Артериальная гипертензия (АГ) является основным модифицируемым фактором риска развития когнитивных нарушений (КН), включая деменцию, при цереброваскулярных и нейродегенеративных заболеваниях, в том числе при болезни Альцгеймера. К 2050 г. число лиц, страдающих деменцией, возрастет примерно в 3 раза в связи со старением населения и ограниченными возможностями лекарственной профилактики и лечения выраженных КН. В связи с изложенным представляется необходимым создание консенсуса экспертов, в котором были бы суммированы доступные на сегодняшний день данные доказательной медицины о влиянии антигипертензивной терапии (АГТ) на когнитивные функции (КФ). В консенсусе экспертов суммированы и проанализированы результаты проспективных рандомизированных клинических исследований, наблюдательных и популяционных исследований, метаанализов по влиянию АГТ на риск деменции и прогрессирование КН, в том числе отдельные КФ. Рассмотрены вопросы влияния антигипертензивных препаратов (АГП) на различные когнитивные домены. Литературные данные свидетельствуют о том, что АГТ снижает риск развития деменции, в том числе и сосудистой, уменьшает риск развития деменции при болезни Альцгеймера, а также снижает риск и может предотвратить прогрессирование недементных КН. Влияние АГТ на состояние разных КФ изучено мало. Большинство метаанализов не выявило преимущества какого-либо класса АГП, однако в одной работе было продемонстрировано преимущество блокаторов рецепторов ангиотензина, в то время как в другой – диуретиков. В консенсусе подчеркивается, что, учитывая высокую заболеваемость АГ в общей популяции, АГТ может являться одним из самых эффективных способов предотвращения развития и замедления прогрессирования КН. Крайне важным является своевременное назначение АГТ, особенно в молодом и среднем возрасте, что имеет большую вероятность влияния на риск развития и прогрессирования КН в пожилом возрасте. Влияние разных классов АГП на КФ требует дальнейшего изучения. Необходимо проведение большего числа правильно спланированных рандомизированных клинических исследований, в которых бы оценивалось состояние управляющих функций у пациентов с АГ.
Arterial hypertension (AH) is the major modifiable risk factor for cognitive impairment (CI), including dementia, CI in cerebrovascular and neurodegenerative diseases, including Alzheimer's disease. By 2050, the number of people with dementia will approximately 3 times increase due to the aging population and limited opportunities for drug prevention and treatment of severe CI. In connection with the above, it seems necessary to create an expert consensus, which would summarize the evidence-based medicine data available to date on the effect of antihypertensive therapy (AHT) on cognitive function (CF). In the expert consensus, the data of prospective randomized clinical trials, observational and population studies, meta-analyzes on the effect of AHT on the risk of dementia and CI progression, including certain CF, were summarized and analyzed. The consensus considers the effect of antihypertensive drugs (AHD) on various cognitive domains. Literature data give evidence that AHT reduces the risk for dementia, including vascular dementia, reduces the risk of for dementia in Alzheimer's disease, as well as reduces the risk and can prevent the progression of non-dementia CI. The effect of AHT on various CF has been little studied. Most meta-analyzes did not reveal the benefits of any class of AHD; however, one study demonstrated the advantage of angiotensin receptor blockers, while another study - diuretics. The consensus emphasizes that, given the high incidence of AH in the general population, AHT may be one of the most effective ways to prevent CI or delay CI progression. The effect of different classes of AHD on CF requires further study. It is necessary to conduct a larger number of well-designed randomized clinical trials that would assess the state of executive functions in patients with AH.
1. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J 2018; 39 (33): 3021–104. DOI: 10.1093/eurheartj/ehy339
2. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134 (6): 441–50. DOI: 10.1161/CIRCULATIONAHA.115.018912
3. Vicario A, Coca A, Gasecki D, et al. Effects of antihypertensive treatment on cognitive decline. ESH Scientific Newsletter 2019; 20: nr. 73.
4. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 2013; 9: 63–75. DOI: 10.1016/j.jalz.2012.11.007
5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Publishing, 2013.
6. Захаров В.В. Когнитивные расстройства без деменции: классификация, основные причины и лечение. Эффективная фармакотерапия. 2016; 1: 22–31 [Zakharov VV. Cognitive impairment no dementia: classification, major causes, and treatment. Effective Pharmacotherapy. 2016; 1: 22–31 (in Russian)].
7. Яхно Н.Н., Захаров В.В., Локшина А.Б., и др. Деменции: руководство для врачей. 3-е изд. М.: МЕДпреcс-информ, 2011 [Yakhno NN, Zakharov VV, Lokshina AB, et al. Dementia: a guide for doctors. 3rd ed. M.: MEDpress-inform, 2011 (in Russian)].
8. Коберская Н.Н., Остроумова Т.М. Доумеренное когнитивное снижение. Неврология, нейропсихиатрия, психосоматика. 2020; 12 (2): 92–7 [Koberskaya NN, Ostroumova TM. Near-moderate cognitive decline. Neurology, Neuropsychiatry, Psychosomatics. 2020; 12 (2): 92–7 (in Russian)]. DOI: 10.14412/2074-2711-2020-2-92-97
9. Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement 2014; 10 (6): 844–52. DOI: 10.1016/j.jalz.2014.01.001
10. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep 2017; 19 (3): 24. DOI: 10.1007/s11906-017-0724-3
11. Arbuthnott K, Frank J. Trail Making Test, Part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 2000; 22 (4): 518–28. DOI: 1380-3395(200008)22:4;1-0;FT518
12. Парфенов В.А., Остроумова Т.М., Перепелова Е.М., и др. Перфузия головного мозга, когнитивные функции и сосудистый возраст у пациентов среднего возраста с эссенциальной артериальной гипертензией. Кардиология. 2018; 58 (5): 23–31 [Parfenov VA, Ostroumova TM, Perepelova EM, et al. Brain Perfusion, Cognitive Functions, and Vascular Age in Middle Aged Patients With Essential Arterial Hypertension. Kardiologiia. 2018; 58 (5): 23–31 (in Russian)]. DOI: 10.18087/cardio.2018.5.10117
13. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53 (4): 695. DOI: 10.1111/j.1532-5415.2005.53221.x
14. Chen ST, Siddarth P, Ercoli LM, et al. Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups. PLoS One 2014; 9 (6): e98630. DOI: 10.1371/journal.pone.0098630
15. Applegate WB, Pressel S, Wittes J, et al. Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program. Arch Intern Med 1994; 154: 2154–60.
16. Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998; 352 (9137): 1347–51. DOI: 10.1016/s0140-6736(98)03086-4
17. Bosch J, Yusuf S, Pogue J, et al. Use of ramipril in preventing stroke: double blind randomised trial. Br Med J 2002; 324: 699–702. DOI: 10.1136/bmj.324.7339.699
18. Tzourio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003; 163: 1069–75. DOI: 10.1001/archinte.163.9.1069
19. Fogari R, Mugellini A, Zoppi A, et al. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol 2004; 59: 863–8. DOI: 10.1007/s00228-003-0717-9
20. Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on cognition and prognosis in the elderly (SCOPE). Am J Hypertens 2005; 18: 1052–9. DOI: 10.1016/j.amjhyper.2005.02.013
21. Schrader J, Lüders S, Kulchewski A, et al. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 2005; 36: 1218–24. DOI: 10.1161/01.STR.0000166048.35740.a9
