Детекция диссеминированных опухолевых клеток и их взаимосвязь с популяцией костномозговых лимфоцитов у больных немелкоклеточным раком легкого
Детекция диссеминированных опухолевых клеток и их взаимосвязь с популяцией костномозговых лимфоцитов у больных немелкоклеточным раком легкого
Джуманазаров Т.М., Чулкова С.В., Тупицын Н.Н. и др. Детекция диссеминированных опухолевых клеток и их взаимосвязь с популяцией костномозговых лимфоцитов у больных немелкоклеточным раком легкого. Современная Онкология. 2020; 22 (3): 94–99. DOI: 10.26442/18151434.2020.3.200137
________________________________________________
Djumanazarov T.M., Chulkova S.V., Tupitsyn N.N. et al. Detection of disseminated tumor cells and their relationship with a population of bone marrow lymphocytes in patients with non-small cell lung cancer. Journal of Modern Oncology. 2020; 22 (3): 94–99.
DOI: 10.26442/18151434.2020.3.200137
Детекция диссеминированных опухолевых клеток и их взаимосвязь с популяцией костномозговых лимфоцитов у больных немелкоклеточным раком легкого
Джуманазаров Т.М., Чулкова С.В., Тупицын Н.Н. и др. Детекция диссеминированных опухолевых клеток и их взаимосвязь с популяцией костномозговых лимфоцитов у больных немелкоклеточным раком легкого. Современная Онкология. 2020; 22 (3): 94–99. DOI: 10.26442/18151434.2020.3.200137
________________________________________________
Djumanazarov T.M., Chulkova S.V., Tupitsyn N.N. et al. Detection of disseminated tumor cells and their relationship with a population of bone marrow lymphocytes in patients with non-small cell lung cancer. Journal of Modern Oncology. 2020; 22 (3): 94–99.
DOI: 10.26442/18151434.2020.3.200137
Введение. Детекция диссеминированных опухолевых клеток (ДОК) при солидных опухолях является важной составляющей оценки прогноза заболевания. Поражение костного мозга наблюдается часто. Существуют данные, указывающие на важную роль субпопуляций лимфоцитов костного мозга в процессах гематогенного метастазирования. Цель. Оценить частоту поражения костного мозга у больных немелкоклеточным раком легкого (НМРЛ) на основании обнаружения ДОК методом проточной цитометрии, а также их влияние на популяции лимфоцитов костного мозга. Материалы и методы. Исследовали 62 образца костного мозга больных с верифицированным диагнозом НМРЛ: аденокарцинома (33), плоскоклеточный рак (27), другие виды (2). Методы: морфологический, многоцветная проточная цитометрия. Изучены ДОК, популяции лимфоцитов CD3, CD4, CD8, CD19/CD20, CD16, CD27. Сбор и анализ: FACS Canto II, США, программа Kaluza Analysis v2.1. Результаты. В костном мозге ДОК (EPCAM+CD45-) были обнаружены у 43,5% пациентов c НМРЛ (в качестве порогового значения приняли 1 клетку на 10 млн миелокариоцитов). Наличие ДОК не коррелировало с размером опухоли, статусом лимфоузлов, стадией опухолевого процесса. ДОК чаще наблюдались при более дифференцированных опухолях (р=0,023). Выявлено достоверное повышение уровня субпопуляций CD16+CD4-NK-клеток (р=0,002), CD27+CD3+Т-клеток (р=0,015) при поражении костного мозга. Заключение. Установлена возможность детекции ДОК в костном мозге больных НМРЛ, у 43,5% больных НМРЛ в костном мозге выявлены ДОК, при этом их наличие установлено даже при локализованном опухолевом процессе. Более частое поражение костного мозга наблюдалось при высокодифференцированных опухолях. Выявлена взаимосвязь между ДОК и костномозговыми популяциями лимфоцитов: субпопуляции CD16+CD4-, CD27+CD3+.
