Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Молекулярно-генетические маркеры опухолевых клеток рака яичника и их микроокружения, методы изучения и клиническая ценность
Молекулярно-генетические маркеры опухолевых клеток рака яичника и их микроокружения, методы изучения и клиническая ценность
Кальфа М.А., Головкин И.О., Лазарев А.Э., Голубинская Е.П., Грицкевич О.Ю., Зяблицкая Е.Ю. Молекулярно-генетические маркеры опухолевых клеток рака яичника и их микроокружения, методы изучения и клиническая ценность. Современная Онкология. 2023;25(3):308–312.
DOI: 10.26442/18151434.2023.3.202422
© ООО «КОНСИЛИУМ МЕДИКУМ», 2023 г.
DOI: 10.26442/18151434.2023.3.202422
© ООО «КОНСИЛИУМ МЕДИКУМ», 2023 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Одним из распространенных злокачественных новообразований женской репродуктивной системы является рак яичников (РЯ). У большинства больных РЯ диагностируется на поздних стадиях, а это делает прогноз заболевания крайне неблагоприятным. Стандартное лечение РЯ – хирургическое вмешательство и химиотерапия, однако часто происходит рецидив после лечения, особенно у пациенток с поздней стадией заболевания. Для улучшения результатов лечения необходимы новые варианты терапевтических средств, разрабатываемые на основании достижений в понимании генетики и молекулярной биологии опухолей. Воздействие на гены и экспрессируемые ими белки, которые влияют на онкогенез и резистентность к лечению, может стать перспективным, а выявленные молекулярными методами белки и фрагменты генов становятся ценными маркерами в сопроводительной фармакодиагностике и персонификации комплексной терапии. В данной статье описываются достижения в изучении генетических маркеров при РЯ.
Ключевые слова: злокачественные новообразования, микроокружение опухоли, яичник, молекулярная биология
Keywords: malignancy, tumor microenvironment, ovary, molecular biology
Ключевые слова: злокачественные новообразования, микроокружение опухоли, яичник, молекулярная биология
________________________________________________
Keywords: malignancy, tumor microenvironment, ovary, molecular biology
Полный текст
Список литературы
1. Kurman RJ. WHO Classification of tumours of female reproductive organs. Lyon: International Agency for Research on Cancer, 2014.
2. Leung DTH, Fuller PJ, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51-4. DOI:10.1016/j.biocel.2016.01.003
3. Heravi-Moussavi A, Anglesio MS, Cheng SW, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234-42. DOI:10.1056/NEJMoa1102903
4. Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429-40. DOI:10.1097/PAS.0b013e31822d6c71
5. Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424-6. DOI:10.1038/ng.2922
6. Herzog TJ. Recurrent ovarian cancer. Clin Cancer Res. 2004;10(22):7439-49. DOI:10.1158/1078-0432.CCR-04-0683
7. Herzog TJ, Pothuri B. Ovarian cancer: A focus on management of recurrent disease. Nat Rev Clin Oncol. 2006;3(11):604-11. DOI:10.1038/ncponc0637
8. Хансон К.П., Имянитов Е.Н. Молекулярная генетика рака яичников. Практическая онкология. 2000;1(4):3-6 [Khanson KP, Imianitov EN. Molekuliarnaia genetika raka iaichnikov. Prakticheskaia Onkologiia. 2000;1(4):3-6 (in Russian)].
9. Хохлова С.В., Горбунова В.А., Любченко Л.Н., Имянитов Е.Н. BRCA-ассоциированный рак яичников (опыт отделения химиотерапии ФГБУ «РОНЦ им. Н.Н. Блохина» Минздрава России). Современная Онкология. 2016;18(1):37-44 [Khokhlova SV, Gorbunova VA, Lyubchenko LN, Imyanitov EN. BRCA-associated ovarian cancer (the experience of the Chemotherapy Department in N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of Russia). Journal of Modern Oncology. 2016;18(1):37-44 (in Russian)].
