Белки теплового шока способны эффективно стимулировать врожденный и адаптивный противоопухолевый иммунный ответ организма. Это свойство шаперонов послужило поводом для разработки противораковых вакцин. С другой стороны, участие белков в важных внутриклеточных функциях (в особенности в раковых клетках) стало основой другого терапевтического подхода – создания фармакологических ингибиторов шаперонов. В статье представлены данные по клиническим исследованиям применения белков теплового шока в онкологии.
Heat shock proteins can effectively stimulate innate and adaptive anti-tumor immune response. This function of chaperones was used for development of anti-cancer vaccines. Participation of proteins in important intracellular functions (especially in cancer cells) formed the basis for another therapeutic approach – investigation of pharmacological inhibitors of chaperones. In article results of clinical trials of heat shock proteins in oncology are presented.
1. Akalin A, Elmore LW, Forsythe HL et al. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res 2001; 61 (12): 4791–6.
2. An WG, Schnur RC, Neckers L et al. Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 1997; 40 (1): 60–4.
3. Anderson KC. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 2007; 35 (4 Suppl. 1): 155–62.
4. Asea A. Hsp70: a chaperokine. Novartis Found Symp 2008; 291: 173–9; discus. 179–83, 221–4.
5. Asea A, Kraeft SK, Kurt-Jones EA et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6: 435–42.
6. Asea A, Rehli M, Kabingu E et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR)2 and TLR4. J Biol Chem 2002; 277: 15 028–34.
7. Assikis VJ, Daliani D, Pagliaro L et al. Phase II study of an autologous tumor derived heart shock protein-peptide complex vaccine (HSPPC-96) for patients with metastatic renal cell carcinoma (mRCC). Proc Am Soc Clin Oncol 2003; 22: 386. Abstr. 1552.
8. Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticullin. Immunity 2001; 14: 303–13.
9. Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002; 20: 4169–80.
10. Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 2004; 101: 6129–33.
11. Blagosklonny MV, Toretsky J, Bohen S et al. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci USA 1996; 93 (16): 8379–83.
12. Chiosis G, Vilenchik M, Kim J et al. Hsp90: the vulnerable chaperone. Drug Discov Today 2004; 9 (20): 881–8.
13. Ciocca DR, Frayssinet P, Cuello-Carrion FD. A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients. Cell Stress Chaperons 2007; 12 (1): 33–43.
14. Elfiky A, Saif MW, Beeram M et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 2008; 26: 15s.
15. Fong Y, Fortner J, Sun RL et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999; 230: 309–18.
16. Forsythe HL, Jarvis JL, Turner JW et al. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 2001; 276 (19): 15 571–4.
17. Gastpar R, Gehrmann M, Bausero MA et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 2005; 65: 5238–47.
18. Geng H, Zhang GM, Xiao H et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma Int J Cancer 2006; 118: 2657–64.
19. Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrin 2007; 275 (1–2): 2–12.
20. Graner MW, Raymond A, Akporiaye E et al. Tumorderived multiple chaperone enrichment by free-solution isoelectric focusing yields potent antitumor vaccines. Cancer Immunol Immunother 2000; 49: 476–84.
21. Graner MW, Zeng Y, Feng H, Katsanis E. Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers. Cancer Immunol Immunother 2003; 52: 226–34.
22. Grbovic OM, Basso AD, Sawai A et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 2006; 103 (1): 57–62.
23. Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro-Oncology 2011; 13 (1): 3–13.
24. Ito A, Matsuoka F, Honda H, Kobayashi T. Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 2004; 53: 26–32.
25. Johnson JL, Toft DO. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 1995; 9 (6): 670–8.
26. Jonasch E, Wood C, Tamboli P et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer 2008; 22; 98 (8): 1336–41.
27. Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009; 14 (1): 105–11.