22. Fogari R, Mugellini A, Zoppi A, et al. Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 2006; 20: 177–85.
23. Peters R, Beckett N, Forette F, et al. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 2008; 7: 683–9. DOI: 10.1016/S1474-4422(08)70143-1
24. Diener H-C, Sacco RL, Yusuf S, et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. Lancet Neurol 2008; 7: 875–84. DOI: 10.1016/S1474-4422(08)70198-4
25. Anderson C, Teo K, Gao P, et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol 2011; 10: 43–53. DOI: 10.1016/S1474-4422(10)70250-7
26. Hajjar I, Hart M, Chen YL, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med 2012; 172: 442–4. DOI: 10.1001/archinternmed.2011.1391
27. Hajjar I, Hart M, Chen YL, et al. Antihypertensive therapy and cerebral hemodynamics in executive mild cognitive impairment: results of a pilot randomized clinical trial. J Am Geriatr Soc 2013; 61 (2): 194–201. DOI: 10.1111/jgs.12100
28. Corrada MM, Hayden KM, Paganini-Hill A, et al. Age of onset of hypertension and risk of dementia in the oldest-old: The 90+ Study. Alzheimers Dement 2017; 13: 103–10. DOI: 10.1016/j.jalz.2016.09.007
29. Streit S, Poortvliet RKE, Gussekloo J. Lower blood pressure during antihypertensive treatment is associated with higher all-cause mortality and accelerated cognitive decline in the oldest-old-data from the Leiden 85plus Study. Age Ageing 2018; 47 (4): 545–50. DOI: 10.1093/ageing/afy072
30. Williamson JD, Pajewski NM, Auchus AP, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 2019; 321 (6): 553–661. DOI: 10.1001/jama.2018.21442
31. Tzourio C, Dufouil C, Ducimetie`re P, et al. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA Study Group. Epidemiology of vascular aging. Neurology 1999; 53 (9): 1948–52. DOI: 10.1212/wnl.53.9.1948
32. in't Veld BA, Ruitenberg A, Hofman A, et al. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging 2001; 22: 407–12. DOI: 10.1016/s0197-4580(00)00241-4
33. Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med 2009; 169 (13): 1195–202. DOI: 10.1001/archinternmed.2009.175
34. Gelber RP, Ross GW, Petrovitch H, et al. Antihypertensive medication use and risk of cognitive impairment. The Honolulu-Asia Aging Study. Neurology 2013; 81: 888–95. DOI: 10.1212/WNL.0b013e3182a351d4
35. Nien-Chen L, Lee A, Whitmer RA, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 2010; 340: b5465. DOI: 10.1136/bmj.b5465
36. Yasar S, Xia J, Yao W, et al. Antihypertensive drugs decrease risk of Alzheimer disease. Neurology 2013; 81: 896–903. DOI: 10.1212/WNL.0b013e3182a35228
37. Johnson ML, Parikh N, Kunik ME, et al. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Demen 2012; 8 (5): 437–44. DOI: 10.1016/j.jalz.2011.05.2414
38. Chuang Y-F, Breitner JCS, Chiu Y-L, et al. Use of diuretics is associated with reduced risk of Alzheimer’s disease: the Cache County Study. Neurobiol Aging 2014; 35 (11): 2429–35. DOI: 10.1016/j.neurobiolaging.2014.05.002
39. Peters R, Collerton J, Granic A, et al. Antihypertensive drug use and risk of cognitive decline in the very old: an observational study – the Newcastle 85+ Study. J Hypertens 2015; 33 (10): 2156–64. DOI: 10.1097/HJH.0000000000000653
40. Birns J, Morris R, Donaldson N, et al. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens 2006; 24: 1907–14. DOI: 10.1097/01.hjh.0000244934.81180.16
41. Chang-Quan H, Hui W, Chao-Min W, et al. The association of antihypertensive medications use with risk of cognitive decline and dementia: a meta-analysis of longitudinal studies. In J Clin Pract 2011; 65: 1295–305. DOI: 10.1111/j.1742-1241.2011.02810.x