10. Lu H, Li S, Black MH, et al. Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 2019;5(1):51-7. DOI:10.1001/jamaoncol.2018.2956
11. Laurini E, Marson D, Fermeglia A, et al. Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther. 2020;208:107492. DOI:10.1016/j.pharmthera.2020.107492
12. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33(2):387-95. DOI:10.1128/MCB.00465-12
13. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600. DOI:10.1101/cshperspect.a016600
14. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel). 2018;9(12):629. DOI:10.3390/genes9120629
15. Orhan E, Velazquez C, Tabet I, et al. Regulation of RAD51 at the transcriptional and functional levels: What prospects for cancer therapy? Cancers (Basel). 2021;13(12):2930. DOI:10.3390/cancers13122930
16. Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer. 2020;2(3):zcaa024. DOI:10.1093/narcan/zcaa024
17. Feng Y, Wang D, Xiong L, et al. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int. 2021;21(1):249.
DOI:10.1186/s12935-021-01953-5
18. Hoppe MM, Jaynes P, Wardyn JD, et al. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med. 2021;13(5):e13366. DOI:10.15252/emmm.202013366
19. Guffanti F, Alvisi MF, Anastasia A, et al. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer. 2022;126(1):120-8. DOI:10.1038/s41416-021-01609-1
20. Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13(1):50. DOI:10.1186/s13048-020-00654-3
21. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410-4. DOI:10.1038/ng.569
22. Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278-88. DOI:10.1093/hmg/ddr229
23. Thompson ER, Boyle SE, Johnson J, et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat. 2012;33(1):95-9. DOI:10.1002/humu.21625
24. Yao H, Li N, Yuan H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer. 2022;22(1):1337. DOI:10.1186/s12885-022-10456-z
25. Rubin SC, Finstad CL, Federici MG, et al. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer. 1994;73(5):1456-9.
DOI:10.1002/1097-0142(19940301)73:5<1456::aid-cncr2820730522>3.0.co;2-l
26. Luo H, Xu X, Ye M, et al. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. DOI:10.1371/journal.pone.0191972
27. Swain SM, Clark E, Baselga J. Treatment of HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(20):1964-5. DOI:10.1056/NEJMc1503446
28. Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283-90. DOI:10.1200/JCO.2003.10.104
29. Satpathy M, Wang L, Zielinski RJ, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics. 2019;9(3):778-95. DOI:10.7150/thno.29964
30. Kupryjańczyk J, Madry R, Plisiecka-Hałasa J, et al. TP53 status determines clinical significance of ERBB2 expression in ovarian cancer. Br J Cancer. 2004;91(11):1916-23. DOI:10.1038/sj.bjc.6602238
31. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst). 2016;38:14-23. DOI:10.1016/j.dnarep.2015.11.012
32. Amaral-Silva GK, Martins MD, Pontes HA, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241-5. DOI:10.1111/jop.12484
33. Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst). 2019;78:60-9. DOI:10.1016/j.dnarep.2019.03.009
34. Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst). 2014;20:71-81. DOI:10.1016/j.dnarep.2014.03.007
35. Cilona M, Locatello LG, Novelli L, Gallo O. The mismatch repair system (MMR) in head and neck carcinogenesis and its role in modulating the response to immunotherapy: A critical review. Cancers. 2020;12(10):3006. DOI:10.3390/cancers12103006
36. Loeb LA. A mutator phenotype in cancer. Cancer Res. 2001;61(8):3230-9. PMID:11309271
37. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122. DOI:10.3389/fmolb.2020.00122
38. Rambau PF, Duggan MA, Ghatage P, et al. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology. 2016;69(2):288-97. DOI:10.1111/his.12934
39. Helder-Woolderink JM, Blok EA, Vasen HF, et al. Ovarian cancer in Lynch syndrome: A systematic review. Eur J Cancer. 2016;55:65-73. DOI:10.1016/j.ejca.2015.12.005
40. Samimi G, Fink D, Varki NM, et al. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res.
2000;6(4):1415-21. PMID:10778972
41. Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(2):506-12. DOI:10.1016/j.ygyno.2013.12.003
42. Балдуева И.А., Нехаева Т.Л., Проценко С.А., и др. Дендритноклеточные вакцины в иммунотерапии больных солидными опухолями. СПб.: НМИЦ онкологии им. Н.Н. Петрова, 2020 [Baldueva IA, Nekhaeva TL, Protsenko SA, et al. Dendritnokletochnye vaktsiny v immunoterapii bol'nykh solidnymi opukholiami. Saint Peterburg: NMITs onkologii im. N.N. Petrova, 2020 (in Russian)].
