Abbasova D.V., Polikarpova S.B., Kozlov N.A. et al. Neuroendocrine carcinoma of the prostate (review of the literature). Journal of Modern Oncology. 2019; 21 (3): 52–55. DOI: 10.26442/18151434.2019.3.190673
Abbasova D.V., Polikarpova S.B., Kozlov N.A. et al. Neuroendocrine carcinoma of the prostate (review of the literature). Journal of Modern Oncology. 2019; 21 (3): 52–55. DOI: 10.26442/18151434.2019.3.190673
Нейроэндокринная неоплазия (NEC) предстательной железы (ПЖ) является достаточно редкой внелегочной нейроэндокринной карциномой и составляет всего от 0,5 до 1% от всех злокачественных новообразований ПЖ. NEC ПЖ – опухоль эпителиального происхождения, гистологически и иммуногистохимически идентичная аналогам в легких и пищеварительной системе. На микроскопическом уровне при обычном окрашивании гемотоксилин-эозином нейроэндокринные клетки не всегда можно визуализировать, лучше всего они распознаются при иммуногистохимическом методе исследования с помощью специфических маркеров. В настоящее время используется ряд нейроэндокринных маркеров, экспрессия которых может свидетельствовать о нейроэндокринной природе. Сами по себе нейроэндокринные клетки андроген-независимы и не вызывают повышения концентрации простат-специфического антигена. NEC ПЖ представлены несколькими гистологическими формами по классификации Всемирной организации здравоохранения (2015 г.): 1. Аденокарцинома с очаговой нейроэндокринной дифференцировкой. 2. Высокодифференцированная нейроэндокриная опухоль (карциноид). 3. Мелкоклеточный нейроэндокринный рак - низкодифференцированный рак с высоким злокачественным потенциалом. 4. Крупноклеточный нейроэндокринный рак – высокозлокачественная опухоль. Ввиду редкости NEC ПЖ специфический алгоритм диагностики и лечения не разработан, как правило, они аналогичны методам других злокачественных форм рака ПЖ и нейроэндокринных опухолей.
Neuroendocrine neoplasia (NEC) of the prostate gland is a rather rare extrapulmonary neuroendocrine carcinoma and makes up only 0.5 to 1% of all malignant neoplasms of this localization. NEC of the prostate gland is a tumor of epithelial origin, histologically and immunohistochemically identical to analogues in the lungs and digestive system. When stained with hemotoxylin-eosin, neuroendocrine cells cannot always be visualized; they are best recognized by the immunohistochemical method of investigation using specific markers. Currently, a number of neuroendocrine markers are used, the expression of which may indicate a neuroendocrine nature. Androgen neuroendocrine cells themselves are independent and do not cause an increase in the concentration of prostate-specific antigen. Prostate NECs are represented by some histological forms according to WHO classification (2015): 1. Adenocarcinoma with focal neuroendocrine differentiation. 2. Well-differentiated neuroendocrine tumor. 3. Small cell neuroendocrine cancer is a high – grade tumor with high malignant potential. 4. Large cell neuroendocrine cancer is a high – grade tumor. Due to the rarity of NEC of the prostate, a specific algorithm for diagnosis and treatment has not been developed, as a rule, they are similar to methods of other malignant forms of prostate cancer and neuroendocrine tumors.
Key words: neuroendocrine carcinoma of the prostate, small cell carcinoma, paneth cell-like, large cell neuroendocrine carcinoma, carcinoid.
1. Abbas F, Civantos F, Benedetto P, Soloway MS. Small cell carcinoma of the bladder and prostate. Urology 1995; 46 (5): 617–30.
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
________________________________________________
1. Abbas F, Civantos F, Benedetto P, Soloway MS. Small cell carcinoma of the bladder and prostate. Urology 1995; 46 (5): 617–30.
2. Cohen RJ, Glezerson G, Taylor LF, Grundle HA, Naude JH. The neuroendocrine cell population of the human prostate gland. J Urol 1993; 150: 365–8.
3. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–48.
4. Epstein JI, Amin MB, Beltran H et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 2014; 38 (6): 756–67.
5. Komiya A, Suzuki H, Imamoto T et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009; 16: 37–44.
6. Mucci NR, Akdas G, Manely S et al. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000; 31: 406–14.
7. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol 2005; 47: 147–55.
8. The WHO Classification of Tumours of the Urinary System and Male Genital Organs presented in this book reflects the views of a Working Group that convened for an Editorial and Consensus and Editorial Meeting at the University Hospital Zürich, Zürich, 11–13 March 2015.