42. Levi Marpillat N, Macquin-Mavier I, Tropeano A-I, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens 2013; 31 (6): 1073–82. DOI: 10.1097/HJH.0b013e3283603f53
43. Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 2015; 29: 113–30. DOI: 10.1007/s40263-015-0230-6
44. Xu G, Bai F, Lin X, et al. Association between antihypertensive drug use and the incidence of cognitive decline and dementia: a meta-analysis of prospective cohort studies. Biomed Res Int 2017; 2017: 4368474. DOI: 10.1155/2017/4368474
45. Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer's disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 2020; 19 (1): 61–70. DOI: 10.1016/S1474-4422(19)30393-X
46. Ou Y-N, Tan C-C, Shen X-N, et al. Blood pressure and risks of cognitive impairment and dementia a systematic review and meta-analysis of 209 prospective studies. Hypertension 2020; 76 (1): 217–25. DOI: 10.1161/HYPERTENSIONAHA.120.14993
47. Peters R, Yasar S, Anderson CS, et al. Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology 2020; 94 (3): e267–e281. DOI: 10.1212/WNL.0000000000008732
48. Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 2000; 21 (1): 49–55. DOI: 10.1016/s0197-4580(00)00096-8
49. Levine DA, Galecki AT, Langa KM, et al. Blood pressure and cognitive decline over 8 years in middle-aged and older black and white Americans. Hypertension 2019; 73 (2): 310–8. DOI: 10.1161/HYPERTENSIONAHA.118.12062
50. Köhler S, Baars MA, Spauwen P, et al. Temporal evolution of cognitive changes in incident hypertension: prospective cohort study across the adult age span. Hypertension 2014; 63 (2): 245–51. DOI: 10.1161/HYPERTENSIONAHA.113.02096
51. Cui J, Yu R, Li M, et al. Intervention affects the cognitive performance of middle-aged patients with essential hypertension. Int J Clin Exp Med 2016; 9 (1): 308–15.
52. Vazirinejad R, Mirmotalebi M, Bageri M, et al. Age-Related effect of antihypertensive treatment on cognitive performance: is it better preventing dementia in older age? Am J Alzheimer’s Dis Other Dementias 2019; 34 (7–8): 486–91. DOI: 10.1177/1533317519859197
53. Qiu C, Winblad B, Fratiglioni L. Low diastolic pressure and risk of dementia in very old people: a longitudinal study. Dement Geriatr Cogn Disord 2009; 28: 213–9. DOI: 10.1159/000236913
54. Verghese J, Lipton RB, Hall CB, et al. Low blood pressure and the risk of dementia in very old individuals. Neurology 2003; 61: 1667–72. DOI: 10.1212/01.wnl.0000098934.18300.be
55. Stuhec M, Keuschler J, Serra-Mestres J, et al. Effects of different antihypertensive medication groups on cognitive function in older patients: A systematic review. Eur Psychiatry 2017; 46: 1–15. DOI: 10.1016/j.eurpsy.2017.07.015
56. Cho MH, Shin DW, Chang S-A, et al. Association between cognitive impairment and poor antihypertensive medication adherence in elderly hypertensive patients without dementia. Sci Rep 2018; 8: 1–7. DOI: 10.1038/s41598-018-29974-7
57. Wei MY, Levine DA, Zahodne LB, et al. Multimorbidity and cognitive decline over 14 years in older americans. J Gerontol A Biol Sci Med Sci 2020; 75 (6): 1206–13. DOI: 10.1093/gerona/glz147
________________________________________________
1. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J 2018; 39 (33): 3021–104. DOI: 10.1093/eurheartj/ehy339
2. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134 (6): 441–50. DOI: 10.1161/CIRCULATIONAHA.115.018912
3. Vicario A, Coca A, Gasecki D, et al. Effects of antihypertensive treatment on cognitive decline. ESH Scientific Newsletter 2019; 20: nr. 73.
4. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 2013; 9: 63–75. DOI: 10.1016/j.jalz.2012.11.007
5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Publishing, 2013.
