Рак легкого является самой распространенной формой злокачественных опухолей в мире. Большинство больных с вновь установленным диагнозом имеют местнораспространенную или метастатическую форму заболевания, не подлежащую хирургическому лечению, дающему наилучшие результаты. В настоящее время при неоперабельном местнораспространенном немелкоклеточном раке легкого (НМРЛ) химиолучевая терапия является стандартным подходом у больных с удовлетворительным соматическим статусом. Несмотря на улучшение результатов лечения, показатели местного контроля заболевания не достигают желаемых значений, а развитие отдаленных метастазов остается основным путем прогрессирования. Разнообразие молекулярных и генетических нарушений при НМРЛ может отчасти являться причиной его устойчивости к проводимой терапии. Поэтому вполне обоснованно, что основной перспективой повышения результатов лечения является использование разнонаправленных противоопухолевых воздействий, которые могут проявлять положительные синергетические эффекты. Умение определять и воздействовать на конкретные молекулярные механизмы при лечении злокачественных опухолей, в том числе рака легкого, является целью исследователей и клиницистов, занимающихся данной проблемой. Несмотря на большое число диагностических тестов, широкий спектр групп изучаемых препаратов и внушительную доказательную базу доклинических исследований, для большинства препаратов до настоящего времени не удалось выявить статистически значимых преимуществ их совместного назначения с уже имеющимися методами лечебного воздействия. Наиболее часто при комбинации с лучевой и химиолучевой терапией используются блокаторы сигнального пути EGFR (ингибиторы TKI и моноклональные антитела) и ингибиторы ангиогенеза. Рациональное включение препаратов данных групп в схемы комбинированного лечения является сегодня реальной возможностью повышения результатов лечения больных НМРЛ. В клинических исследованиях таргетные препараты широко применяются при различных методиках, однако пока отсутствует достаточная доказательная база для их использования как стандарта.
Lung cancer is the most common cancer and leading cause of cancer-related death in the world. More than two thirds of patients with newly diagnosed lung cancer have locally advanced or metastatic disease and cannot be candidates for surgery. Currently, in locally advanced non-small cell lung cancer (NSCLC) chemoradiotherapy is the standard approach in patients with good performance status. Despite improvement of results of treatment, indicators of local control of disease are unsatisfactory, and the distant metastases remain the main way of progression. A variety of molecular and genetic abnormalities in NSCLC may partly be the reason for his aggressive course and resistance to the therapy. Therefore use of methods of treatment with various mechanisms of action is justified. Despite the large number of diagnostic tests, a wide range of groups studied drugs and an impressive evidence base for pre-clinical studies, the majority of drugs so far failed to identify statistically significant benefits of a joint appointment with the existing methods of therapeutic effects. Two of the most attractive pathways where new agents have been developed and assessed in combination with thoracic radiotherapy or radiochemotherapy are the EGFR pathway (either with the use of monoclonal antibodies or tyrosine kinase inhibitors) and the angiogenesis inhibition. The clinical using of targeted agents in the combined treatment to date is a real opportunity to improve the treatment results of NSCLC patients. In clinical trials targeted therapies are widely used in various techniques, but as yet there is insufficient evidence base for use as a standard.
1. Jemal A, Bray F, Center M et al. Global cancer statistics. CA: A Cancer J for Clinicians 2011; 61: 69–90.
2. Mountain C. Revisions in the international system for staging lung cancer. Chest 1997; 111: 1710–7.
3. Auperin A, Le Pechoux C, Rolland E et al. Meta-analysis of concomitant vs sequential radiochemotherapy in locally advanced non-small cell lung cancer. J Clin Oncol 2010; 28: 2181–90.
4. Liang H, Zhou H, Li X et al. Chemo-radiotherapy for advanced non-small cell lung cancer: concurrent or sequential? It's no longer the question: a systematic review. Int J Cancer 2010; 127 (3): 718–28.
5. Le Chevalier T, Arriagada R, Quoix E et al. Radiotherapy alone versus combined chemotherapy and radiotherapy in non respectable non-small cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst 1991; 83: 417−23.
6. Dillman R, Herndon J, Seagren SL et al. Improved survival in stage III non-small cell lung cancer: seven year follow up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst 1996; 88: 1210−5.
7. Trovo M, Minatel E, Franchin G et al. Radiotherapy vs radiotherapy enhanced by cisplatin in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 1992; 24: 11−5.
