Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Генотипирование полиморфизмов UGT1A1 и DPYD у пациентов с колоректальным раком
Генотипирование полиморфизмов UGT1A1 и DPYD у пациентов с колоректальным раком
Тимошкина Н. Н., Петрусенко Н. А., Габричидзе П. Н., Черкес М. А., Пушкарева Т. Ф., Савченко Д. А. Генотипирование полиморфизмов UGT1A1 и DPYD у пациентов с колоректальным раком. Современная Онкология. 2023;25(4):447–453. DOI: 10.26442/18151434.2023.4.202514
© ООО «КОНСИЛИУМ МЕДИКУМ», 2023 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2023 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Основной схемой лечения пациентов с метастатическим колоректальным раком по-прежнему является курсовая химиотерапия фторпиримидинами в сочетании с оксалиплатином и/или иринотеканом. Для активности этих химиотерапевтических препаратов характерен преобладающий специфический способ метаболизма. В этом случае важное значение приобретают генетические особенности пациента как фактор прогноза возникновения и тяжести нежелательных явлений в ходе терапии. В обзоре рассмотрены современные представления о механизмах токсической активности иринотекана и фторпиримидинов, проанализированы результаты собственного фармакогенотипирования полиморфизмов UGT1A1, DPYD и опубликованных исследований, оценивавших связь генетических вариантов указанных генов и безопасности химиотерапии. Отмечено существенное влияние популяционной составляющей как в распределении частот аллелей генов, так и в их фенотипической реализации. Для ряда полиморфизмов DPYD установлены дозозависимые ассоциации с токсичностью 5‑фторурацила, и тем не менее они определяют только 1–8% случаев из 40–60% пациентов с нежелательными явлениями, у которых выявляют дефицит белка DPD, что, очевидно, связано с другими механизмами снижения активности фермента. Фармакологическое значение генетических вариаций UGT1A1 связывают не только с прогнозированием токсичности, но и с выделением группы пациентов для назначения более эффективной высокодозовой терапии иринотеканом. Приведена информация о состоянии фармакогенотипирования указанных маркеров с целью установления дозы лекарственных средств в различных национальных руководствах. На текущий момент неоднородность доступных фармакогенетических данных оставляет открытым вопрос об определении наиболее подходящих стратегий дозирования иринотекана и фторпиримидинов. Широкое внедрение в клиническую практику генотипирования UGT1A1 и DPYD балансирует между экономической целесообразностью и прогностической ценностью биомаркеров. Поскольку область фармакогеномики быстро развивается, дальнейшие более надежные исследования должны преодолеть существующие препятствия, что будет способствовать принятию персонализированных решений по дозировке лекарств.
Ключевые слова: фармакогенетика, уридин-дифосфат-глюкуронозил-трансфераза, UGT1A1, иринотекан, дигидро-пиримидин-дегидрогеназа, DPYD, фторпиримидины, полиморфизм
Keywords: pharmacogenetics, uridine diphosphate-glucuronosyl transferase, UGT1A1, irinotecan, dihydro-pyrimidine dehydrogenase, DPYD, fluoropyrimidines, polymorphism
Ключевые слова: фармакогенетика, уридин-дифосфат-глюкуронозил-трансфераза, UGT1A1, иринотекан, дигидро-пиримидин-дегидрогеназа, DPYD, фторпиримидины, полиморфизм
________________________________________________
Keywords: pharmacogenetics, uridine diphosphate-glucuronosyl transferase, UGT1A1, irinotecan, dihydro-pyrimidine dehydrogenase, DPYD, fluoropyrimidines, polymorphism
Полный текст
Список литературы
1. Феденко А.А., Трякин А. А., Жукова Л. Г., и др. Национальное руководство по лекарственному лечению злокачественных опухолей. Под ред. А. Д. Каприна. М. 2020 [Fedenko AA, Triakin AA, Zhukova LG, et al. Natsional’noe rukovodstvo po lekarstvennomu lecheniiu zlokachestvennykh opukholei. Pod red. AD Kaprina. Moscow, 2020 (in Russian)].
2. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61‑8. DOI:10.2147/PGPM.S108656
3. Pfizer: CAMPTOSAR® (irinotecan HCl) Prescribing Information, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed: 30.11.2022.