43. Гуторов С.Л., Давыдова И.Ю., Новикова Е.Г., и др. Практические рекомендации по лекарственному лечению злокачественных неэпителиальных опухолей яичников. Злокачественные опухоли. 2022;12(3s2-1):212-28 [Gutorov SL, Davydova IIu, Novikova EG, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu zlokachestvennykh neepitelial'nykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):212-28 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-212-228
44. Давыдова И.Ю., Валиев Р.К., Карселадзе А.И., и др. Практические рекомендации по лечению пограничных опухолей яичников. Злокачественные опухоли.
2022;12(3s2-1):229-39 [Davydova IIu, Valiev RK, Karseladze AI, et al. Prakticheskie rekomendatsii po lecheniiu pogranichnykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):229-39 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-229-239
45. Тюлядина А.С., Коломиец Л.А., Морзов К.Ю., и др. Практические рекомендации по лекарственному лечению рака яичников, первичного рака брюшины и рака маточных труб. Злокачественные опухоли. 2022;12(3s2-1):198-211 [Tiuliadina AS, Kolomiets LA, Morzov KIu, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu raka iaichnikov, pervichnogo raka briushiny i raka matochnykh trub. Zlokachestvennye Opukholi. 2022;12(3s2-1):198-211 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-198-211
46. D'Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282. DOI:10.1038/s41419-018-0278-6
47. Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial ovarian cancer and the immune system: Biology, interactions, challenges and potential advances for immunotherapy. J Clin Med. 2020;9(9):2967. DOI:10.3390/jcm9092967
48. Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer. 2018;18(1):1086. DOI:10.1186/s12885-018-5020-3
49. Dumauthioz N, Labiano S, Romero P. Tumor resident memory T cells: New players in immune surveillance and therapy. Front Immunol. 2018;9:2076. DOI:10.3389/fimmu.2018.02076
2. Leung DTH, Fuller PJ, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51-4. DOI:10.1016/j.biocel.2016.01.003
3. Heravi-Moussavi A, Anglesio MS, Cheng SW, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234-42. DOI:10.1056/NEJMoa1102903
4. Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429-40. DOI:10.1097/PAS.0b013e31822d6c71
5. Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424-6. DOI:10.1038/ng.2922
6. Herzog TJ. Recurrent ovarian cancer. Clin Cancer Res. 2004;10(22):7439-49. DOI:10.1158/1078-0432.CCR-04-0683
7. Herzog TJ, Pothuri B. Ovarian cancer: A focus on management of recurrent disease. Nat Rev Clin Oncol. 2006;3(11):604-11. DOI:10.1038/ncponc0637
8. Khanson KP, Imianitov EN. Molekuliarnaia genetika raka iaichnikov. Prakticheskaia Onkologiia. 2000;1(4):3-6 (in Russian).
9. Khokhlova SV, Gorbunova VA, Lyubchenko LN, Imyanitov EN. BRCA-associated ovarian cancer (the experience of the Chemotherapy Department in N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of Russia). Journal of Modern Oncology. 2016;18(1):37-44 (in Russian).
10. Lu H, Li S, Black MH, et al. Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 2019;5(1):51-7. DOI:10.1001/jamaoncol.2018.2956
11. Laurini E, Marson D, Fermeglia A, et al. Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther. 2020;208:107492. DOI:10.1016/j.pharmthera.2020.107492
12. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33(2):387-95. DOI:10.1128/MCB.00465-12
13. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600. DOI:10.1101/cshperspect.a016600
14. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel). 2018;9(12):629. DOI:10.3390/genes9120629
15. Orhan E, Velazquez C, Tabet I, et al. Regulation of RAD51 at the transcriptional and functional levels: What prospects for cancer therapy? Cancers (Basel). 2021;13(12):2930. DOI:10.3390/cancers13122930
16. Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer. 2020;2(3):zcaa024. DOI:10.1093/narcan/zcaa024