8. Schild S, Stella P, Geyer S et al. Phase III trial comparing chemotherapy plus once daily or twice daily radiotherapy in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2002; 54: 370−8.
9. Non Small Cell Lung Cancer Collaborative Group Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Br Med J 1995; 311: 899–909.
10. Gervais R, Ducolone A, Lechevalier T et al. Conventional radiation (RT) with daily carboplatin (Cb) compared to RT alone after induction chemotherapy (ICT) vinorelbine (Vr)-cisplatine (P): final results of a randomized phase III trial in stage III unrespectable non-small cell lung (NSCLC) cancer: study CRG/BMS/NPC/96 of the French Lung Cancer Study Group NCLCC and IFCT. J Clin Oncol 2005; 23. Abstr. 7016.
11. Zatloukal P, Petruzelka L, Zemanova M et al. Concurrent vs sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small cell lung cancer: a randomized study. Lung Cancer 2004; 46: 87–98.
12. Huber R, Flentje M, Schmidt M et al. Simultaneous chemoradiotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small cell lung cancer: study CTRT99/97 by the Bronchial Carcinoma Therapy Group. J Clin Oncol 2006; 24: 4397–404.
13. Fournel P, Robinet G, Thomas P et al. Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small cell lung cancer. Groupe Lyon Saint Etienne d’Oncologie Thoracique Groupe Francais de Pneumo-Cancerologie NPC 95/01 Study. J Clin Oncol 2005; 23: 5910–7.
14. Furuse K, Fukuoka M, Kawahara M et al. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unrespectable stage III non-small cell lung cancer. J Clin Oncol 1999; 17: 2692–9.
15. Curran W, Scott C, Langer C et al. Long-term benefits is observed in a phase III comparison of sequential vs concurrent chemo-radiation for patients with unrespectable stage III NSCLC: RTOG 9410 (Abstr. 2499). Proc Am Soc Clin Oncol 2003; 22: 621.
16. Belani C, Choy H, Bonomi P et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small cell lung cancer: a randomized phase II locally advanced multi-modality protocol. J Clin Oncol 2005; 23: 5883–91.
17. Gandara D, Chansky K, Albain K et al. Consolidation docetaxel after concurrent chemoradiotherapy in stage IIIB non-small cell lung cancer: phase II Southwest Oncology Group Study S9504. J Clin Oncol 2003; 21: 2004–10.
18. Girard N, Mornex F. Radiotherapy for locally advanced non-small cell lung cancer. Eur J Cancer 2009; 45 (Suppl. 1): 113–25.
19. De Ruysscher D, Botterweck A, Dirx M et al. Eligibility for concurrent chemotherapy and radiotherapy of locally advanced lung cancer patients: a prospective population-based study. Ann Oncol 2009; 20 (1): 98–102.
20. Meert A, Paesmans M, Martin B et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 2002; 87: 694–701.
21. Fontanini G, Lucchi M, Vignati S et al. Angiogenesis as a prognostic indicator of survival in non-small cell carcinoma: a prospective study. J Natl Cancer Inst 1997; 89: 881–6.
22. Herbst R, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 2005; 23: 3243–56.
23. Hicklin D, Ellis L. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23: 1011–27.
24. Jain R, Duda D, Clark J et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006; 3: 24–40.
25. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–39.
26. Ferrara N, Hillan K, Gerber H et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.
27. Sandler A, Gray R, Perry M et al. Paclitaxel/carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med 2006; 355: 2542–50.
28. Manegold C, von Pawel J, Zatloukal P. BO17704 Study Group et al. Randomised, double-blind multicentre phase III study of bevacizumab in combination with cisplatin and gemcitabine in chemotherapy naı¨ve patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC): BO17704. J Clin Oncol 2007; 25 (Suppl.): LBA7514.
29. Barbender J, Danenberg K, Metzger R et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 2001; 7: 1850–5.
30. Mendelsohn J. The epidermal growth factor as a target for cancer therapy. Endoc Relat Cancer 2001; 8: 3–9.
31. Salomon D, Brandt R, Ciardiello F et al. Epidermal growth factor related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183–232.
32. Ritter C, Arteaga C. The epidermal growth factor receptor-tyrosine kinase: a promising therapeutic target in solid tumors. Semin Oncol 2003; 30 (Suppl. 1): 3–11.
33. Giaccone G. Epidermal growth factor receptor inhibitors in the treatment of non-small cell lung cancer. J Clin Oncol 2005; 23: 3235–42.