4. Tam VC, Rask S, Koru-Sengul T, Dhesy-Thind S. Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Curr Oncol. 2009;16(6):13‑20. DOI:10.3747/co.v16i6.426
5. Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156‑62. DOI:10.1002/cncr.25735
6. Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract. 2022;18(4):270‑7. DOI:10.1200/OP.21.00624
7. Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807‑14. DOI:10.1200/JCO.2003.08.058
8. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34(7):656‑69.
DOI:10.1016/j.ctrv.2008.05.002
9. Wasserman E, Myara A, Lokiec F, et al. Severe CPT‑11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8(10):1049‑51. DOI:10.1023/A:1008261821434
10. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201‑8. DOI:10.1124/dmd.104.000794
11. Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;14(1):92‑116. DOI:10.1016/j.pharmthera.2013.09.002
12. Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration – Approved Oral and Intravenous Drugs: 2006‑2015. Drug Metab Dispos. 2016;44(8):1246‑52. DOI:10.1124/dmd.116.070763
13. Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics. 2021;15(1):30. DOI:10.1186/s40246‑021‑00331‑6
14. Sara JD, Kaur J, Khodadadi R, et al. 5‑fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. DOI:10.1177/1758835918780140
15. Van Kuilenburg ABP, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5‑fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer. 2002;101(3):253‑8. DOI:10.1002/ijc.10599
16. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5‑fluorouracil. Adv Enzyme Regul. 2001;41:151‑7. DOI:10.1016/s0065‑2571(00)00011‑x
17. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831‑41. DOI:10.1517/14740338.2010.511610
18. Pallet N, Hamdane S, Garinet S, et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811‑8. DOI:10.1038/s41416‑020‑0962‑z
19. Zhang X, Li L, Fourie J, et al. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta (BBA) – Gene Structure and Expression. 2006;1759(5):247‑56. DOI:10.1016/j.bbaexp.2006.05.001
20. Hirota T, Date Y, Nishibatake Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77(1):16‑23. DOI:10.1016/j.lungcan.2011.12.018
21. Toren W, Ansari D, Andersson B, et al. Thymidylate synthase: a predictive biomarker in resected colorectal liver metastases receiving 5-FU treatment. Future Oncol. 2018;14(4):343‑51. DOI:10.2217/fon‑2017‑0431
22. Abbasian MH, Ansarinejad N, Abbasi B, et al. The Role of Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J Med Biotechnol. 2020;12(3):157‑64.
23. Кит О.И., Максимов А. Ю., Дженкова Е. А., Тимошкина Н. Н. Роль молекулярно-генетических исследований в современной онкологии. Вестник Российской Академии медицинских наук. 2022;77(3):214‑24 [Kit OI, Maksimov AYu, Dzhenkova EA, Timoshkina NN. The role of molecular genetic studies in current oncology. Annals of the Russian Academy of Medical Sciences. 2022;77(3):214‑24 (in Russian)].
24. Водолажский Д.И., Двадненко К. В., Тимошкина Н. Н., и др. Полиморфизм гена UGT1A1 у пациентов с колоректальным раком, живущих на Юге России: результаты пилотного исследования. Молекулярная медицина. 2017;15(1):61‑4 [Vodolazhsky DI, Dvadnenko KV, Timoshkina NN, et al. UGT1A1 gene polymorphism in patients with colorectal cancer living in the South of Russia: results of a pilot study. Molecular Medicine. 2017;15(1):61‑4 (in Russian)].