Introduction. Detection of disseminated tumor cells (DTC) in solid tumors is an important component of the assessment of disease prognosis. Bone marrow damage is common. There is evidence indicating an important role for bone marrow lymphocyte subpopulations in hematogenous metastasis. Aim. To evaluate the frequency of bone marrow damage in patients with non-small cell lung cancer (NSCLC) based on the detection of DTC by flow cytometry, as well as their effect on the population of bone marrow lymphocytes. Materials and methods. 62 bone marrow samples of patients with a verified diagnosis of NSCLC: adenocarcinoma (33), squamous cell carcinoma (27), other types (2). Methods: morphological, multicolor flow cytometry. Studied DTC, lymphocyte populations CD3, CD4, CD8, CD19, CD20, CD16, CD27. Collection and analysis: FACS Canto II, USA, Kaluza Analysis v2.1. Results. In bone marrow, DTC (EPCAM+CD45-) were found in 43.5% of patients with NSCLC (1 cell per 10 million myelocariоcytes was taken as the threshold value). The presence of DTC did not correlate with the size of the tumor, the status of the lymph nodes, and the stage of the tumor process. DTC was more often observed in more differentiated tumors (p=0.023). A significant increase in the level of subpopulations of CD16+CD4-NK-cells (p=0.002), CD27+CD3+T-cells (p=0.015) with bone marrow damage was revealed. Conclusion. The possibility of detecting DTC in the bone marrow of patients with NSCLC was established, in 43.5% of patients with NSCLC in the bone marrow DTC was detected, and their presence was established even with a localized tumor process. More frequent bone marrow damage was observed with well-differentiated tumors. The relationship between DTC and bone marrow lymphocyte populations was revealed: subpopulations of CD16+CD4-, CD27+CD3+.
1. American Cancer Society. Cancer Fact and Figures. 2018.
2. Braun S, Vogl FD, Naume B et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793–802. DOI: 10.1056/NEJMoa050434
3. Alix-Panabires C, Muller V, Pantel K. Current status in human breast cancer micrometastasis. Curr Opin Oncol 2007; 6: 558–63. DOI: 10.1097/CCO.0b013e3282f0ad79
4. Pantel K, Alix-Panabieres C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 2014; 3: 584. DOI: 10.1038/bonekey.2014.79
5. Тупицын Н.Н. Костный мозг онкологического больного: стадирование опухолей, гемопоэз, иммунная система. Иммунология гемопоэза. 2018; 16 (2): 10–54.
[Tupitsyn N.N. Kostnyi mozg onkologicheskogo bol'nogo: stadirovanie opukholei, gemopoez, immunnaia sistema. Immunologiia gemopoeza. 2018; 16 (2): 10–54 (in Russian).]
6. Маркина И.Г., Тупицын Н.Н., Михайлова И.Н., Демидов Л.В. Гематогенное метастазирование опухолей: ключевые моменты и эволюционирующие парадигмы. Иммунология гемопоэза. 2018; 6 (1): 109–32.
[Markina I.G., Tupitsyn N.N., Mikhailova I.N., Demidov L.V. Gematogennoe metastazirovanie opukholei: kliuchevye momenty i evoliutsioniruiushchie paradigmy. Immunologiia gemopoeza. 2018; 6 (1): 109–32 (in Russian).]
7. Чулкова С.В., Чернышева О.А., Маркина И.Г. и др. Стволовые опухолевые клетки меланомы. Поражение костного мозга. Обзор и представление собственных данных. Вестн. РНЦРР. 2019; 4: 182–97.
[Chulkova S.V., Chernysheva O.A., Markina I.G. et al. Stvolovye opukholevye kletki melanomy. Porazhenie kostnogo mozga. Obzor i predstavlenie sobstvennykh dannykh. Vestn. RNTsRR. 2019; 4: 182–97 (in Russian).]