6. Zakharov VV. Cognitive impairment no dementia: classification, major causes, and treatment. Effective Pharmacotherapy. 2016; 1: 22–31 (in Russian).
7. Yakhno NN, Zakharov VV, Lokshina AB, et al. Dementia: a guide for doctors. 3rd ed. M.: MEDpress-inform, 2011 (in Russian).
8. Koberskaya NN, Ostroumova TM. Near-moderate cognitive decline. Neurology, Neuropsychiatry, Psychosomatics. 2020; 12 (2): 92–7 (in Russian). DOI: 10.14412/2074-2711-2020-2-92-97
9. Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement 2014; 10 (6): 844–52. DOI: 10.1016/j.jalz.2014.01.001
10. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep 2017; 19 (3): 24. DOI: 10.1007/s11906-017-0724-3
11. Arbuthnott K, Frank J. Trail Making Test, Part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 2000; 22 (4): 518–28. DOI: 1380-3395(200008)22:4;1-0;FT518
12. Parfenov VA, Ostroumova TM, Perepelova EM, et al. Brain Perfusion, Cognitive Functions, and Vascular Age in Middle Aged Patients With Essential Arterial Hypertension. Kardiologiia. 2018; 58 (5): 23–31 (in Russian). DOI: 10.18087/cardio.2018.5.10117
13. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53 (4): 695. DOI: 10.1111/j.1532-5415.2005.53221.x
14. Chen ST, Siddarth P, Ercoli LM, et al. Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups. PLoS One 2014; 9 (6): e98630. DOI: 10.1371/journal.pone.0098630
15. Applegate WB, Pressel S, Wittes J, et al. Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program. Arch Intern Med 1994; 154: 2154–60.
16. Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998; 352 (9137): 1347–51. DOI: 10.1016/s0140-6736(98)03086-4
17. Bosch J, Yusuf S, Pogue J, et al. Use of ramipril in preventing stroke: double blind randomised trial. Br Med J 2002; 324: 699–702. DOI: 10.1136/bmj.324.7339.699
18. Tzourio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003; 163: 1069–75. DOI: 10.1001/archinte.163.9.1069
19. Fogari R, Mugellini A, Zoppi A, et al. Effects of valsartan compared with enalapril on blood pressure and cognitive function in elderly patients with essential hypertension. Eur J Clin Pharmacol 2004; 59: 863–8. DOI: 10.1007/s00228-003-0717-9
20. Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on cognition and prognosis in the elderly (SCOPE). Am J Hypertens 2005; 18: 1052–9. DOI: 10.1016/j.amjhyper.2005.02.013
21. Schrader J, Lüders S, Kulchewski A, et al. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 2005; 36: 1218–24. DOI: 10.1161/01.STR.0000166048.35740.a9