25. Тимошкина Н.Н., Богомолова О. А., Жужеленко И. А., и др. Исследование полиморфизмов генов UGT1A1 и DPYD у пациентов с колоректальным раком. Сибирский онкологический журнал. 2018;17(6):49‑56 [Timoshkina NN, Bogomolova OA, Zhuzhelenko IA, et al. Study of UGT1A1 and DPYD gene polymorphisms in patients with colorectal cancer. Siberian Journal of Oncology. 2018;17(6):49‑56 (in Russian)]. DOI:10.21294/1814‑4861‑2018‑17‑6-49‑56
26. Chen X, Liu L, Guo Z, et al. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol. 2017;79(6):1109‑17. DOI:10.1007/s00280‑017‑3306‑9
27. Zhang X, Yin JF, Zhang J, et al. UGT1A1*6 Polymorphisms are Correlated With Irinotecan-Induced Neutropenia: A Systematic Review and Meta-Analysis. Cancer Chemother Pharmacol. 2017;80(1):135‑49. DOI:10.1007/s00280‑017‑3344‑3
28. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120‑9. DOI:10.1038/tpj.2013.10
29. Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479‑89. DOI:10.1111/ajco.13028
30. Cremolini C, Del Re M, Antoniotti C, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9(8):7859‑66. DOI:10.18632/oncotarget.23559
31. Hikino K, Ozeki T, Koido M, et al. Comparison of Effects of UGT1A1*6 and UGT1A1*28 on Irinotecan-Induced Adverse Reactions in the Japanese Population: Analysis of the Biobank Japan Project. J Hum Genet. 2019;64(12):1195‑202. DOI:10.1038/s10038‑019‑0677‑2
32. Kimura K, Yamano T, Igeta M, et al. UGT1A1 Polymorphisms in Rectal Cancer Associated With the Efficacy and Toxicity of Preoperative Chemoradiotherapy Using Irinotecan. Cancer Sci. 2018;109(12):3934‑42. DOI:10.1111/cas.13807
33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‑506. DOI:10.1016/S0140‑6736(20)30183‑5
34. Li Y, Zheng H, Zhang X, et al. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol. 2022;12:854478. DOI:10.3389/fonc.2022.854478
35. Hishinuma E, Narita Y, Saito S, et al. Functional Characterization of 21 Allelic Variants of Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. Drug Metab Dispos. 2018;46(8):1083‑90. DOI:10.1124/dmd.118.081737
36. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415‑24. DOI:10.1038/bjc.2017.94
37. DPYD Gene. Cosmic. Available at: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=DPYD#variants. Accessed: 30.11.2022.
38. Etienne-Grimaldi MC, Boyer JC, Beroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. DOI:10.1371/journal.pone.0175998
39. Van Kuilenburg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta. 2016;1862(4):754‑62. DOI:10.1016/j.bbadis.2016.01.009
40. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(12):1008‑16. DOI:10.1002/onco.13967
41. Dean L, Kane M. Fluorouracil Therapy and DPYD Genotype. 2016 [last updated 2021]. In: Pratt VM, Scott SA, Pirmohamed M, et al, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
42. Colon Cancer, Version 2.2021, NCCN Guidelines. National Comprehensive Cancer Network. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed: 30.11.2022.
43. Iwasa S, Muro K, Morita S, et al. Impact of UGT1A1 Genotype on the Efficacy and Safety of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Cancer Sci. 2021;112(11):4669‑78. DOI:10.1111/cas.15092
44. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients With Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(1):44‑70. DOI:10.1093/annonc/mdx738
45. Reizine N, Vokes EE, Liu P, et al. Implementation of pharmacogenomic testing in oncology care (PhOCus): Study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol. 2020;12. DOI:10.1177/1758835920974118
2. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61‑8. DOI:10.2147/PGPM.S108656
3. Pfizer: CAMPTOSAR® (irinotecan HCl) Prescribing Information, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed: 30.11.2022.
4. Tam VC, Rask S, Koru-Sengul T, Dhesy-Thind S. Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Curr Oncol. 2009;16(6):13‑20. DOI:10.3747/co.v16i6.426
5. Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156‑62. DOI:10.1002/cncr.25735
6. Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract. 2022;18(4):270‑7. DOI:10.1200/OP.21.00624
7. Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807‑14. DOI:10.1200/JCO.2003.08.058
8. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34(7):656‑69.