9. Freschi M, Colombo R, Naspro R et al. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004; 45: 166–9.
10. Giordano S, Tolonen T, Tolonen T et al. A pure primary low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Int Urol Nephrol 2010; 42: 683–7.
11. Goulet-Salmon B, Berthe E, Franc S et al. Prostatic neuroendocrine tumor in multiple endocrineneoplasia type 2B. J Endocrinol Invest 2004; 27: 570–3.
12. Whelan T, Gatfield CT, Robertson S et al. Primary carcinoid of the prostate in conjunction withmultiple endocrine neoplasia IIb in a child. J Urol 1995; 153: 1080–2.
13. Abrahamsson PA, Cockett AT, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate (Suppl.) 1998; 8: 37–42.
14. Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol 2001; 12 (Suppl. 2): S141–144.
15. Hirano D, Okada Y, Minei S et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92. Discussion 592.
16. Berruti A, Mosca A, Porpiglia F et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007; 178: 838–43. Quiz 1129.
17. Casella R, Bubendorf L, Sauter G et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 1998; 160: 406–10.
18. Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996; 27: 683–7.
19. Bubendorf L, Sauter G, Moch H et al. Ki-67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol 1996; 178: 437–41.
20. Noordzij MA, van der Kwast TH, van Steenbrugge GJ et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995; 62: 252–8.
21. Segawa N, Mori I, Utsunomiya H et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–9.
22. Speights VO Jr, Cohen MK, Riggs MW et al. Neuroendocrine stains and proliferative indices of prostatic adenocarcinomas in transurethral resection samples. Br J Urol 1997; 80: 281–6.
23. Bollito E, Berruti A, Bellina M et al. Relationship between neuroendocrine features and prognostic parameters in human prostate adenocarcinoma. Ann Oncol 2001; 12 (Suppl. 2): S159–164.
24. Cohen RJ, Glezerson G, Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991; 68: 258–62.
25. Cheville JC, Tindall D, Boelter C et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 2002; 95: 1028–36.
26. Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 1998; 51: 585–9.
27. Krijnen JL, Bogdanowicz JF, Seldenrijk CA et al. The prognostic value of neuroendocrine differentiation in ad enocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997; 158: 171–4.
28. Tarle M, Ahel MZ, Kovacic K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res 2002; 22: 2525–9.
29. Wenk RE, Bhagavan BS, Levy R et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer 1977; 40 (2): 773–8.
30. Marcus DM, Goodman M, Jani AB et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012; 15: 283–8.
31. Têtu B, Ro JY, Ayala AG et al. Small cell carcinoma of the prostate.
Part I. A clinicopathologic study of 20 cases. Cancer 1987; 59 (10): 1803–9.
32. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.
33. Yao JL, Madeb R, Bourne P et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–12.
34. Agoff SN, Lamps LW, Philip AT et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000; 13: 238–42.
35. Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.
36. Lotan TL, Gupta NS, Wang W et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011; 24: 820–8.
37. Han B, Mehra R, Lonigro RJ et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 2009; 22: 1083–93.
38. Guo CC, Dancer JY, Wang Y et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 2011; 42: 11–7.
39. Williamson SR, Zhang S, Yao JL et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: Evidence supporting monoclonal origin. Mod Pathol 2011; 24: 1120–7.
40. Scheble VJ, Braun M, Wilbertz T et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 2010; 56: 937–43.
41. Schelling LA, Williamson SR, Zhang S et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum Pathol 2013.
42. Slater D. Carcinoid tumour of the prostate associated with inappropriate ACTH secretion. Br J Urol 1985; 57: 591–2.
43. Deorah S, Rao MB, Raman R et al. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A populationbased study. BJU Int 2012; 109: 824–30.
44. Amato RJ, Logothetis CJ, Hallinan R et al. Chemotherapy for small cell carcinoma of prostatic origin. J Urol 1992; 147: 935–7.
45. Rubenstein JH, Katin MJ, Mangano MM et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am J Clin Oncol 1997; 20: 376–80.
46. Aparicio AM, Harzstark AL, Corn PG et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621–30.
47. Papandreou CN, Daliani DD, Thall PF et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002; 20: 3072–80.
48. Evans AJ, Humphrey PA, Belani J et al. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 2006; 30: 684–93.
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
3 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*dariaabbasova@yandex.ru
________________________________________________
Daria V. Abbasova*1, Svetlana B. Polikarpova1, Nikolai A. Kozlov2, Madina P. Baranova3, Irina P. Kovalenko2, Elena I. Ignatova2
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
3 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*dariaabbasova@yandex.ru