34. Sequist L, Lynch T. EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Ann Rev Med 2008; 59: 429–42.
35. Shepherd FA, Pereira J, Ciuleanu TE et al. Erlotinib in previously treated non-small cell lung cancer. N Engl J Med 2005; 353: 123–32.
36. Bezjak A, Tu D, Seymour L et al. Symptom improvement in lung cancer patients treated with erlotinib: quality of life analysis of the National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2006; 24: 3831–7.
37. Clark G, Zborowski D, Santabarbara P et al. Smoking history and epidermal growth factor receptor expression as predictors of survival benefit from erlotinib for patients with non-small cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group study BR.21. Clin Lung Cancer 2006; 7: 389–94.
38. Chang A, Parikh P, Thongprasert S et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol 2006; 1 (8): 847–55.
39. Kim E, Hirsh V, Mok T et al. Gefitinib versus docetaxel in previously treated non-small cell lung cancer INTEREST: a randomised phase III trial. Lancet 2008; 22; 372 (9652): 1809–18.
40. Coate L, Shepherd F. Maintenance therapy in advanced non-small cell lung cancer: evolution, tolerability and outcomes. Ther Adv Med Oncol 2011; 3 (3): 139–57.
41. Paz-Ares L, Marinis F, Dediu M et al. PARAMOUNT: Phase III study of maintenance pemetrexed (pem) plus best supportive care (BSC) vs placebo plus BSC immediately following induction treatment with pem plus cisplatin for advanced non-squamous non-small cell lung cancer NSCLC. J Clin Oncol 2011; 29 (Suppl.). Abstr. CRA7510.
42. Cappuzzo F, Coudert B, Wierzbicki R et al. Overall survival analyses from the SATURN phase III placebo-controlled study of erlotinib as first-line maintenance therapy in advanced non-small cell lung cancer NSCLC. Eur J Cancer 2009; 7 (Suppl. 3): 12. Abstr. 22LBA.
43. European Medicines Agency. Press Release, 19 March 2010. http://www.ema.europa.eu/pdfs/human/press/pr/10757010en.pdf
44. FDA approves tarceva as a maintenance therapy for advanced non-small cell lung cancer. http://www.gene.com/gene/news/press-releases/display.do?method=detail&id=12727
45. Rosell R et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361 (10): 958–67.
46. Mok T, Wu Y, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361 (10): 947–57.
47. Mendelsohn J. Epidermal growth factor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997; 3: 2703–7.
48. Li S, Schmits K, Jeffrey P et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005; 7: 301–11.
49. Zhang W, Gordon M, Schultheis AM et al. Two immunoglobulin G fragment C-receptor polymorphisms associated with clinical outcome of EGFR-expressing metastatic colorectal patients treated with single agent cetuximab. J Clin Oncol 2006; 24 (18s). Abstr. 3028.
50. Pirker R, Pereira J, Szczesna A et al. Cetuximab plus chemotherapy in patients with advanced non-small cell lung cancer FLEX: an open label randomized phase III trial. Lancet 2009; 373: 1525–31.
51. Baumann M, Krause M, Dikomey E et al. EGFR-targeted anti cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 2007; 83 (3): 238–48.
52. Bentzen S, Atasoy B, Daley F et al. Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol 2005; 23: 5560–7.
53. Dent P, Yacoub A, Contessa J et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 2003; 159: 283–300.
54. Liang K, Ang K, Milas L et al. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 2003; 57: 246–54.
55. Schmidt-Ullrich R, Valerie K, Fogleman P, Walters J. Radiation-induced autophosphory lation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat Res 1996; 145: 81–5.
56. Schmidt-Ullrich R, Contessa J, Lammering G et al. ERBB-receptor tyrosine kinases and cellular radiation responses. Oncogene 2003; 22 (37): 5855–65.
57. Bonner J, Harari P, Giralt J et al. Radiotherapy plus cetuximab for squamous cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567–78.
58. Blumenschein G, Moughan J, Curran W et al. A phase II study of cetuximab (C-225) in combination with chemoradiation (CRT) in patients (pts) with stage III A/B non-small cell lung cancer (NSCLC). An interim report of the RTOG0324 trial. J Clin Oncol (2007 ASCO Ann Meeting Proceedings Part I) 2007; 25 (Suppl. 18): 7531.
59. Hughes S, Liong J, Miah A et al. A brief report on the safety study of induction chemotherapy followed by synchronous radiotherapy and cetuximab in stage III non-small cell lung cancer NSCLC: SCRATCH Study. J Thorac Oncol 2008; 3: 648–51.