8. Bartkowiak K, Effenberger KE, Harder S et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 2010; 9: 3158–68. DOI: 10.1021/pr100039d
9. Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 2015; 15 (4): 238–47. DOI: 10.1038/nrc3910
10. Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22: 5776–86. DOI: 10.1111/jcmm.13867
11. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008; 8: 329–40. DOI: 10.1038/nrc2375
12. Рябчиков Д.А., Безнос О.А., Дудина И.А. и др. Диссеминированные опухолевые клетки у пациентов с люминальным раком молочной железы. Рос. биотерапевтич. журн. 2018; 17 (1): 53–7. DOI: 10.17650/1726-9784-2018-17-1-53-57
[Riabchikov D.A., Beznos O.A., Dudina I.A. et al. Disseminirovannye opukholevye kletki u patsientov s liuminal'nym rakom molochnoi zhelezy. Ros. bioterapevtich. zhurn. 2018; 17 (1): 53–7. DOI: 10.17650/1726-9784-2018-17-1-53-57 (in Russian).]
13. Chernysheva O, Markina I, Demidov L et al. Bone marrow involvement in melanoma. Potentials for detection of disseminated tumor cells and characterization of their subsets by flow cytometry. Cells 2019; 8: 627. DOI: 10.3390/cells8060627
14. Бесова Н.С., Обаревич Е.С., Давыдов М.М. и др. Прогностическое значение диссеминированных опухолевых клеток в костном мозге больных диссеминированным раком желудка до начала противоопухолевой терапии. Фарматека. 2017; 17 (350): 62–6.
[Besova N.S., Obarevich E.S., Davydov M.M. et al. Prognosticheskoe znachenie disseminirovannykh opukholevykh kletok v kostnom mozge bol'nykh disseminirovannym rakom zheludka do nachala protivoopukholevoi terapii. Farmateka. 2017; 17 (350): 62–6 (in Russian).]
15. Rud AK, Borgen E, Maelandsmo GM et al. Clinical significance of disseminated tumour cells in non-small cell lung cancer. Br J Cancer 2013; 109: 1264–70. DOI: 10.1038/bjc.2013.450
16. Kasimir‐Bauer S, Schleucher N, Weber R et al. Evaluation of different markers in non‐small cell lung cancer: prognostic value of clinical staging, tumour cell detection and tumour marker analysis for tumour progression and overall survival. Oncol Rep 2003; 10: 475–82. doi.org/10.3892/or.10.2.475
17. Yasumoto K, Osaki T, Watanabe Y et al. Prognostic value of cytokeratin‐positive cells in the bone marrow and lymph nodes of patients with resected non-small cell lung cancer: a multicenter prospective study. Ann Thorac Surg 2003; 76: 194–201. DOI: 10.1016/s0003-4975(03)00130-9
18. Горбунова Т.В., Поляков В.Г., Серебрякова И.Н. и др. Сравнительный анализ субпопуляционного состава лимфоцитов костного мозга у детей при мелкоклеточных саркомах. Иммунология. 2012; 33 (1): 37–44.
[Gorbunova T.V., Poliakov V.G., Serebriakova I.N. et al. Sravnitel'nyi analiz subpopuliatsionnogo sostava limfotsitov kostnogo mozga u detei pri melkokletochnykh sarkomakh. Immunologiia. 2012; 33 (1): 37–44 (in Russian).]
19. Feuerer M, Rocha M, Bai L. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 2001; 92 (1): 96–105.
20. Solomayer EF, Feuerer M, Bai L et al. Influence of adjuvant hormone therapy and chemotherapy on the immune system analysed in the bone marrow of patients with breast cancer. Clin Cancer Res 2003; 9 (1): 174–80.
21. Мкртчян В.А., Воротников И.К., Чернышева О.А. и др. Взаимосвязь между NK-клетками костного мозга больных раком молочной железы и биологическими особенностями опухоли и эритропоэзом. Онкогинекология. 2019; 3: 4–13.
[Mkrtchian V.A., Vorotnikov I.K., Chernysheva O.A. et al. Vzaimosviaz' mezhdu NK-kletkami kostnogo mozga bol'nykh rakom molochnoi zhelezy i biologicheskimi osobennostiami opukholi i eritropoezom. Onkoginekologiia. 2019; 3: 4–13 (in Russian).]
22. Riethdorf S, Wikman H, Pantel K. Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 2008; 123 (9): 1991–2006. DOI: 10.1002/ijc.23825
23. Pantel K, Izbicki JR, Angstwurm M et al. Immunocytological detection of bone marrow micrometastasis in operable non‐small cell lung cancer. Cancer Res 1993; 53: 1027–31.