17. Feng Y, Wang D, Xiong L, et al. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int. 2021;21(1):249.
DOI:10.1186/s12935-021-01953-5
18. Hoppe MM, Jaynes P, Wardyn JD, et al. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med. 2021;13(5):e13366. DOI:10.15252/emmm.202013366
19. Guffanti F, Alvisi MF, Anastasia A, et al. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer. 2022;126(1):120-8. DOI:10.1038/s41416-021-01609-1
20. Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13(1):50. DOI:10.1186/s13048-020-00654-3
21. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410-4. DOI:10.1038/ng.569
22. Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278-88. DOI:10.1093/hmg/ddr229
23. Thompson ER, Boyle SE, Johnson J, et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat. 2012;33(1):95-9. DOI:10.1002/humu.21625
24. Yao H, Li N, Yuan H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer. 2022;22(1):1337. DOI:10.1186/s12885-022-10456-z
25. Rubin SC, Finstad CL, Federici MG, et al. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer. 1994;73(5):1456-9.
DOI:10.1002/1097-0142(19940301)73:5<1456::aid-cncr2820730522>3.0.co;2-l
26. Luo H, Xu X, Ye M, et al. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. DOI:10.1371/journal.pone.0191972
27. Swain SM, Clark E, Baselga J. Treatment of HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(20):1964-5. DOI:10.1056/NEJMc1503446
28. Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283-90. DOI:10.1200/JCO.2003.10.104
29. Satpathy M, Wang L, Zielinski RJ, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics. 2019;9(3):778-95. DOI:10.7150/thno.29964
30. Kupryjańczyk J, Madry R, Plisiecka-Hałasa J, et al. TP53 status determines clinical significance of ERBB2 expression in ovarian cancer. Br J Cancer. 2004;91(11):1916-23. DOI:10.1038/sj.bjc.6602238
31. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst). 2016;38:14-23. DOI:10.1016/j.dnarep.2015.11.012
32. Amaral-Silva GK, Martins MD, Pontes HA, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241-5. DOI:10.1111/jop.12484
33. Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst). 2019;78:60-9. DOI:10.1016/j.dnarep.2019.03.009
34. Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst). 2014;20:71-81. DOI:10.1016/j.dnarep.2014.03.007
35. Cilona M, Locatello LG, Novelli L, Gallo O. The mismatch repair system (MMR) in head and neck carcinogenesis and its role in modulating the response to immunotherapy: A critical review. Cancers. 2020;12(10):3006. DOI:10.3390/cancers12103006
36. Loeb LA. A mutator phenotype in cancer. Cancer Res. 2001;61(8):3230-9. PMID:11309271
37. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122. DOI:10.3389/fmolb.2020.00122
38. Rambau PF, Duggan MA, Ghatage P, et al. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology. 2016;69(2):288-97. DOI:10.1111/his.12934
39. Helder-Woolderink JM, Blok EA, Vasen HF, et al. Ovarian cancer in Lynch syndrome: A systematic review. Eur J Cancer. 2016;55:65-73. DOI:10.1016/j.ejca.2015.12.005
40. Samimi G, Fink D, Varki NM, et al. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res.
2000;6(4):1415-21. PMID:10778972
41. Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(2):506-12. DOI:10.1016/j.ygyno.2013.12.003
42. Baldueva IA, Nekhaeva TL, Protsenko SA, et al. Dendritnokletochnye vaktsiny v immunoterapii bol'nykh solidnymi opukholiami. Saint Peterburg: NMITs onkologii im. N.N. Petrova, 2020 (in Russian).
