Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Нейроэндокринный рак предстательной железы (обзор литературы)
Нейроэндокринный рак предстательной железы (обзор литературы)
Аббасова Д.В., Поликарпова С.Б., Козлов Н.А. и др. Нейроэндокринный рак предстательной железы (обзор литературы). Современная Онкология. 2019; 21 (3): 52–55. DOI: 10.26442/18151434.2019.3.190673
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Нейроэндокринная неоплазия (NEC) предстательной железы (ПЖ) является достаточно редкой внелегочной нейроэндокринной карциномой и составляет всего от 0,5 до 1% от всех злокачественных новообразований ПЖ. NEC ПЖ – опухоль эпителиального происхождения, гистологически и иммуногистохимически идентичная аналогам в легких и пищеварительной системе. На микроскопическом уровне при обычном окрашивании гемотоксилин-эозином нейроэндокринные клетки не всегда можно визуализировать, лучше всего они распознаются при иммуногистохимическом методе исследования с помощью специфических маркеров. В настоящее время используется ряд нейроэндокринных маркеров, экспрессия которых может свидетельствовать о нейроэндокринной природе. Сами по себе нейроэндокринные клетки андроген-независимы и не вызывают повышения концентрации простат-специфического антигена. NEC ПЖ представлены несколькими гистологическими формами по классификации Всемирной организации здравоохранения (2015 г.): 1. Аденокарцинома с очаговой нейроэндокринной дифференцировкой. 2. Высокодифференцированная нейроэндокриная опухоль (карциноид). 3. Мелкоклеточный нейроэндокринный рак - низкодифференцированный рак с высоким злокачественным потенциалом. 4. Крупноклеточный нейроэндокринный рак – высокозлокачественная опухоль. Ввиду редкости NEC ПЖ специфический алгоритм диагностики и лечения не разработан, как правило, они аналогичны методам других злокачественных форм рака ПЖ и нейроэндокринных опухолей.
Ключевые слова: нейроэндокринные опухоли предстательной железы, нейроэндокринные неоплазии редких локализаций, карциноид предстательной железы, мелкоклеточная карцинома предстательной железы, крупноклеточная карцинома предстательной железы.
Key words: neuroendocrine carcinoma of the prostate, small cell carcinoma, paneth cell-like, large cell neuroendocrine carcinoma, carcinoid.
Ключевые слова: нейроэндокринные опухоли предстательной железы, нейроэндокринные неоплазии редких локализаций, карциноид предстательной железы, мелкоклеточная карцинома предстательной железы, крупноклеточная карцинома предстательной железы.
________________________________________________
Key words: neuroendocrine carcinoma of the prostate, small cell carcinoma, paneth cell-like, large cell neuroendocrine carcinoma, carcinoid.
Полный текст
Список литературы
1. Abbas F, Civantos F, Benedetto P, Soloway MS. Small cell carcinoma of the bladder and prostate. Urology 1995; 46 (5): 617–30.
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
________________________________________________
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
Авторы
Д.В. Аббасова*1, С.Б. Поликарпова1, Н.А. Козлов2, М.П. Баранова3, И.П. Коваленко2, Е.И. Игнатова2
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
3 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*dariaabbasova@yandex.ru
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
3 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*dariaabbasova@yandex.ru
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
3 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*dariaabbasova@yandex.ru
________________________________________________
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
3 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*dariaabbasova@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