22. Fogari R, Mugellini A, Zoppi A, et al. Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 2006; 20: 177–85.
23. Peters R, Beckett N, Forette F, et al. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 2008; 7: 683–9. DOI: 10.1016/S1474-4422(08)70143-1
24. Diener H-C, Sacco RL, Yusuf S, et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. Lancet Neurol 2008; 7: 875–84. DOI: 10.1016/S1474-4422(08)70198-4
25. Anderson C, Teo K, Gao P, et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol 2011; 10: 43–53. DOI: 10.1016/S1474-4422(10)70250-7
26. Hajjar I, Hart M, Chen YL, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med 2012; 172: 442–4. DOI: 10.1001/archinternmed.2011.1391
27. Hajjar I, Hart M, Chen YL, et al. Antihypertensive therapy and cerebral hemodynamics in executive mild cognitive impairment: results of a pilot randomized clinical trial. J Am Geriatr Soc 2013; 61 (2): 194–201. DOI: 10.1111/jgs.12100
28. Corrada MM, Hayden KM, Paganini-Hill A, et al. Age of onset of hypertension and risk of dementia in the oldest-old: The 90+ Study. Alzheimers Dement 2017; 13: 103–10. DOI: 10.1016/j.jalz.2016.09.007
29. Streit S, Poortvliet RKE, Gussekloo J. Lower blood pressure during antihypertensive treatment is associated with higher all-cause mortality and accelerated cognitive decline in the oldest-old-data from the Leiden 85plus Study. Age Ageing 2018; 47 (4): 545–50. DOI: 10.1093/ageing/afy072
30. Williamson JD, Pajewski NM, Auchus AP, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 2019; 321 (6): 553–661. DOI: 10.1001/jama.2018.21442
31. Tzourio C, Dufouil C, Ducimetie`re P, et al. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA Study Group. Epidemiology of vascular aging. Neurology 1999; 53 (9): 1948–52. DOI: 10.1212/wnl.53.9.1948
32. in't Veld BA, Ruitenberg A, Hofman A, et al. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging 2001; 22: 407–12. DOI: 10.1016/s0197-4580(00)00241-4
33. Sink KM, Leng X, Williamson J, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med 2009; 169 (13): 1195–202. DOI: 10.1001/archinternmed.2009.175
34. Gelber RP, Ross GW, Petrovitch H, et al. Antihypertensive medication use and risk of cognitive impairment. The Honolulu-Asia Aging Study. Neurology 2013; 81: 888–95. DOI: 10.1212/WNL.0b013e3182a351d4
35. Nien-Chen L, Lee A, Whitmer RA, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 2010; 340: b5465. DOI: 10.1136/bmj.b5465
36. Yasar S, Xia J, Yao W, et al. Antihypertensive drugs decrease risk of Alzheimer disease. Neurology 2013; 81: 896–903. DOI: 10.1212/WNL.0b013e3182a35228
37. Johnson ML, Parikh N, Kunik ME, et al. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Demen 2012; 8 (5): 437–44. DOI: 10.1016/j.jalz.2011.05.2414
38. Chuang Y-F, Breitner JCS, Chiu Y-L, et al. Use of diuretics is associated with reduced risk of Alzheimer’s disease: the Cache County Study. Neurobiol Aging 2014; 35 (11): 2429–35. DOI: 10.1016/j.neurobiolaging.2014.05.002
39. Peters R, Collerton J, Granic A, et al. Antihypertensive drug use and risk of cognitive decline in the very old: an observational study – the Newcastle 85+ Study. J Hypertens 2015; 33 (10): 2156–64. DOI: 10.1097/HJH.0000000000000653
40. Birns J, Morris R, Donaldson N, et al. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens 2006; 24: 1907–14. DOI: 10.1097/01.hjh.0000244934.81180.16
41. Chang-Quan H, Hui W, Chao-Min W, et al. The association of antihypertensive medications use with risk of cognitive decline and dementia: a meta-analysis of longitudinal studies. In J Clin Pract 2011; 65: 1295–305. DOI: 10.1111/j.1742-1241.2011.02810.x
42. Levi Marpillat N, Macquin-Mavier I, Tropeano A-I, et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens 2013; 31 (6): 1073–82. DOI: 10.1097/HJH.0b013e3283603f53
43. Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 2015; 29: 113–30. DOI: 10.1007/s40263-015-0230-6
44. Xu G, Bai F, Lin X, et al. Association between antihypertensive drug use and the incidence of cognitive decline and dementia: a meta-analysis of prospective cohort studies. Biomed Res Int 2017; 2017: 4368474. DOI: 10.1155/2017/4368474
45. Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer's disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 2020; 19 (1): 61–70. DOI: 10.1016/S1474-4422(19)30393-X
46. Ou Y-N, Tan C-C, Shen X-N, et al. Blood pressure and risks of cognitive impairment and dementia a systematic review and meta-analysis of 209 prospective studies. Hypertension 2020; 76 (1): 217–25. DOI: 10.1161/HYPERTENSIONAHA.120.14993
47. Peters R, Yasar S, Anderson CS, et al. Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology 2020; 94 (3): e267–e281. DOI: 10.1212/WNL.0000000000008732
48. Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 2000; 21 (1): 49–55. DOI: 10.1016/s0197-4580(00)00096-8
49. Levine DA, Galecki AT, Langa KM, et al. Blood pressure and cognitive decline over 8 years in middle-aged and older black and white Americans. Hypertension 2019; 73 (2): 310–8. DOI: 10.1161/HYPERTENSIONAHA.118.12062
50. Köhler S, Baars MA, Spauwen P, et al. Temporal evolution of cognitive changes in incident hypertension: prospective cohort study across the adult age span. Hypertension 2014; 63 (2): 245–51. DOI: 10.1161/HYPERTENSIONAHA.113.02096
51. Cui J, Yu R, Li M, et al. Intervention affects the cognitive performance of middle-aged patients with essential hypertension. Int J Clin Exp Med 2016; 9 (1): 308–15.
