Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • ИммуноГалактика (NEW!)
    • Гормональный оркестр
    • CardioSPACE
    • NeuroFusion (NEW!)
    • Современная Онкология
    • Урологика
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      ИммуноГалактика (NEW!)
      Гормональный оркестр
      CardioSPACE
      NeuroFusion (NEW!)
      Современная Онкология
      Урологика
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • ИммуноГалактика (NEW!)
      • Гормональный оркестр
      • CardioSPACE
      • NeuroFusion (NEW!)
      • Современная Онкология
      • Урологика
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • ИммуноГалактика (NEW!)
          • Гормональный оркестр
          • CardioSPACE
          • NeuroFusion (NEW!)
          • Современная Онкология
          • Урологика
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Современная Онкология
        • Журнал Современная Онкология 2012
        • Журнал Современная Онкология Том 14, №4
        • Иммунотерапия дендритными клетками в клинической онкологии

        Иммунотерапия дендритными клетками в клинической онкологии

        Иммунотерапия дендритными клетками в клинической онкологии

        • Читать PDF
          Иммунотерапия дендритными клетками  в клинической онкологии

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Полный текст
        • Список литературы
        • Авторы
        Аннотация
        Постоянно растущий интерес к иммунотерапии раковых заболеваний объясняется эффективностью и специфичностью воздействия иммунной системы на опухолевые клетки. Одним из подходов является применение аутологичных дендритных клеток, стимулированных опухолевыми антигенами. Многочисленные эксперименты in vivo продемонстрировали эффективную активацию клеточно-опосредованного противоопухолевого иммунитета в организме животных. Это послужило поводом для проведения клинических исследований вакцины, основанной на дендритных клетках при различных локализациях рака. Данный обзор посвящен биологии дендритных клеток, а также результатам проведенных клинических исследований.

        Ключевые слова: иммунотерапия, дендритные клетки, антигенпрезентирующие клетки, противоопухолевые вакцины.

        ________________________________________________

        Growing interest to immunotherapy of oncological diseases is explained by effectiveness and specific activity of immune system on cancer cells. One of possible approaches could be the use of autologus dendritic cells stimulated by tumor antigens. Numerous experiments in vivo have demonstrated effective stimulation of cell-mediated anti-tumor immunity in animals. Further clinical trials testing vaccination with dendritic cells were performed in patients with different tumor localization. Biology of dendritic cells and results of conducted clinical trials are discussed in present article.

        Key words: immunotherapy, dendritic cells, antigen-presenting cells, anti-cancer vaccines.