DOI:10.1016/j.ctrv.2008.05.002
9. Wasserman E, Myara A, Lokiec F, et al. Severe CPT‑11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8(10):1049‑51. DOI:10.1023/A:1008261821434
10. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201‑8. DOI:10.1124/dmd.104.000794
11. Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;14(1):92‑116. DOI:10.1016/j.pharmthera.2013.09.002
12. Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration – Approved Oral and Intravenous Drugs: 2006‑2015. Drug Metab Dispos. 2016;44(8):1246‑52. DOI:10.1124/dmd.116.070763
13. Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics. 2021;15(1):30. DOI:10.1186/s40246‑021‑00331‑6
14. Sara JD, Kaur J, Khodadadi R, et al. 5‑fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. DOI:10.1177/1758835918780140
15. Van Kuilenburg ABP, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5‑fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer. 2002;101(3):253‑8. DOI:10.1002/ijc.10599
16. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5‑fluorouracil. Adv Enzyme Regul. 2001;41:151‑7. DOI:10.1016/s0065‑2571(00)00011‑x
17. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831‑41. DOI:10.1517/14740338.2010.511610
18. Pallet N, Hamdane S, Garinet S, et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811‑8. DOI:10.1038/s41416‑020‑0962‑z
19. Zhang X, Li L, Fourie J, et al. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta (BBA) – Gene Structure and Expression. 2006;1759(5):247‑56.nDOI:10.1016/j.bbaexp.2006.05.001
20. Hirota T, Date Y, Nishibatake Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77(1):16‑23. DOI:10.1016/j.lungcan.2011.12.018
21. Toren W, Ansari D, Andersson B, et al. Thymidylate synthase: a predictive biomarker in resected colorectal liver metastases receiving 5-FU treatment. Future Oncol. 2018;14(4):343‑51. DOI:10.2217/fon‑2017‑0431
22. Abbasian MH, Ansarinejad N, Abbasi B, et al. The Role of Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J Med Biotechnol. 2020;12(3):157‑64.
23. Kit OI, Maksimov AYu, Dzhenkova EA, Timoshkina NN. The role of molecular genetic studies in current oncology. Annals of the Russian Academy of Medical Sciences. 2022;77(3):214‑24 (in Russian).
24. Vodolazhsky DI, Dvadnenko KV, Timoshkina NN, et al. UGT1A1 gene polymorphism in patients with colorectal cancer living in the South of Russia: results of a pilot study. Molecular Medicine. 2017;15(1):61‑4 (in Russian).
25. Timoshkina NN, Bogomolova OA, Zhuzhelenko IA, et al. Study of UGT1A1 and DPYD gene polymorphisms in patients with colorectal cancer. Siberian Journal of Oncology. 2018;17(6):49‑56 (in Russian). DOI:10.21294/1814‑4861‑2018‑17‑6-49‑56
26. Chen X, Liu L, Guo Z, et al. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol. 2017;79(6):1109‑17. DOI:10.1007/s00280‑017‑3306‑9
27. Zhang X, Yin JF, Zhang J, et al. UGT1A1*6 Polymorphisms are Correlated With Irinotecan-Induced Neutropenia: A Systematic Review and Meta-Analysis. Cancer Chemother Pharmacol. 2017;80(1):135‑49. DOI:10.1007/s00280‑017‑3344‑3
28. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120‑9. DOI:10.1038/tpj.2013.10
29. Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479‑89. DOI:10.1111/ajco.13028
30. Cremolini C, Del Re M, Antoniotti C, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9(8):7859‑66. DOI:10.18632/oncotarget.23559
31. Hikino K, Ozeki T, Koido M, et al. Comparison of Effects of UGT1A1*6 and UGT1A1*28 on Irinotecan-Induced Adverse Reactions in the Japanese Population: Analysis of the Biobank Japan Project. J Hum Genet. 2019;64(12):1195‑202. DOI:10.1038/s10038‑019‑0677‑2
32. Kimura K, Yamano T, Igeta M, et al. UGT1A1 Polymorphisms in Rectal Cancer Associated With the Efficacy and Toxicity of Preoperative Chemoradiotherapy Using Irinotecan. Cancer Sci. 2018;109(12):3934‑42. DOI:10.1111/cas.13807
33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‑506. DOI:10.1016/S0140‑6736(20)30183‑5
34. Li Y, Zheng H, Zhang X, et al. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol. 2022;12:854478. DOI:10.3389/fonc.2022.854478
35. Hishinuma E, Narita Y, Saito S, et al. Functional Characterization of 21 Allelic Variants of Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. Drug Metab Dispos. 2018;46(8):1083‑90. DOI:10.1124/dmd.118.081737
36. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415‑24. DOI:10.1038/bjc.2017.94
37. DPYD Gene. Cosmic. Available at: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=DPYD#variants. Accessed: 30.11.2022.