24. Capietto AH, Faccio R. Immune regulation of bone metastasis. Bonekey Rep 2014; 3: 600. DOI: 10.1038/bonekey.2014.95
25. Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 2018; 131 (1): 39–48. DOI: 10.1182/blood-2017-07-741025
26. DeBarros A, Chaves-Ferreira M, d’Orey F et al. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol 2011; 41 (1): 195–201. DOI: 10.1002/eji.201040905
27. Mahnke YD, BrodieTM, Sallusto F et al. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 2013; 43 (11): 2797–809. DOI: 10.1002/eji.201343751
28. Тупицын Н.Н., Джуманазаров Т.М., Палладина А.Д. и др. Иммунологические показатели костного мозга больных немелкоклеточным раком легкого. Рос. биотерапевтич. журн. 2020; 2.
[Tupitsyn N.N., Dzhumanazarov T.M., Palladina A.D. et al. Immunologicheskie pokazateli kostnogo mozga bol'nykh nemelkokletochnym rakom legkogo. Ros. bioterapevtich. zhurn. 2020; 2 (in Russian).]
29. Burris HA, Infante JR, Ansell SM et al. Safety and activity of Varlilumab, a Novel and First-in-Class Agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol 2017; 35 (18): 2028–36. DOI: 10.1200/JCO.2016.70.1508
________________________________________________
1. American Cancer Society. Cancer Fact and Figures. 2018.
2. Braun S, Vogl FD, Naume B et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793–802. DOI: 10.1056/NEJMoa050434
3. Alix-Panabires C, Muller V, Pantel K. Current status in human breast cancer micrometastasis. Curr Opin Oncol 2007; 6: 558–63. DOI: 10.1097/CCO.0b013e3282f0ad79
4. Pantel K, Alix-Panabieres C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 2014; 3: 584. DOI: 10.1038/bonekey.2014.79
5. Tupitsyn N.N. Kostnyi mozg onkologicheskogo bol'nogo: stadirovanie opukholei, gemopoez, immunnaia sistema. Immunologiia gemopoeza. 2018; 16 (2): 10–54 (in Russian).
6. Markina I.G., Tupitsyn N.N., Mikhailova I.N., Demidov L.V. Gematogennoe metastazirovanie opukholei: kliuchevye momenty i evoliutsioniruiushchie paradigmy. Immunologiia gemopoeza. 2018; 6 (1): 109–32 (in Russian).
7. Chulkova S.V., Chernysheva O.A., Markina I.G. et al. Stvolovye opukholevye kletki melanomy. Porazhenie kostnogo mozga. Obzor i predstavlenie sobstvennykh dannykh. Vestn. RNTsRR. 2019; 4: 182–97 (in Russian).
8. Bartkowiak K, Effenberger KE, Harder S et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 2010; 9: 3158–68. DOI: 10.1021/pr100039d
9. Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 2015; 15 (4): 238–47. DOI: 10.1038/nrc3910
10. Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22: 5776–86. DOI: 10.1111/jcmm.13867
11. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008; 8: 329–40. DOI: 10.1038/nrc2375
12. Riabchikov D.A., Beznos O.A., Dudina I.A. et al. Disseminirovannye opukholevye kletki u patsientov s liuminal'nym rakom molochnoi zhelezy. Ros. bioterapevtich. zhurn. 2018; 17 (1): 53–7. DOI: 10.17650/1726-9784-2018-17-1-53-57 (in Russian).
13. Chernysheva O, Markina I, Demidov L et al. Bone marrow involvement in melanoma. Potentials for detection of disseminated tumor cells and characterization of their subsets by flow cytometry. Cells 2019; 8: 627. DOI: 10.3390/cells8060627
14. Besova N.S., Obarevich E.S., Davydov M.M. et al. Prognosticheskoe znachenie disseminirovannykh opukholevykh kletok v kostnom mozge bol'nykh disseminirovannym rakom zheludka do nachala protivoopukholevoi terapii. Farmateka. 2017; 17 (350): 62–6 (in Russian).