43. Gutorov SL, Davydova IIu, Novikova EG, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu zlokachestvennykh neepitelial'nykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):212-28 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-212-228
44. Davydova IIu, Valiev RK, Karseladze AI, et al. Prakticheskie rekomendatsii po lecheniiu pogranichnykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):229-39 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-229-239
45. Tiuliadina AS, Kolomiets LA, Morzov KIu, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu raka iaichnikov, pervichnogo raka briushiny i raka matochnykh trub. Zlokachestvennye Opukholi. 2022;12(3s2-1):198-211 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-198-211
46. D'Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282. DOI:10.1038/s41419-018-0278-6
47. Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial ovarian cancer and the immune system: Biology, interactions, challenges and potential advances for immunotherapy. J Clin Med. 2020;9(9):2967. DOI:10.3390/jcm9092967
48. Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer. 2018;18(1):1086. DOI:10.1186/s12885-018-5020-3
49. Dumauthioz N, Labiano S, Romero P. Tumor resident memory T cells: New players in immune surveillance and therapy. Front Immunol. 2018;9:2076. DOI:10.3389/fimmu.2018.02076
2. Leung DTH, Fuller PJ, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51-4. DOI:10.1016/j.biocel.2016.01.003
3. Heravi-Moussavi A, Anglesio MS, Cheng SW, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234-42. DOI:10.1056/NEJMoa1102903
4. Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429-40. DOI:10.1097/PAS.0b013e31822d6c71
5. Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424-6. DOI:10.1038/ng.2922
6. Herzog TJ. Recurrent ovarian cancer. Clin Cancer Res. 2004;10(22):7439-49. DOI:10.1158/1078-0432.CCR-04-0683
7. Herzog TJ, Pothuri B. Ovarian cancer: A focus on management of recurrent disease. Nat Rev Clin Oncol. 2006;3(11):604-11. DOI:10.1038/ncponc0637
8. Хансон К.П., Имянитов Е.Н. Молекулярная генетика рака яичников. Практическая онкология. 2000;1(4):3-6 [Khanson KP, Imianitov EN. Molekuliarnaia genetika raka iaichnikov. Prakticheskaia Onkologiia. 2000;1(4):3-6 (in Russian)].
9. Хохлова С.В., Горбунова В.А., Любченко Л.Н., Имянитов Е.Н. BRCA-ассоциированный рак яичников (опыт отделения химиотерапии ФГБУ «РОНЦ им. Н.Н. Блохина» Минздрава России). Современная Онкология. 2016;18(1):37-44 [Khokhlova SV, Gorbunova VA, Lyubchenko LN, Imyanitov EN. BRCA-associated ovarian cancer (the experience of the Chemotherapy Department in N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of Russia). Journal of Modern Oncology. 2016;18(1):37-44 (in Russian)].
10. Lu H, Li S, Black MH, et al. Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 2019;5(1):51-7. DOI:10.1001/jamaoncol.2018.2956
11. Laurini E, Marson D, Fermeglia A, et al. Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther. 2020;208:107492. DOI:10.1016/j.pharmthera.2020.107492
12. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33(2):387-95. DOI:10.1128/MCB.00465-12
13. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600. DOI:10.1101/cshperspect.a016600
14. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel). 2018;9(12):629. DOI:10.3390/genes9120629
15. Orhan E, Velazquez C, Tabet I, et al. Regulation of RAD51 at the transcriptional and functional levels: What prospects for cancer therapy? Cancers (Basel). 2021;13(12):2930. DOI:10.3390/cancers13122930
16. Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer. 2020;2(3):zcaa024. DOI:10.1093/narcan/zcaa024
17. Feng Y, Wang D, Xiong L, et al. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int. 2021;21(1):249.
DOI:10.1186/s12935-021-01953-5
18. Hoppe MM, Jaynes P, Wardyn JD, et al. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med. 2021;13(5):e13366. DOI:10.15252/emmm.202013366
19. Guffanti F, Alvisi MF, Anastasia A, et al. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer. 2022;126(1):120-8. DOI:10.1038/s41416-021-01609-1
20. Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13(1):50. DOI:10.1186/s13048-020-00654-3
21. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410-4. DOI:10.1038/ng.569
22. Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278-88. DOI:10.1093/hmg/ddr229
23. Thompson ER, Boyle SE, Johnson J, et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat. 2012;33(1):95-9. DOI:10.1002/humu.21625
24. Yao H, Li N, Yuan H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer. 2022;22(1):1337. DOI:10.1186/s12885-022-10456-z