38. Etienne-Grimaldi MC, Boyer JC, Beroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. DOI:10.1371/journal.pone.0175998
39. Van Kuilenburg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta. 2016;1862(4):754‑62. DOI:10.1016/j.bbadis.2016.01.009
40. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(12):1008‑16. DOI:10.1002/onco.13967
41. Dean L, Kane M. Fluorouracil Therapy and DPYD Genotype. 2016 [last updated 2021]. In: Pratt VM, Scott SA, Pirmohamed M, et al, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
42. Colon Cancer, Version 2.2021, NCCN Guidelines. National Comprehensive Cancer Network. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed: 30.11.2022.
43. Iwasa S, Muro K, Morita S, et al. Impact of UGT1A1 Genotype on the Efficacy and Safety of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Cancer Sci. 2021;112(11):4669‑78. DOI:10.1111/cas.15092
44. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients With Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(1):44‑70. DOI:10.1093/annonc/mdx738
45. Reizine N, Vokes EE, Liu P, et al. Implementation of pharmacogenomic testing in oncology care (PhOCus): Study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol. 2020;12. DOI:10.1177/1758835920974118
2. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61‑8. DOI:10.2147/PGPM.S108656
3. Pfizer: CAMPTOSAR® (irinotecan HCl) Prescribing Information, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed: 30.11.2022.
4. Tam VC, Rask S, Koru-Sengul T, Dhesy-Thind S. Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Curr Oncol. 2009;16(6):13‑20. DOI:10.3747/co.v16i6.426
5. Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156‑62. DOI:10.1002/cncr.25735
6. Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract. 2022;18(4):270‑7. DOI:10.1200/OP.21.00624
7. Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807‑14. DOI:10.1200/JCO.2003.08.058
8. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34(7):656‑69.
DOI:10.1016/j.ctrv.2008.05.002
9. Wasserman E, Myara A, Lokiec F, et al. Severe CPT‑11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8(10):1049‑51. DOI:10.1023/A:1008261821434
10. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201‑8. DOI:10.1124/dmd.104.000794
11. Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;14(1):92‑116. DOI:10.1016/j.pharmthera.2013.09.002
12. Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration – Approved Oral and Intravenous Drugs: 2006‑2015. Drug Metab Dispos. 2016;44(8):1246‑52. DOI:10.1124/dmd.116.070763
13. Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics. 2021;15(1):30. DOI:10.1186/s40246‑021‑00331‑6
14. Sara JD, Kaur J, Khodadadi R, et al. 5‑fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. DOI:10.1177/1758835918780140
15. Van Kuilenburg ABP, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5‑fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer. 2002;101(3):253‑8. DOI:10.1002/ijc.10599
16. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5‑fluorouracil. Adv Enzyme Regul. 2001;41:151‑7. DOI:10.1016/s0065‑2571(00)00011‑x
17. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831‑41. DOI:10.1517/14740338.2010.511610
18. Pallet N, Hamdane S, Garinet S, et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811‑8. DOI:10.1038/s41416‑020‑0962‑z
19. Zhang X, Li L, Fourie J, et al. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta (BBA) – Gene Structure and Expression. 2006;1759(5):247‑56. DOI:10.1016/j.bbaexp.2006.05.001
20. Hirota T, Date Y, Nishibatake Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77(1):16‑23. DOI:10.1016/j.lungcan.2011.12.018
21. Toren W, Ansari D, Andersson B, et al. Thymidylate synthase: a predictive biomarker in resected colorectal liver metastases receiving 5-FU treatment. Future Oncol. 2018;14(4):343‑51. DOI:10.2217/fon‑2017‑0431
22. Abbasian MH, Ansarinejad N, Abbasi B, et al. The Role of Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J Med Biotechnol. 2020;12(3):157‑64.
23. Кит О.И., Максимов А. Ю., Дженкова Е. А., Тимошкина Н. Н. Роль молекулярно-генетических исследований в современной онкологии. Вестник Российской Академии медицинских наук. 2022;77(3):214‑24 [Kit OI, Maksimov AYu, Dzhenkova EA, Timoshkina NN. The role of molecular genetic studies in current oncology. Annals of the Russian Academy of Medical Sciences. 2022;77(3):214‑24 (in Russian)].