52. Vazirinejad R, Mirmotalebi M, Bageri M, et al. Age-Related effect of antihypertensive treatment on cognitive performance: is it better preventing dementia in older age? Am J Alzheimer’s Dis Other Dementias 2019; 34 (7–8): 486–91. DOI: 10.1177/1533317519859197
53. Qiu C, Winblad B, Fratiglioni L. Low diastolic pressure and risk of dementia in very old people: a longitudinal study. Dement Geriatr Cogn Disord 2009; 28: 213–9. DOI: 10.1159/000236913
54. Verghese J, Lipton RB, Hall CB, et al. Low blood pressure and the risk of dementia in very old individuals. Neurology 2003; 61: 1667–72. DOI: 10.1212/01.wnl.0000098934.18300.be
55. Stuhec M, Keuschler J, Serra-Mestres J, et al. Effects of different antihypertensive medication groups on cognitive function in older patients: A systematic review. Eur Psychiatry 2017; 46: 1–15. DOI: 10.1016/j.eurpsy.2017.07.015
56. Cho MH, Shin DW, Chang S-A, et al. Association between cognitive impairment and poor antihypertensive medication adherence in elderly hypertensive patients without dementia. Sci Rep 2018; 8: 1–7. DOI: 10.1038/s41598-018-29974-7
57. Wei MY, Levine DA, Zahodne LB, et al. Multimorbidity and cognitive decline over 14 years in older americans. J Gerontol A Biol Sci Med Sci 2020; 75 (6): 1206–13. DOI: 10.1093/gerona/glz147
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
3 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
4 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
5 ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, Москва, Россия;
6 ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия;
7 ФГБНУ «Научный центр неврологии», Москва, Россия;
8 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, Санкт-Петербург, Россия;
9 ФГБОУ ВО «Пермский государственный медицинский университет им. акад. Е.А. Вагнера» Минздрава России, Пермь, Россия
*ostroumova.olga@mail.ru
________________________________________________
Olga D. Ostroumova*1, Vladimir A. Parfenov2, Tatiana M. Ostroumova2, Nikolay N. Yakhno2, Irina E. Chazova3, Anna N. Bogolepova4,5, Albert S. Galyavich6, Liudmila A. Geraskina7, Andrey Iu. Emelin8, Vladimir V. Zakharov2, Oxana A. Kislyak4, Aleksei A. Kulesh9, Oleg S. Levin1, Valery I. Podzolkov2, Elena V. Privalova2, Evgenia V. Shikh2
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
3 National Medical Research Center of Cardiology, Moscow, Russia;
4 Pirogov Russian National Research Medical University, Moscow, Russia;
5 Federal Center for Brain and Neurotechnologies, Moscow, Russia;
6 Kazan State Medical University, Kazan, Russia;
7 Scientific Center of Neurology, Moscow, Russia;
8 Kirov Military Medical Academy, Saint Petersburg, Russia;
9 Wagner Perm State Medical University, Perm, Russia
*ostroumova.olga@mail.ru