25. Rubin SC, Finstad CL, Federici MG, et al. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer. 1994;73(5):1456-9.
DOI:10.1002/1097-0142(19940301)73:5<1456::aid-cncr2820730522>3.0.co;2-l
26. Luo H, Xu X, Ye M, et al. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. DOI:10.1371/journal.pone.0191972
27. Swain SM, Clark E, Baselga J. Treatment of HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(20):1964-5. DOI:10.1056/NEJMc1503446
28. Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283-90. DOI:10.1200/JCO.2003.10.104
29. Satpathy M, Wang L, Zielinski RJ, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics. 2019;9(3):778-95. DOI:10.7150/thno.29964
30. Kupryjańczyk J, Madry R, Plisiecka-Hałasa J, et al. TP53 status determines clinical significance of ERBB2 expression in ovarian cancer. Br J Cancer. 2004;91(11):1916-23. DOI:10.1038/sj.bjc.6602238
31. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst). 2016;38:14-23. DOI:10.1016/j.dnarep.2015.11.012
32. Amaral-Silva GK, Martins MD, Pontes HA, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241-5. DOI:10.1111/jop.12484
33. Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst). 2019;78:60-9. DOI:10.1016/j.dnarep.2019.03.009
34. Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst). 2014;20:71-81. DOI:10.1016/j.dnarep.2014.03.007
35. Cilona M, Locatello LG, Novelli L, Gallo O. The mismatch repair system (MMR) in head and neck carcinogenesis and its role in modulating the response to immunotherapy: A critical review. Cancers. 2020;12(10):3006. DOI:10.3390/cancers12103006
36. Loeb LA. A mutator phenotype in cancer. Cancer Res. 2001;61(8):3230-9. PMID:11309271
37. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122. DOI:10.3389/fmolb.2020.00122
38. Rambau PF, Duggan MA, Ghatage P, et al. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology. 2016;69(2):288-97. DOI:10.1111/his.12934
39. Helder-Woolderink JM, Blok EA, Vasen HF, et al. Ovarian cancer in Lynch syndrome: A systematic review. Eur J Cancer. 2016;55:65-73. DOI:10.1016/j.ejca.2015.12.005
40. Samimi G, Fink D, Varki NM, et al. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res.
2000;6(4):1415-21. PMID:10778972
41. Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(2):506-12. DOI:10.1016/j.ygyno.2013.12.003
42. Балдуева И.А., Нехаева Т.Л., Проценко С.А., и др. Дендритноклеточные вакцины в иммунотерапии больных солидными опухолями. СПб.: НМИЦ онкологии им. Н.Н. Петрова, 2020 [Baldueva IA, Nekhaeva TL, Protsenko SA, et al. Dendritnokletochnye vaktsiny v immunoterapii bol'nykh solidnymi opukholiami. Saint Peterburg: NMITs onkologii im. N.N. Petrova, 2020 (in Russian)].
43. Гуторов С.Л., Давыдова И.Ю., Новикова Е.Г., и др. Практические рекомендации по лекарственному лечению злокачественных неэпителиальных опухолей яичников. Злокачественные опухоли. 2022;12(3s2-1):212-28 [Gutorov SL, Davydova IIu, Novikova EG, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu zlokachestvennykh neepitelial'nykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):212-28 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-212-228
44. Давыдова И.Ю., Валиев Р.К., Карселадзе А.И., и др. Практические рекомендации по лечению пограничных опухолей яичников. Злокачественные опухоли.