24. Водолажский Д.И., Двадненко К. В., Тимошкина Н. Н., и др. Полиморфизм гена UGT1A1 у пациентов с колоректальным раком, живущих на Юге России: результаты пилотного исследования. Молекулярная медицина. 2017;15(1):61‑4 [Vodolazhsky DI, Dvadnenko KV, Timoshkina NN, et al. UGT1A1 gene polymorphism in patients with colorectal cancer living in the South of Russia: results of a pilot study. Molecular Medicine. 2017;15(1):61‑4 (in Russian)].
25. Тимошкина Н.Н., Богомолова О. А., Жужеленко И. А., и др. Исследование полиморфизмов генов UGT1A1 и DPYD у пациентов с колоректальным раком. Сибирский онкологический журнал. 2018;17(6):49‑56 [Timoshkina NN, Bogomolova OA, Zhuzhelenko IA, et al. Study of UGT1A1 and DPYD gene polymorphisms in patients with colorectal cancer. Siberian Journal of Oncology. 2018;17(6):49‑56 (in Russian)]. DOI:10.21294/1814‑4861‑2018‑17‑6-49‑56
26. Chen X, Liu L, Guo Z, et al. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol. 2017;79(6):1109‑17. DOI:10.1007/s00280‑017‑3306‑9
27. Zhang X, Yin JF, Zhang J, et al. UGT1A1*6 Polymorphisms are Correlated With Irinotecan-Induced Neutropenia: A Systematic Review and Meta-Analysis. Cancer Chemother Pharmacol. 2017;80(1):135‑49. DOI:10.1007/s00280‑017‑3344‑3
28. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120‑9. DOI:10.1038/tpj.2013.10
29. Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479‑89. DOI:10.1111/ajco.13028
30. Cremolini C, Del Re M, Antoniotti C, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9(8):7859‑66. DOI:10.18632/oncotarget.23559
31. Hikino K, Ozeki T, Koido M, et al. Comparison of Effects of UGT1A1*6 and UGT1A1*28 on Irinotecan-Induced Adverse Reactions in the Japanese Population: Analysis of the Biobank Japan Project. J Hum Genet. 2019;64(12):1195‑202. DOI:10.1038/s10038‑019‑0677‑2
32. Kimura K, Yamano T, Igeta M, et al. UGT1A1 Polymorphisms in Rectal Cancer Associated With the Efficacy and Toxicity of Preoperative Chemoradiotherapy Using Irinotecan. Cancer Sci. 2018;109(12):3934‑42. DOI:10.1111/cas.13807
33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‑506. DOI:10.1016/S0140‑6736(20)30183‑5
34. Li Y, Zheng H, Zhang X, et al. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol. 2022;12:854478. DOI:10.3389/fonc.2022.854478
35. Hishinuma E, Narita Y, Saito S, et al. Functional Characterization of 21 Allelic Variants of Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. Drug Metab Dispos. 2018;46(8):1083‑90. DOI:10.1124/dmd.118.081737
36. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415‑24. DOI:10.1038/bjc.2017.94
37. DPYD Gene. Cosmic. Available at: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=DPYD#variants. Accessed: 30.11.2022.
38. Etienne-Grimaldi MC, Boyer JC, Beroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. DOI:10.1371/journal.pone.0175998
39. Van Kuilenburg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta. 2016;1862(4):754‑62. DOI:10.1016/j.bbadis.2016.01.009
40. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(12):1008‑16. DOI:10.1002/onco.13967
41. Dean L, Kane M. Fluorouracil Therapy and DPYD Genotype. 2016 [last updated 2021]. In: Pratt VM, Scott SA, Pirmohamed M, et al, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
42. Colon Cancer, Version 2.2021, NCCN Guidelines. National Comprehensive Cancer Network. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed: 30.11.2022.