        Полный текст

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        Список литературы
        1. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–9.
        2. Aspord C et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD41 T cells that facilitate tumor development. J Exp Med 2007; 204: 1037–47.
        3. Austyn JM. Dendritic cells. Curr Opin Hematol 1998; 5: 3–15.
        4. Berntsen A, Trepiakas R, Wenandy L et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 2008; 31: 771–80.
        5. Binder RJ, Kelly JB, Vatner RE, Srivastava PK. Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J Immunol 2007; 179: 7254–61.
        6. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184: 465–72.
        7. Brossart P et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000; 96: 3102–8.
        8. Caux C et al. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 1994; 180: 1841–7.
        9. Caux C et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF a.  Adv Exp Med Biol 1997; 417: 21–5.
        10. Cella M et al. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells see comments. Nature 1997; 388: 782–7.
        11. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184: 747–52.
        12. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997; 9: 10–6.
        13. Chapuis F et al. Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol 1997; 27: 431–41.
        14. Conti L et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol 2005; 174: 252–60.
        15. De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 2008; 14: 3098–104.
        16. De Vries IJ, Krooshoop DJ, Scharenborg NM et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63: 12–7.
        17. De Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003; 9: 5091–100.
        18. Dercamp C, Chemin K, Caux C et al. Distinct and overlapping roles of interleukin-10 and CD251 regulatory T cells in the inhibition of antitumor CD8 Tcell responses. Cancer Res 2005; 65: 8479–86.
        19. Dhodapkar MV, Dhodapkar KM, Palucka AK. Interactions of tumor cells with dendritic cells: Balancing immunity and tolerance. Cell Death Differ 2008; 15: 39–50.
        20. Dolan BP, Gibbs KD, Ostrand-Rosenberg S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+T cells. J Immunol 2006; 177: 6018–24.
        21. Draube A, Klein-Gonza´lez N, Mattheus S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE 2011; 6 (4): e18801.
        22. Ferlazzo G, Tsang ML, Moretta L et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 2002; 195: 343–51.
        23. Fernandez NC et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5: 405–11.
        24. Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent anti-tumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 9482–7.
        25. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10: 475–80.
        26. Flamand V et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 1994; 24: 605–10.
        27. Fong L et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001; 98: 8809–14.
        28. Fonseca C, Dranoff G. Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res 2008; 14: 1603–8.
        29. Freeman GJ et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–34.
        30. Gerosa F, Baldani-Guerra B, Nisii C et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195: 327–33.
        31. Gough MJ, Ruby CE, Redmond WL et al. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res 2008; 68: 5206–15.
        32. Grouard G et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185: 1101–11.
        33. Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM. Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 2001; 166: 3717–23.
        34. Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997; 90: 3245–87.
        35. Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro-Oncology 2011; 13 (1): 3–13.
        36. Hermans IF et al. NKT cells enhance CD41 and CD81 T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003; 171: 5140–7.
        37. Hildenbrand B, Sauer B, Kalis O et al. Immunotherapy of patients with hormone-refractory prostate carcinoma pretreated with interferon-gamma and vaccinated with autologous PSA-peptide loaded dendritic cells – a pilot study. Prostate 2007; 67: 500–8.
        38. Hilkens CM et al. Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype. Blood 1997; 90: 1920–6.
        39. Holtl L, Zelle-Rieser C, Gander H et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 2002; 8: 3369–76.
        40. Hoos A, Parmiani G, Hege K et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother 2007; 30: 1–15.
        41. Hsu FJ et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–8.
        42. Inaba K et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 1994; 180: 1849–60.
        43. Jiang W et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151–5.
        44. Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001; 93: 243–51.
        45. Kalinski P et al. Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol 2009; 5 (3): 379–90.
        46. Kantoff PW, Higano CS, Shore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–22.
        47. Kleijmeer MJ et al. MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells. J Immunol 1995; 154: 5715–24.
        48. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol 2006; 90: 297–39.
        49. Lacy MQ, Mandrekar S, Dispenzieri A et al. Idiotype-pulsed antigen presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 2009; 84 (12): 799–802.
        50. Lanzavecchina A. Mechanisms of antigen uptake for presentation. Curr Opin Immunol 1996; 8: 348–54.
        51. Le Bon A, Durand V, Kamphuis E et al. Direct stimulation of T cells by type I IFN enhances the CD8+T cell response during cross-priming. J Immunol 2006; 176: 4682–9.
        52. Le Bon A, Etchart N, Rossmann C et al. Cross-priming of CD8+T cells stimulated by virus-induced type I interferon. Nat Immunol 2003; 4: 1009–15.
        53. Leslie DS et al. CD1-mediated g/d T cell maturation of dendritic cells. J Exp Med 2002; 196: 1575–84.
        54. Lin ML, Zhan Y, Villadangos JA, Lew AM. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86: 353–62.
        55. Liu C, Lou Y, Lizee G et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 2008; 118: 1165–75.
        56. Lodge PA et al. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res 2000; 60: 829–33.
        57. Macatonia SE et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+T cells. J Immunol 1995; 154: 5071–9.
        58. Mackall CL, Rhee EH, Read EJ et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res 2008; 14 (15): 4850–8.
        59. Marshall JL, Hoyer RJ, Toomey MA et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 2000; 18: 3964–73.
        60. Martin-Fontecha A, Sebastiani S, Hopken UE et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003; 198: 615–21.