2022;12(3s2-1):229-39 [Davydova IIu, Valiev RK, Karseladze AI, et al. Prakticheskie rekomendatsii po lecheniiu pogranichnykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):229-39 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-229-239
45. Тюлядина А.С., Коломиец Л.А., Морзов К.Ю., и др. Практические рекомендации по лекарственному лечению рака яичников, первичного рака брюшины и рака маточных труб. Злокачественные опухоли. 2022;12(3s2-1):198-211 [Tiuliadina AS, Kolomiets LA, Morzov KIu, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu raka iaichnikov, pervichnogo raka briushiny i raka matochnykh trub. Zlokachestvennye Opukholi. 2022;12(3s2-1):198-211 (in Russian)]. DOI:10.18027/2224-5057-2022-12-3s2-198-211
46. D'Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282. DOI:10.1038/s41419-018-0278-6
47. Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial ovarian cancer and the immune system: Biology, interactions, challenges and potential advances for immunotherapy. J Clin Med. 2020;9(9):2967. DOI:10.3390/jcm9092967
48. Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer. 2018;18(1):1086. DOI:10.1186/s12885-018-5020-3
49. Dumauthioz N, Labiano S, Romero P. Tumor resident memory T cells: New players in immune surveillance and therapy. Front Immunol. 2018;9:2076. DOI:10.3389/fimmu.2018.02076
________________________________________________
2. Leung DTH, Fuller PJ, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51-4. DOI:10.1016/j.biocel.2016.01.003
3. Heravi-Moussavi A, Anglesio MS, Cheng SW, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234-42. DOI:10.1056/NEJMoa1102903
4. Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429-40. DOI:10.1097/PAS.0b013e31822d6c71
5. Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424-6. DOI:10.1038/ng.2922
6. Herzog TJ. Recurrent ovarian cancer. Clin Cancer Res. 2004;10(22):7439-49. DOI:10.1158/1078-0432.CCR-04-0683
7. Herzog TJ, Pothuri B. Ovarian cancer: A focus on management of recurrent disease. Nat Rev Clin Oncol. 2006;3(11):604-11. DOI:10.1038/ncponc0637
8. Khanson KP, Imianitov EN. Molekuliarnaia genetika raka iaichnikov. Prakticheskaia Onkologiia. 2000;1(4):3-6 (in Russian).
9. Khokhlova SV, Gorbunova VA, Lyubchenko LN, Imyanitov EN. BRCA-associated ovarian cancer (the experience of the Chemotherapy Department in N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of Russia). Journal of Modern Oncology. 2016;18(1):37-44 (in Russian).
10. Lu H, Li S, Black MH, et al. Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 2019;5(1):51-7. DOI:10.1001/jamaoncol.2018.2956
11. Laurini E, Marson D, Fermeglia A, et al. Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther. 2020;208:107492. DOI:10.1016/j.pharmthera.2020.107492
12. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33(2):387-95. DOI:10.1128/MCB.00465-12
13. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600. DOI:10.1101/cshperspect.a016600
14. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel). 2018;9(12):629. DOI:10.3390/genes9120629
15. Orhan E, Velazquez C, Tabet I, et al. Regulation of RAD51 at the transcriptional and functional levels: What prospects for cancer therapy? Cancers (Basel). 2021;13(12):2930. DOI:10.3390/cancers13122930
16. Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer. 2020;2(3):zcaa024. DOI:10.1093/narcan/zcaa024
17. Feng Y, Wang D, Xiong L, et al. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int. 2021;21(1):249.
DOI:10.1186/s12935-021-01953-5
18. Hoppe MM, Jaynes P, Wardyn JD, et al. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med. 2021;13(5):e13366. DOI:10.15252/emmm.202013366
19. Guffanti F, Alvisi MF, Anastasia A, et al. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer. 2022;126(1):120-8. DOI:10.1038/s41416-021-01609-1
20. Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13(1):50. DOI:10.1186/s13048-020-00654-3
21. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410-4. DOI:10.1038/ng.569
22. Pelttari LM, Heikkinen T, Thompson D, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278-88. DOI:10.1093/hmg/ddr229
23. Thompson ER, Boyle SE, Johnson J, et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat. 2012;33(1):95-9. DOI:10.1002/humu.21625
24. Yao H, Li N, Yuan H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer. 2022;22(1):1337. DOI:10.1186/s12885-022-10456-z
25. Rubin SC, Finstad CL, Federici MG, et al. Prevalence and significance of HER-2/neu expression in early epithelial ovarian cancer. Cancer. 1994;73(5):1456-9.