43. Iwasa S, Muro K, Morita S, et al. Impact of UGT1A1 Genotype on the Efficacy and Safety of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Cancer Sci. 2021;112(11):4669‑78. DOI:10.1111/cas.15092
44. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients With Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(1):44‑70. DOI:10.1093/annonc/mdx738
45. Reizine N, Vokes EE, Liu P, et al. Implementation of pharmacogenomic testing in oncology care (PhOCus): Study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol. 2020;12. DOI:10.1177/1758835920974118
________________________________________________
2. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61‑8. DOI:10.2147/PGPM.S108656
3. Pfizer: CAMPTOSAR® (irinotecan HCl) Prescribing Information, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020571s048lbl.pdf. Accessed: 30.11.2022.
4. Tam VC, Rask S, Koru-Sengul T, Dhesy-Thind S. Generalizability of toxicity data from oncology clinical trials to clinical practice: Toxicity of irinotecan-based regimens in patients with metastatic colorectal cancer. Curr Oncol. 2009;16(6):13‑20. DOI:10.3747/co.v16i6.426
5. Shulman K, Cohen I, Barnett-Griness O, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117(14):3156‑62. DOI:10.1002/cncr.25735
6. Karas S, Innocenti F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncol Pract. 2022;18(4):270‑7. DOI:10.1200/OP.21.00624
7. Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807‑14. DOI:10.1200/JCO.2003.08.058
8. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34(7):656‑69.
DOI:10.1016/j.ctrv.2008.05.002
9. Wasserman E, Myara A, Lokiec F, et al. Severe CPT‑11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8(10):1049‑51. DOI:10.1023/A:1008261821434
10. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201‑8. DOI:10.1124/dmd.104.000794
11. Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;14(1):92‑116. DOI:10.1016/j.pharmthera.2013.09.002
12. Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration – Approved Oral and Intravenous Drugs: 2006‑2015. Drug Metab Dispos. 2016;44(8):1246‑52. DOI:10.1124/dmd.116.070763
13. Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics. 2021;15(1):30. DOI:10.1186/s40246‑021‑00331‑6
14. Sara JD, Kaur J, Khodadadi R, et al. 5‑fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. DOI:10.1177/1758835918780140
15. Van Kuilenburg ABP, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5‑fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer. 2002;101(3):253‑8. DOI:10.1002/ijc.10599
16. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5‑fluorouracil. Adv Enzyme Regul. 2001;41:151‑7. DOI:10.1016/s0065‑2571(00)00011‑x
17. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831‑41. DOI:10.1517/14740338.2010.511610
18. Pallet N, Hamdane S, Garinet S, et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811‑8. DOI:10.1038/s41416‑020‑0962‑z
19. Zhang X, Li L, Fourie J, et al. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta (BBA) – Gene Structure and Expression. 2006;1759(5):247‑56.nDOI:10.1016/j.bbaexp.2006.05.001
20. Hirota T, Date Y, Nishibatake Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77(1):16‑23. DOI:10.1016/j.lungcan.2011.12.018
21. Toren W, Ansari D, Andersson B, et al. Thymidylate synthase: a predictive biomarker in resected colorectal liver metastases receiving 5-FU treatment. Future Oncol. 2018;14(4):343‑51. DOI:10.2217/fon‑2017‑0431
22. Abbasian MH, Ansarinejad N, Abbasi B, et al. The Role of Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms in Fluoropyrimidine-Based Cancer Chemotherapy in an Iranian Population. Avicenna J Med Biotechnol. 2020;12(3):157‑64.
23. Kit OI, Maksimov AYu, Dzhenkova EA, Timoshkina NN. The role of molecular genetic studies in current oncology. Annals of the Russian Academy of Medical Sciences. 2022;77(3):214‑24 (in Russian).
24. Vodolazhsky DI, Dvadnenko KV, Timoshkina NN, et al. UGT1A1 gene polymorphism in patients with colorectal cancer living in the South of Russia: results of a pilot study. Molecular Medicine. 2017;15(1):61‑4 (in Russian).