        61. Mayordomo JI et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic anti-tumour immunity. Nat Med 1995; 1: 1297–302.
        62. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004; 4: 360–70.
        63. Mohamadzadeh M et al. Dendritic cells produce macrophage inflammatory protein-1 g, a new member of the CC chemokine family. J Immunol 1996; 156: 3102–6.
        64. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007; 117: 1147–54.
        65. Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 2005; 202: 203–7.
        66. Neijssen J, Herberts C, Drijfhout JW et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature 2005; 434: 83–8.
        67. Norbury CC, Basta S, Donohue KB et al. CD8+T cell cross-priming via transfer of proteasome substrates. Science 2004; 304: 1318–21.
        68. Paglia P et al. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo (see comments). J Exp Med 1996; 183: 317–22.
        69. Palucka AK et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD81 T-cell immunity. J Immunother 2006; 29: 545–57.
        70. Palucka AK et al. Single injection of CD341 progenitor-derived dendritic cell vaccine can lead to induction of T-cell immunity in patients with stage IV melanoma. J Immunother 2003; 26: 432–9.
        71. Palucka AK et al. Spontaneous proliferation and type 2 cytokine secretion by CD41 T cells in patients with metastatic melanoma vaccinated with antigen-pulsed dendritic cells. J Clin Immunol 2005; 25: 288–95.
        72. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205: 825–39.
        73. Pierre P et al. Developmental regulation of MHC class II transport in mouse dendritic cells see comments. Nature 1997; 388: 787–92.
        74. Pure E, Allison JP, Schreiber RD. Breaking down the barriers to cancer immunotherapy. Nat Immunol 2005; 6: 1207–10.
        75. Regnault A et al. Fcg receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 1999; 189: 371–80.
        76. Reichardt VL et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 1999; 93: 2411–9.
        77. Reid CD. The dendritic cell lineage in haemopoiesis. Br J Haematol 1997; 96: 217–23.
        78. Reis e Sousa C, Stahl PD, Austyn JM. Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 1993; 178: 509–19.
        79. Ribas A, Butterfield LH, Glaspy JA, Economou JS. Cancer immunotherapy using gene-modified dendritic cells. Curr Gene Ther 2002; 2: 57–78.
        80. Ribas A, Comin-Anduix B, Chmielowski B et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res 2009; 15 (19): 6267–76.
        81. Rieser C et al. Mature dendritic cells induce T-helper type-1-dominant immune responses in patients with metastatic renal cell carcinoma. Urol Int 2000; 63: 151–9.
        82. Rissoan MC et al. Reciprocal control of T helper cell and dendritic cell differentiation see comments. Science 1999; 283: 1183–6.
        83. Robert C, Klein C, Cheng G et al. Gene therapy to target dendritic cells from blood to lymph nodes. Gene Ther 2003; 10: 1479–86.
        84. Romani N et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93.
        85. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 1994; 179: 1109–18.
        86. Sallusto F et al. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products see comments. J Exp Med 1995; 182: 389–400.
        87. Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiform. Molecular Cancer Therapeut 2009; 8 (10): 2773–9.
        88. Schadendorf D et al. Dacarbazine (DTIC) versus vaccination with autologous peptidepulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 2006; 17: 563–70.
        89. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 1985; 161: 526–46.
        90. Schwaab T, Schwarzer A, Wolf B et al. Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (Interleukin 2) and IFN-{alpha}2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res 2009; 15: 4986–92.
        91. Shortman K, Caux C. Dendritic cell development: multiple pathways to nature's adjuvants. Stem Cells 1997; 15: 409–19.
        92. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloidderived suppressor cells. Cancer Res 2007; 67: 4507–13.
        93. Small EJ, Fratesi P, Reese DM et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000; 18: 3894–903.
        94. Small EJ, Schellhammer PF, Higano CS et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24: 3089–94.
        95. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. J Exp Med 1973; 137: 1142–62.
        96. Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 1978; 75: 5132–6.
        97. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Ann Rev Immunol 2003; 21: 685–711.
        98. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449: 419–26.
        99. Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002; 99: 351–8.
        100. Terabe M et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1: 515–20.
        101. Terabe M et al. Transforming growth factorbeta production and myeloid cells are an effector mechanism through which CD1drestricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198: 1741–52.
        102. Thomas-Kaskel AK, Zeiser R, Jochim R et al. Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int J Cancer 2006; 119: 2428–34.
        103. Thurner B et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–78.
        104. Tuyaerts S, Aerts JL, Corthals J et al. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 2007; 56: 1513–37.
        105. van Tendeloo VF, de Velde AV, van Driessche A et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. PNAS 2010; 107 (31): 13 824–9.
        106. Verdijk P, Aarntzen EH, Lesterhuis WJ et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 2009; 15: 2531–40.
        107. Vetvicka V, Holub M. Phagocytic activity of peritoneal and omental macrophages of athymic nude mice. Immunol Invest 1988; 17: 531–41.
        108. von Andrian UH, Memper TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol 2003; 3: 867–78.
        109. von Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A et al. CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood 2006; 107: 2786–9.
        110. Wakkach A, Fournier N, Brun V et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18: 605–17.
        111. Wierecky J, Muller MR, Wirths S et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006; 66: 5910–8.
        112. Zeelenberg IS, Ostrowski M, Krumeich S et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 2008; 68: 1228–35.
        113. Zhou LJ, Tedder TF. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 1995; 86: 3295–301.
        114. Zitvogel L et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 co-stimulation, and T helper cell 1-associated cytokines (see comments). J Exp Med 1996; 183: 87–97.
        115. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.
        Авторы
        М.А.Шевцов1–3, В.А.Хачатрян2, О.В.Галибин3, Б.А.Маргулис1