DOI:10.1002/1097-0142(19940301)73:5<1456::aid-cncr2820730522>3.0.co;2-l
26. Luo H, Xu X, Ye M, et al. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. DOI:10.1371/journal.pone.0191972
27. Swain SM, Clark E, Baselga J. Treatment of HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(20):1964-5. DOI:10.1056/NEJMc1503446
28. Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283-90. DOI:10.1200/JCO.2003.10.104
29. Satpathy M, Wang L, Zielinski RJ, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics. 2019;9(3):778-95. DOI:10.7150/thno.29964
30. Kupryjańczyk J, Madry R, Plisiecka-Hałasa J, et al. TP53 status determines clinical significance of ERBB2 expression in ovarian cancer. Br J Cancer. 2004;91(11):1916-23. DOI:10.1038/sj.bjc.6602238
31. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst). 2016;38:14-23. DOI:10.1016/j.dnarep.2015.11.012
32. Amaral-Silva GK, Martins MD, Pontes HA, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241-5. DOI:10.1111/jop.12484
33. Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst). 2019;78:60-9. DOI:10.1016/j.dnarep.2019.03.009
34. Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst). 2014;20:71-81. DOI:10.1016/j.dnarep.2014.03.007
35. Cilona M, Locatello LG, Novelli L, Gallo O. The mismatch repair system (MMR) in head and neck carcinogenesis and its role in modulating the response to immunotherapy: A critical review. Cancers. 2020;12(10):3006. DOI:10.3390/cancers12103006
36. Loeb LA. A mutator phenotype in cancer. Cancer Res. 2001;61(8):3230-9. PMID:11309271
37. Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122. DOI:10.3389/fmolb.2020.00122
38. Rambau PF, Duggan MA, Ghatage P, et al. Significant frequency of MSH2/MSH6 abnormality in ovarian endometrioid carcinoma supports histotype-specific Lynch syndrome screening in ovarian carcinomas. Histopathology. 2016;69(2):288-97. DOI:10.1111/his.12934
39. Helder-Woolderink JM, Blok EA, Vasen HF, et al. Ovarian cancer in Lynch syndrome: A systematic review. Eur J Cancer. 2016;55:65-73. DOI:10.1016/j.ejca.2015.12.005
40. Samimi G, Fink D, Varki NM, et al. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res.
2000;6(4):1415-21. PMID:10778972
41. Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(2):506-12. DOI:10.1016/j.ygyno.2013.12.003
42. Baldueva IA, Nekhaeva TL, Protsenko SA, et al. Dendritnokletochnye vaktsiny v immunoterapii bol'nykh solidnymi opukholiami. Saint Peterburg: NMITs onkologii im. N.N. Petrova, 2020 (in Russian).
43. Gutorov SL, Davydova IIu, Novikova EG, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu zlokachestvennykh neepitelial'nykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):212-28 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-212-228
44. Davydova IIu, Valiev RK, Karseladze AI, et al. Prakticheskie rekomendatsii po lecheniiu pogranichnykh opukholei iaichnikov. Zlokachestvennye Opukholi. 2022;12(3s2-1):229-39 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-229-239
45. Tiuliadina AS, Kolomiets LA, Morzov KIu, et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu raka iaichnikov, pervichnogo raka briushiny i raka matochnykh trub. Zlokachestvennye Opukholi. 2022;12(3s2-1):198-211 (in Russian). DOI:10.18027/2224-5057-2022-12-3s2-198-211
46. D'Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282. DOI:10.1038/s41419-018-0278-6
47. Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial ovarian cancer and the immune system: Biology, interactions, challenges and potential advances for immunotherapy. J Clin Med. 2020;9(9):2967. DOI:10.3390/jcm9092967
48. Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer. 2018;18(1):1086. DOI:10.1186/s12885-018-5020-3
49. Dumauthioz N, Labiano S, Romero P. Tumor resident memory T cells: New players in immune surveillance and therapy. Front Immunol. 2018;9:2076. DOI:10.3389/fimmu.2018.02076
Авторы
М.А. Кальфа, И.О. Головкин*, А.Э. Лазарев, Е.П. Голубинская, О.Ю. Грицкевич, Е.Ю. Зяблицкая
ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского», Симферополь, Россия
*golovkin.io.1996@gmail.com
Vernadsky Crimean Federal University, Simferopol, Russia
*golovkin.io.1996@gmail.com
ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского», Симферополь, Россия
*golovkin.io.1996@gmail.com
________________________________________________
Vernadsky Crimean Federal University, Simferopol, Russia
*golovkin.io.1996@gmail.com
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