25. Timoshkina NN, Bogomolova OA, Zhuzhelenko IA, et al. Study of UGT1A1 and DPYD gene polymorphisms in patients with colorectal cancer. Siberian Journal of Oncology. 2018;17(6):49‑56 (in Russian). DOI:10.21294/1814‑4861‑2018‑17‑6-49‑56
26. Chen X, Liu L, Guo Z, et al. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol. 2017;79(6):1109‑17. DOI:10.1007/s00280‑017‑3306‑9
27. Zhang X, Yin JF, Zhang J, et al. UGT1A1*6 Polymorphisms are Correlated With Irinotecan-Induced Neutropenia: A Systematic Review and Meta-Analysis. Cancer Chemother Pharmacol. 2017;80(1):135‑49. DOI:10.1007/s00280‑017‑3344‑3
28. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120‑9. DOI:10.1038/tpj.2013.10
29. Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: A meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479‑89. DOI:10.1111/ajco.13028
30. Cremolini C, Del Re M, Antoniotti C, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9(8):7859‑66. DOI:10.18632/oncotarget.23559
31. Hikino K, Ozeki T, Koido M, et al. Comparison of Effects of UGT1A1*6 and UGT1A1*28 on Irinotecan-Induced Adverse Reactions in the Japanese Population: Analysis of the Biobank Japan Project. J Hum Genet. 2019;64(12):1195‑202. DOI:10.1038/s10038‑019‑0677‑2
32. Kimura K, Yamano T, Igeta M, et al. UGT1A1 Polymorphisms in Rectal Cancer Associated With the Efficacy and Toxicity of Preoperative Chemoradiotherapy Using Irinotecan. Cancer Sci. 2018;109(12):3934‑42. DOI:10.1111/cas.13807
33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‑506. DOI:10.1016/S0140‑6736(20)30183‑5
34. Li Y, Zheng H, Zhang X, et al. UGT1A1 Allele Test Not Only Minimizes the Toxicity But Also Maximizes the Therapeutic Effect of Irinotecan in the Treatment of Colorectal Cancer: A Narrative Review. Front Oncol. 2022;12:854478. DOI:10.3389/fonc.2022.854478
35. Hishinuma E, Narita Y, Saito S, et al. Functional Characterization of 21 Allelic Variants of Dihydropyrimidine Dehydrogenase Identified in 1070 Japanese Individuals. Drug Metab Dispos. 2018;46(8):1083‑90. DOI:10.1124/dmd.118.081737
36. Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415‑24. DOI:10.1038/bjc.2017.94
37. DPYD Gene. Cosmic. Available at: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=DPYD#variants. Accessed: 30.11.2022.
38. Etienne-Grimaldi MC, Boyer JC, Beroud C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. DOI:10.1371/journal.pone.0175998
39. Van Kuilenburg ABP, Meijer J, Tanck MWT, et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta. 2016;1862(4):754‑62. DOI:10.1016/j.bbadis.2016.01.009
40. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist. 2021;26(12):1008‑16. DOI:10.1002/onco.13967
41. Dean L, Kane M. Fluorouracil Therapy and DPYD Genotype. 2016 [last updated 2021]. In: Pratt VM, Scott SA, Pirmohamed M, et al, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
42. Colon Cancer, Version 2.2021, NCCN Guidelines. National Comprehensive Cancer Network. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed: 30.11.2022.
43. Iwasa S, Muro K, Morita S, et al. Impact of UGT1A1 Genotype on the Efficacy and Safety of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Cancer Sci. 2021;112(11):4669‑78. DOI:10.1111/cas.15092
44. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients With Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(1):44‑70. DOI:10.1093/annonc/mdx738
45. Reizine N, Vokes EE, Liu P, et al. Implementation of pharmacogenomic testing in oncology care (PhOCus): Study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol. 2020;12. DOI:10.1177/1758835920974118
Авторы
Н. Н. Тимошкина*, Н. А. Петрусенко, П. Н. Габричидзе, М. А. Черкес, Т. Ф. Пушкарева, Д. А. Савченко
ФГБУ «Национальный медицинский исследовательский центр онкологии» Минздрава России, Ростов-на-Дону, Россия
*timoshkinann@rnioi.ru
National Medical Research Center for Oncology, Rostov-on-Don, Russia
*timoshkinann@rnioi.ru
ФГБУ «Национальный медицинский исследовательский центр онкологии» Минздрава России, Ростов-на-Дону, Россия
*timoshkinann@rnioi.ru
________________________________________________
National Medical Research Center for Oncology, Rostov-on-Don, Russia
*timoshkinann@rnioi.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