60. Govidan R, Bogart X, Wang L et al. Phase II study of pemetrexed, carboplatin, and thoracic radiation with or without cetuximab in patients with locally advanced unrespectable non-small cell lung cancer CALGB 30407. J Clin Oncol 2009; 27 (Suppl. 15). Abstr. 7505.
61. Dingemans A, Bootsma G, Van Baardwijk A. Determination of standard dose Cetuximab together with concurrent individualized isotoxic accelerated radiotherapy and Cisplatin/Vinorelbine for patients with stage III non-small cell lung cancer NSCLC: a phase I study (NCT 00522886) J Thor Oncol 2011; 6: s489–90.
62. Ball D, Burmeister B, Mitchell P et al. Phase I trial of gefitinib in combination with concurrent carboplatin, paclitaxel and radiation therapy in patients with stage III non-small cell lung cancer CRITICAL. J Thor Oncol 2007; 2 (8): s633–4.
63. Ready N, Janne P, Herndon J et al. Chemoradiotherapy and Gefitinib in stage III non-small cell lung cancer NSCLC: a CALGB stratified phase II trial. J Clin Oncol 2006; 24 (18s): 7046.
64. Ohe Y, Nishiwaki Y et al. Safety and efficacy trial of cisplatin with vinorelbine followed by gefitinib and concurrent thoracic radiotherapy for unrectable locally advanced non-small cell lung cancer. Japan Clin Oncol Group (JCOG) 0402. J Clin Oncol 2010; 28: 15s. Abstr. 7084.
65. Sacco P, Maione P, Rossi A et al. Combination of radiotherapy and targeted therapies in the treatment of locally advanced non-small cell lung cancer. Target Oncol 2011; 6 (3): 171–80.
66. Martinez E, Martinez M, Vinolas N et al. Feasibility and tolerability of the addition of erlotinib to 3D thoracic radiotherapy (RT) in patients with unresectable NSCLC: a prospective randomized phase II study. J Clin Oncol 2008; 26 (Suppl. 20). Abstr. 7563.
67. Choong N, Mauer A, Haraf D et al. Phase I trial of erlotinib-based multimodality therapy for inoperable stage III non-small cell lung cancer. J Thorac Oncol 2008; 3: 1003–11.
68. Ramella S, Trodella L, Alberti A. Multimodality treatment with radio chemotherapy and erlotinib in advanced NSCLC (MARTE TRIAL). J Thor Oncol 2011; 6 (Suppl. 2): s491–2.
69. Siva Raja S, Pennell N, Mason D. Induction chemoradiation therapy with EGFR-receptor inhibitor (Erlotinib) for stage IIIA/B non-small cell lung cancer is well tolerated and does not complicate subsequent resection. J Thor Oncol 2011; 6 (Suppl. 2): s1563.
70. Gorski D, Beckett M, Jaskowiak N et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59: 3374–8.
71. Hartford A, Gohongi T, Fukumura D et al. Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: potential role of host-tumor interaction. Cancer Res 2000; 60: 2128–31.
72. Sonveaux P, Brouet A, Havaux X et al. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 2003; 63: 1012–9.
73. Teicher B, Depuis N, Kusumoto T et al. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Inves 1995; 2: 269–76.
74. Socinski M, Stinchcombe T, Halle J et al. Incorporation of bevacizumab and erlotinib with induction and concurrent carboplatin/paclitaxel and 74 Gy of thoracic radiotherapy in stage III non-small cell lung cancer NSCLC. J Clin Oncol 2009; 27 (Suppl. 15). Abstr. 7528.
75. Socinski M, Stinchcombe T, Moore D. Phase I–II trial of Bevacizumab (B) end Erlotinib (E) with induction (IND) and concurrent (CON) Carboplatin (CB)/Paclitaxel (P) and 74 Gy of thoracic conformal radiotherapy (TCRT) in stage III non-small cell lung cancer NSCLC. J Thor Oncol 2011; 6 (Suppl. 2): s489.
76. Center B, Petty W, Ayala D et al. A phase I study of gefitinib with concurrent dose-escalated weekly docetaxel and conformal three-dimensional thoracic radiation followed by consolidative docetaxel and maintenance gefitinib for patients with stage III non-small cell lung cancer. J Thorac Oncol 2010; 5: 69–74.
Авторы
Ю.А.Рагулин
ФГБУ Медицинский радиологический научный центр Минздравсоцразвития РФ, Обнинск