15. Rud AK, Borgen E, Maelandsmo GM et al. Clinical significance of disseminated tumour cells in non-small cell lung cancer. Br J Cancer 2013; 109: 1264–70. DOI: 10.1038/bjc.2013.450
16. Kasimir‐Bauer S, Schleucher N, Weber R et al. Evaluation of different markers in non‐small cell lung cancer: prognostic value of clinical staging, tumour cell detection and tumour marker analysis for tumour progression and overall survival. Oncol Rep 2003; 10: 475–82. doi.org/10.3892/or.10.2.475
17. Yasumoto K, Osaki T, Watanabe Y et al. Prognostic value of cytokeratin‐positive cells in the bone marrow and lymph nodes of patients with resected non-small cell lung cancer: a multicenter prospective study. Ann Thorac Surg 2003; 76: 194–201. DOI: 10.1016/s0003-4975(03)00130-9
18. Gorbunova T.V., Poliakov V.G., Serebriakova I.N. et al. Sravnitel'nyi analiz subpopuliatsionnogo sostava limfotsitov kostnogo mozga u detei pri melkokletochnykh sarkomakh. Immunologiia. 2012; 33 (1): 37–44 (in Russian).
19. Feuerer M, Rocha M, Bai L. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 2001; 92 (1): 96–105.
20. Solomayer EF, Feuerer M, Bai L et al. Influence of adjuvant hormone therapy and chemotherapy on the immune system analysed in the bone marrow of patients with breast cancer. Clin Cancer Res 2003; 9 (1): 174–80.
21. Mkrtchian V.A., Vorotnikov I.K., Chernysheva O.A. et al. Vzaimosviaz' mezhdu NK-kletkami kostnogo mozga bol'nykh rakom molochnoi zhelezy i biologicheskimi osobennostiami opukholi i eritropoezom. Onkoginekologiia. 2019; 3: 4–13 (in Russian).
22. Riethdorf S, Wikman H, Pantel K. Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 2008; 123 (9): 1991–2006. DOI: 10.1002/ijc.23825
23. Pantel K, Izbicki JR, Angstwurm M et al. Immunocytological detection of bone marrow micrometastasis in operable non‐small cell lung cancer. Cancer Res 1993; 53: 1027–31.
24. Capietto AH, Faccio R. Immune regulation of bone metastasis. Bonekey Rep 2014; 3: 600. DOI: 10.1038/bonekey.2014.95
25. Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 2018; 131 (1): 39–48. DOI: 10.1182/blood-2017-07-741025
26. DeBarros A, Chaves-Ferreira M, d’Orey F et al. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol 2011; 41 (1): 195–201. DOI: 10.1002/eji.201040905
27. Mahnke YD, BrodieTM, Sallusto F et al. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 2013; 43 (11): 2797–809. DOI: 10.1002/eji.201343751
28. Tupitsyn N.N., Dzhumanazarov T.M., Palladina A.D. et al. Immunologicheskie pokazateli kostnogo mozga bol'nykh nemelkokletochnym rakom legkogo. Ros. bioterapevtich. zhurn. 2020; 2 (in Russian).
29. Burris HA, Infante JR, Ansell SM et al. Safety and activity of Varlilumab, a Novel and First-in-Class Agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol 2017; 35 (18): 2028–36. DOI: 10.1200/JCO.2016.70.1508
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГAOУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздрава России, Москва, Россия;
3 ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы, Москва, Россия;
4 ФГБОУ ДПО Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*chulkova@mail.ru
________________________________________________
Temirbek M. Djumanazarov1, Svetlana V. Chulkova1,2, Nikolay N. Tupitsyn1, Olga A. Chernysheva1, Arif K. Allakhverdiev3,4, Alexandra D. Palladina1, Natalya A. Kupryshina1, Olga P. Kolbatskaya1, Pavel V. Kononetz1, Bakhrom B. Akhmedov1, Sergey S. Gerasimov1
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Pirogov Russian National Research Medical University, Moscow, Russia;
3 Loginov Moscow Clinical Scientific and Practical Center, Moscow, Russia;
4 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*chulkova@mail.ru