        1 Институт цитологии РАН, Санкт-Петербург
        2 Российский нейрохирургический институт им. проф. А.Л.Поленова, Санкт-Петербург
        3 Санкт-Петербургский государственный медицинский университет им. акад. И.П.Павлова

        ________________________________________________

        M.A.Shevtsov, W.A.Khachatryan, O.V.Galibin, B.A.Margulis



        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания хроническая сердечная недостаточность рак молочной железы факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких качество жизни профилактика сахарный диабет 2-го типа фибрилляция предсердий инфаркт миокарда бесплодие антигипертензивная терапия прогноз сердечная недостаточность химиотерапия атеросклероз бронхиальная астма таргетная терапия неалкогольная жировая болезнь печени эффективность амлодипин бактериальный вагиноз витамин D нестероидные противовоспалительные препараты гастроэзофагеальная рефлюксная болезнь ревматоидный артрит безопасность коморбидность реабилитация вирус папилломы человека атопический дерматит пробиотики эндометриоз болезнь Крона язвенный колит инсулинорезистентность эндотелиальная дисфункция комбинированные оральные контрацептивы
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Ближайшее мероприятие
        Ключевые аспекты поддерживающей терапии на пути онкологического пациента
        Ближайшее мероприятие
        x
        Ключевые аспекты поддерживающей терапии на пути онкологического пациента
        Круглый стол
        Онкологические заболевания
        18 декабря 2025 16:00

        Эксперты врачи-онкологи Сарманаева Р.Р. и Пак М.Б. подробно разберут, что может изменить подход к терапии — на всем пути онкологического пациента.

        Присоединяйтесь к прямому эфиру и получите полезные бонусы:
        + материалы для пациентов: кулинарные рецепты, кулинарное шоу,  полезные проекты для пациентов и их близких
        + калькулятор по расчёту риска нутритивной недостаточности
        + полезные статьи 

        Принять участие
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)