rovella V, Borri F et al. Hypertension in kidney transplantation is associated with an early renal nerve sprouting. Nephrol Dial Transplant 2017; 32: 1053–60.
81. Kabir RA, Doytchinova A, Liu X et al. Crescendo skin sympathetic nerve activity and ventricular arrhythmia. J Am Coll Cardiol 2017; 70: 3201–2.
82. Booth LC, Nishi EE, Yao ST et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension 2015; 65: 393–400.
1 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2 Научный исследовательский институт кардиологии ФГБУ «Томский национальный исследовательский медицинский центр Российской академии наук», Томск, Россия;
3 ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России, Томск, Россия
*ndanilov1@gmail.com
________________________________________________
Nikolai M. Danilov*1, Regina A. Agaeva1, Yurii G. Matchin1, Vladimir A. Grigin1, Galina V. Shchelkova1, Tatiana M. Ripp2,3, Stanislav E. Pekarskii2, Andrei E. Baev2, Irina Е. Chazova1
1 National Medical Research Center of Cardiology, Moscow, Russia;
2 Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia;
3 Siberian State Medical University, Tomsk, Russia
*ndanilov1@gmail.com