28. Kuduk SD, Harris TC, Zheng FF et al. Synthesis and evaluation of geldanamycin-testosterone hybrids. J Bioorg Med Chem Lett 2000; 10 (11): 1303–6.
29. Li Z, Qiao Y, Laska E et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein 70 vaccine for chronic myelogenous leukemia. Proceedings of the American Society of Clin Oncology 2003; 22: A-664.
30. Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor-derived heat-shock protein Gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 2003; 9: 3235–42.
31. McCollum AK, Lukasiewicz KB, Teneyck CJ et al. Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther 2008; 7 (10): 3256–64.
32. Miller P, Schnur RC, Barbacci E et al. Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185. Biochem Biophys Res Commun 1994; 30; 201 (3): 1313–29.
33. Modi S, Stopeck AT, Gordon MS et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 2007; 25 (34): 5410–7.
34. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: 55–61.
35. Oki Y, Younes A. Heat shock protein-based cancer vaccines. Expert Rev Vaccines 2004; 3: 403–11.
36. Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 2002; 168: 2997–3003.
37. Parmiani G. Phase II study of HSPPC-96 in combination with GM-CSF and IFN-a in stage IV malignant melanoma. J Clin Oncology, 2004 ASCO Ann Meeting Proceedings (Post-Meeting Edition); 22; 14s: 7510.
38. Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100: 8372–7.
39. Picard D. Chaperoning steroid hormone action. Trends Endocrin Metab 2006; 17 (6): 229–35.
40. Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self response in a phase I trial with anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675.206. J Clin Oncol 2005; 23: 8968–77.
41. Richardson P, Mitsiades C, Schlossman R. The treatment of relapsed and refractory multiple myeloma. ASH Education Book 2007; 1: 317–23.
42. Sain N, Krishnan B, Ormerod MG et al. Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT. Mol Cancer Ther 2006; 5 (5): 1197–208.
43. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97 (20): 10 832–7.
44. Sepp-Lorenzino L, Ma Z, Lebwohl DE et al. Herbimycin A induces the 20S proteasome- and ubiquitin-dependent degradation of receptor tyrosine kinases. J Biol Chem 1995; 270 (28): 16 580–7.
45. Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 2006; 95: 323–48.
46. Solit DB, Chiosis G. Development and application of Hsp90 inhibitors. Drug Discov Today 2008; 13 (1–2): 38–43.
47. Sreedhar AS, Soti C, Csermely P. Inhibition of Hsp90: a new strategy for inhibiting protein kinases. Biochim Biophys Acta 2004; 11; 1697 (1–2): 233–42.
48. Srivastava PK, Das MR. The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int J Cancer 1984; 15; 33 (3): 417–22.
49. Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269: 1585–8.
50. Taldone T, Gozman A, Maharaj R et al. Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 2008; 8 (4): 370–4.
51. Tefr WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Ann Rev Immunol 2006; 24: 65–97.
52. Testori A, Richards J, Whitman E et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 study group. J Clin Oncol 2008; 20; 26 (6): 955–62.
53. Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276: 31 332–9.
54. Verbinnen B, Billiau AD, Vermeiren J et al. Contribution of regulatory T cells and effector T cell deletion in tolerance induction by costimulation blockade. J Immunol 2008; 181: 1034–42.
55. Wood C, Srivastava P, Bukowski R et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) vs observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008; 12; 372 (9633): 145–54.
56. Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 2004; 206: 149–57.
57. Zeng Y, Graner MW, Feng H et al. Imatinib mesylate effectively combines with chaperone-rich cell lysate-loaded dendritic cells to treat bcr-abl+ murine leukemia. Int J Cancer 2004; 110: 251–9.
58. Zhang H, Burrows F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 2004; 82: 488–99.
Авторы
М.А.Шевцов1, 2, В.А.Хачатрян2, Б.А.Маргулис1
1 Институт цитологии РАН, Санкт-Петербург
2 Российский нейрохирургический институт им. проф. А.Л.Поленова, Санкт-Петербург